
SEVENTH FRAMEWORK PROGRAMME

CloudSpaces
(FP7-ICT-2011-8)

Open Service Platform for the
Next Generation of Personal Clouds

D5.1 Framework specs and API descriptions

Due date of deliverable: 30-11-2013
Actual submission date: 12-11-2013

Start date of project: 01-10-2012 Duration: 36 months

Summary of the document

Document Type Deliverable

Dissemination level Public

State Final

Number of pages 49

WP/Task related to this document WP5

WP/Task responsible CNC

Author(s) Refer to contributors list

Partner(s) Contributing CNC, URV, EOS

Document ID CLOUDSPACES_D5.1_131112_Public.pdf

Abstract This report includes guidelines, open specifica-
tions, and documented best-practices for achiev-
ing syntactic interoperability of Personal Clouds.
Data API specs and early prototypes. Persis-
tence API spec and early prototypes. eyeOS early
incomplete integration with data services includ-
ing eyeSync and eyeFiles. Candidate tools specs
for eyeOS demonstrator tools demonstrating con-
tact, file, and calendar data use. Early prototype
of OpenStack Web data management integration
with data services. All software will be released
under an open source license such as GPLv3.

Keywords interoperability, API, prototype, persistence, ser-
vices, Personal Clouds

Contributors

Name Last name Affiliation Email

John Lenton CNC john.lenton@canonical.com

Adrián Moreno Martínez URV adrian.moreno@urv.cat

Pedro García López URV pedro.garcia@urv.cat

José Miguel García López TST jmgarcia@tissat.es

Ferran Caceres EOS ferran.caceres@eyeos.com

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Table of Contents

1 Executive summary 1

2 Motivation and Context 2

3 Related work 3

4 Sharing protocol 4

4.1 Prerequisites . 4

4.2 Request URL . 4

4.3 Interoperability process overview . 4

4.4 User invitation . 5

4.4.1 User sends an invitation . 5

4.4.2 The recipient selects its Personal Cloud 6

4.4.3 Creating the sharing proposal . 6

4.5 Invitation acceptance . 6

4.5.1 The user accepts the invitation . 6

4.5.2 Returning the proposal response . 6

4.6 Access credentials . 7

4.6.1 Granting access to the service . 7

5 Store API 8

5.1 Error Handling . 8

5.2 Getting user representation . 8

5.3 Metadata . 9

5.4 Modifying an existing file . 12

5.5 Creating a file . 13

5.6 Upload an existing file . 14

5.7 Download a file . 15

5.8 Delete a file or folder . 16

5.9 Create a folder . 16

i

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

6 Persistence API 18

6.1 The high-level API . 18

6.1.1 Document storage and retrieval . 18

6.1.2 Querying . 20

6.1.3 Synchronising . 24

6.1.4 Dealing with conflicts . 24

6.2 U1DB implementations . 25

6.2.1 U1DB APIs . 25

6.2.2 U1DB test suite . 25

6.2.3 Available implementations . 26

6.2.4 The reference implementation . 26

6.2.5 The JavaScript implementation . 33

7 Client prototypes 35

7.1 EyeOS . 35

7.1.1 Introduction . 35

7.1.2 Authentication . 35

7.1.3 Integrated file management . 37

7.1.4 Storage Provider . 38

7.1.5 Token management . 42

7.1.6 Scalability . 43

7.2 Web Management Interface . 44

7.2.1 Web client . 44

7.2.2 Admin panel . 49

ii

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

1 Executive summary

This deliverable includes guidelines, open specifications, and documented best-practices for
achieving syntactic interoperability of Personal Clouds. This document describes an open
service platform for Personal Clouds including a number of services ensuring both horizontal
and vertical interoperability. In Section 3 we review and discuss some of the current Cloud
standards and analyse whether they are suitable for the project.

Horizontal interoperability is focused on exchanging and sharing information between het-
erogeneous Personal Clouds. It includes services for data storage and sharing to shared workspaces.
Horizontal interoperability will be demonstrated between StackSync and U1 Personal Clouds
using the Share and Store APIs.

In Section 4 we describe the first version of the sharing protocol, which will enable different
Personal Clouds to share resources among them via an API, without forcing users to be in
the same provider. More generally, the sharing protocol will create a freely-implementable and
generic methodology for allowing Personal Cloud interoperability. We provide the protocol
specification as well as different use case scenarios that the protocol may face.

Next, we describe the storage API in Section 5. This API is meant to consolidate a standard
among Personal Clouds to achieve an easier interoperability and facilitate access to third parties.
We specify the different actions and resources available as well as the needed parameters to
perform queries and the distinct error codes available.

The persistence API is presented in Section 6. Persistence relies in the U1DB implemen-
tation, which is a database API for synchronised databases of JSON documents. It allows
applications to store documents and synchronise them between machines and devices. The
design allows U1DB to be used everywhere, backed by the platform’s native data storage capa-
bilities. Meaning that it can used on different platforms, from different languages, and backed
on to different databases, and synchronised between all of them.

Vertical Interoperability refers to external third-party applications accessing a Personal
Cloud. This includes the client prototypes presented in Section 7 and the aforementioned
services: the storage API and persistence service for applications requiring at least key-value and
metadata services over the information stored in the Personal Cloud. Vertical interoperability
will be demonstrated thanks to the eyeOs web desktop infrastructure and tools. eyeOS services
like eyeFiles and eyeCalendar will demonstrate the aforementioned Store, Share, and Persistence
services. Vertical interoperability will be also demonstrated with the integration of a Web
Managament Interface on top of OpenStack Swift for accessing heterogeneous Personal Clouds
data services.

The goal of this platform is that users retake control of their information stored in Personal
Cloud. Users will be able to decide how (access control) and whom (users, applications) can
access information stored in their Personal Clouds. The service platform aims to produce open
specifications that may be adopted by third-party providers (Personal Clouds, Applications)
and thus break the fragmentation of the market and its implicit vendor lock-in.

Page 1 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

2 Motivation and Context

In the next few years, users will require ubiquitous and massive network storage to handle
their ever-growing digital lives. Every user will handle hundreds of gigabytes to store digital
information including photos, videos, work documents and communication flows like emails or
social communication.

To meet this demand, current trends show an increasing number of enterprises and users
migrating their data to Cloud storage providers. A major selling point for Cloud computing is
that it offers on-demand storage capacity that otherwise might not be affordable.

In this line, the Personal Cloud model is a user-centric solution to manage such massive
amounts of digital information. Unlike application-centric models where data is tied to a specific
application, user-centric models provide a personal storage service for user data.

The Personal Cloud model defines a ubiquitous storage facility enabling the unified and
location-agnostic access to information flows from any device and application. Commercial
providers such as Dropbox, SugarSync or Ubuntu One are offering very popular Personal Cloud
solutions that keep the information synchronized between different user devices. These solutions
also allow sharing information with other users within the same Personal Cloud provider.

The popularity of these killer applications lies behind their easy-to-use Software as a Service
(SaaS) storage facade to ubiquitous Infrastructure as a Service (IaaS) storage resources like
Amazon S3 and others. In a recent report, Forrester research forecasts a market of $12 billion
in the US in paid subscriptions to personal clouds by 2016. This growing popularity of Personal
Clouds is also attracting the major players in the market, and Google, Microsoft, Amazon or
Apple are offering integrated solutions in this field.

Page 2 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3 Related work

In this section, we will be reviewing and discussing related works that seek to tackle the problem
of interoperability from different angles. Starting from the common storage interface to access
Personal Cloud resources, and then moving to the sharing protocol to allow Personal Clouds
to establish a relationship and allow their users to share resources with users in other Personal
Clouds, preventing the vendor lock-in problem. Finally, we will address the persistence interface
and examine the previous work done in this field.

We have analyzed different Cloud standards in order to consider their adoption when build-
ing the Personal Cloud storage API and sharing protocol. First, we evaluated the Cloud Data
Management Interface (CDMI)1, which is a standard by the Storage Networking Industry As-
sociation (SNIA). CDMI defines the functional interface that applications will use to create,
retrieve, update and delete data elements from the Cloud. Among other features, CDMI allows
clients to discover the capabilities available in the cloud storage offering and associate meta-
data with containers and the objects they contain. However, CDMI is applied at a lower level
than Personal Clouds —i.e. Cloud object storage solutions such as OpenStack or Amazon Web
Services— and does not provide any solution related to Personal Cloud.

The Open Cloud Computing Interface (OCCI)2 defines a protocol and API for management
tasks. OCCI was originally initiated to create a remote management API for IaaS model
based Services, allowing for the development of interoperable tools for common tasks including
deployment, autonomic scaling and monitoring. But again, OCCI is focused on Cloud providers
and it is not suitable for Personal Clouds as it cannot address many distinctive features and
functionalities offered by these kind of services. Other analyzed Cloud standards suffer from
the same constraints that prevents their adoption on the Personal Cloud field.

We also evaluated existing storage API specifications from well-known Personal Clouds such
as Dropbox3, Box4, SugarSync5, and the likes. However, all analyzed APIs are very coupled to
their services. This coupling is noticeable when dealing with files and other provider-specific
models. For example, whereas SugarSync organizes its files and folders in albums, files are
indexed by identifiers, and deleted files are moved to a special album that acts as a recycle bin;
Dropbox does not enclose its folders and files in bigger containers, indexes files by their path
instead of identifiers, and deleted files are tagged as deleted but not moved to anywhere.

As far as we know, there exists no sharing protocol to allow two heterogeneous Personal
Clouds to reach an agreement and authorize users of both Personal Clouds to seamlessly share
between them. Similarly, to address the data persistence issue we analyzed our partner’s solu-
tion called U1DB6. U1DB is a database API for synchronized databases of JSON documents.
It allows applications to store documents and synchronize them between machines and devices.
U1DB itself is not a database: instead, it is an API which can be backed by any database for
storage. This means that you can use U1DB on different platforms, from different languages,
and backed on to different databases, and sync between all of them. U1DB completely fits the
needs of the project and its specification is described later in this document.

1http://www.snia.org/cdmi
2http://occi-wg.org/
3https://www.dropbox.com/developers/core/docs
4http://developers.box.com/get-started/
5https://www.sugarsync.com/developer
6https://one.ubuntu.com/developer/data/u1db/index

Page 3 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

4 Sharing protocol

The sharing protocol enables different Personal Clouds to share resources among them via an
API, without forcing users to be in the same provider. More generally, the sharing protocol
creates a freely-implementable and generic methodology for allowing Personal Cloud interop-
erability.

4.1 Prerequisites

Having two Personal Clouds (Personal Cloud 1 and Personal Cloud 2) that pretend to inter-
operate with each other. They must meet the following requirements before using the present
specification.

1. Once the sharing process is completed, Personal Clouds must use APIs to access protected
resources. In case they do not implement the Storage API proposed in Section 5, Personal
Cloud 1 must implement an adapter to access Personal Cloud 2 API, and vice versa.

2. Personal Cloud 1 must be registered in Personal Cloud 2 and validated as an authorized
service in order to obtain its credentials, and vice versa. The method in which Per-
sonal Clouds register with each other and agree to cooperate is beyond the scope of this
specification.

4.2 Request URL

The sharing protocol defines three endpoints:

• Share URL. The URL used to present the sharing proposal to the user and obtain
authorization.

• Unshare URL. The URL used to finish the sharing agreement.

• Credentials URL. The URL used to provide the access credentials.

4.3 Interoperability process overview

The sharing protocol is done in three steps:

1. User A invites User B to its folder located in Personal Cloud A.

2. Personal Cloud A creates the sharing proposal.

3. Personal Cloud A sends the access credentials to Personal Cloud B.

Page 4 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Creates a sharing
Selects provider from list

Sends sharing information Requests for authorization
Authorizes the sharing

Returns sharing proposal
Sends access credentials

Personal Cloud A Personal Cloud B User

Stores credentials for

1

Step requiring
human entry

2

3

proposal and sends email

proposal

result

future requests

Figure 1: CloudSpaces sharing process flow

In Figure 1 we can observe the sharing process divided in the three steps commented above.
First, a user in Personal Cloud A expresses its intention of sharing a file with a external
user (User B). Personal Cloud A will send an email with information about the proposal to
the external user. The external user will select its favourite Personal Cloud, in which it has an
account, namely Personal Cloud B. In the second step, Personal Cloud A will create the sharing
proposal and send it to Personal Cloud B, which will require User B to authorize the proposal.
The result of the proposal will be returned to Personal Cloud A. Finally, Personal Cloud A
will hand the access credentials over the Personal Cloud B, granting forthcoming access to the
shared resource.

4.4 User invitation

4.4.1 User sends an invitation

User A wants to share a folder with User B. Therefore, User A goes to Personal Cloud A, selects
the folder he/she wants to share, and introduces the email of User B, who will receive an email
indicating the intention of User A to share a folder with him/her and a link to a website located
on Personal Cloud A.

Page 5 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

4.4.2 The recipient selects its Personal Cloud

User B clicks on the link and is taken to the Personal Cloud A, where it is asked to select its
Personal Cloud from a list of services that have an agreement with Personal Cloud A. User B
selects Personal Cloud B.

4.4.3 Creating the sharing proposal

At this time, Personal Cloud A creates the sharing proposal. To create a sharing proposal,
Personal Cloud A sends an HTTP request to Personal Cloud B’s share URL. The Personal
Cloud B documentation specifies the HTTP method for this request, and HTTP POST is
RECOMMENDED.

Field Description

share_id A random value that uniquely identifies the sharing proposal

resource_url An absolute URL to access the shared resource located in Personal
Cloud A.

owner_name The name corresponding to the owner of the folder

owner_email The email corresponding to the owner of the folder

folder_name The name of the folder

permission Permissions granted to the recipient. Options are READ-ONLY and
READ-WRITE.

recipient The email corresponding to the user who the folder has been shared
with

callback An absolute URL to which the Personal Cloud B will redirect the
User back when the Accepting the invitation step is completed.

protocol_version MUST be set to 1.0. Services MUST assume the protocol version
to be 1.0 if this parameter is not present.

4.5 Invitation acceptance

4.5.1 The user accepts the invitation

Personal Cloud B displays User B the details of the folder invitation request. User B must
provide its credentials and explicitly accept the invitation.

4.5.2 Returning the proposal response

Once Personal Cloud B has obtained approval or denial from User B, Personal Cloud B must
use the callback to inform Personal Cloud A about the User B decision.

Page 6 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Personal Cloud B uses the callback to construct an HTTP GET request, and directs the
User’s web browser to that URL with the following values added as query parameters:

Field Description

share_id A random value that uniquely identifies the sharing proposal

accepted A string indicating whether the invitation has been accepted or
denied. true and false are the only possible values.

4.6 Access credentials

4.6.1 Granting access to the service

When Personal Cloud A receives the proposal result it must provide the access credentials to
Personal Cloud B in order to be able to obtain the shared resource. Personal Cloud A sends an
HTTP request to Personal Cloud B’s credential URL. The Personal Cloud B documentation
specifies the HTTP method for this request, and HTTP POST is recommended.

Personal Cloud A specifies what type of authentication protocol and version must be used
to access the resource. To this end, Personal Cloud B must check the auth_protocol and
auth_protocol_version parameters. The authentication protocol and version used by Per-
sonal Cloud A is beyond the scope of this specification, but OAuth 1.0a or OAuth 2.0 is
recommended.

Field Description

share_id A random value that uniquely identifies the sharing proposal

auth_protocol The authentication protocol used to access the shared resource (e.g.
oauth)

auth_protocol_version The version of the authentication protocol (e.g. 1.0a)

Other authentication-specific parameters are sent together with the above parameters, these
parameters may include values like tokens, timestamps or signatures.

Page 7 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

5 Store API

In this section we will describe the storage API. This API is meant to consolidate a standard
among Personal Clouds to achieve an easier interoperability and facilitate access to third parties.
We will specify the different actions and resources available as well as the needed parameters
to perform queries and the distinct error codes available.

5.1 Error Handling

Errors are returned using standard HTTP error code syntax. Any additional info is included
in the body of the return call, JSON-formatted. Error codes not listed in figure 5.1a are in the
REST API methods listed below.

Code Description

400 Bad input parameter. Error message should indicate which one and
why.

401 Authorization required. The presented credentials, if any, were not
sufficient to access the folder resource. Returned if an application
attempts to use an access token after it has expired.

403 Forbidden. The requester does not have permission to access the
specified resource.

404 File or folder not found at the specified path.

405 Request method not expected (generally should be GET or POST).

5xx Server error.

Table 5.1a: Standard API errors

5.2 Getting user representation

Returns the JSON representation of the currently authorized user.

URL structure

API_ROOT/

Method

GET

Page 8 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Sample JSON return value

1 {
2 " volumes " : [
3 {
4 " volume_id ": " 9834593 ",
5 " root_node_id ": " 42342343242 ",
6 " resource_path ": "/api/ metadata / volumes /42342343242 ",
7 "name": "Photos",
8 " when_created ": <timestamp >
9 " content_path ": "/ content /124324234 "

10 " x_attributes ": {}
11 },
12 {
13 " volume_id ": " 32423443 ",
14 " root_node_id " : " 124324234 ",
15 " resource_path ": "/api/ metadata / volumes /124324234 ",
16 "name": " Documents ",
17 " when_created ": <timestamp >
18 " content_path ": "/ content /124324234 ",
19 " x_attributes ": {}
20 }
21]
22 }

Where: resource_path: path to the resource metadata
x_attributes: a dictionary containing provider-specific attributes
when_created: timestamp of creation of the volume
content_path: path where files content can be retrieved for this volume

5.3 Metadata

Retrieves file and folder metadata.

URL structure

API_ROOT/metadata/node_id

Method

GET

Page 9 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Parameters

node_id: ID of a file or folder.
list: (optional) Only applicable when fileId corresponds to a folder.

The strings true and false are valid values. true is the default.
If true, the folder’s metadata will include a contents field with
a list of metadata entries for the contents of the folder. If false,
the contents field will be omitted. Note that the root folder will
always return its content regardless of this flag.

include_deleted: (optional) The strings true and false are valid values, false is the
default. If this parameter is set to true, then response will include
metadata of deleted objects. Note that the target of the metadata
call is always returned even when it has been deleted regardless of
this flag.

version: (optional) If you include a particular version, then only the meta-
data for that version will be returned.

Returns

The metadata for the file or folder at the given file_id. If file_id represents a folder and
the list parameter is true, the metadata will also include a listing of metadata for the folder’s
contents.

Sample JSON return value for a file

1 {
2 " client_modified ": "2013 -03 -08 10:36:41.997 ",
3 " content_path ": "/api/ content /534824681 ",
4 "hash": " -2678858962222278590 ",
5 " is_deleted ": false,
6 " is_folder ": false,
7 " mimetype ": " application /pdf",
8 " node_id ": " 534824681 ",
9 " parent_node_id ": "0",

10 "path": "/ StackSync_Guide .pdf",
11 " resource_path ": "/api/ metadata /534824681 ",
12 " server_modified ": "2013 -03 -08 10:36:41.997 ",
13 "size": 775412,
14 " user_id ": "943274",
15 " version ": 2,
16 " volume_id ": " 793249234 ",
17 " x_attributes ": {}
18 }

Page 10 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Sample JSON return value for a folder when list parameter is set to true

If list is false the contents key will simply be omitted from the result.
1 {
2 " client_modified ": "2013 -03 -08 10:36:41.994 ",
3 " content_path ": "/api/ content /538757639 ",
4 " contents ": [
5 {
6 " checksum ": " 4653280656841610066 ",
7 " client_modified ": "2013 -03 -08 10:36:42.893 ",
8 " content_path ": "/api/ content /1916666835 ",
9 " is_deleted ": false,

10 " is_folder ": false,
11 " mimetype ": "text/plain",
12 " node_id ": " 1916666835 ",
13 " parent_node_id ": " 538757639 ",
14 "path": "/ Documents / important .txt",
15 " resource_path ": "/api/ metadata /1916666835 ",
16 " server_modified ": "2013 -03 -08 10:36:42.893 ",
17 "size": 9453,
18 " user_id ": "1234",
19 " version ": 1,
20 " x_attributes ": {}
21 }
22],
23 " is_deleted ": false,
24 " is_folder ": true,
25 " is_root ": false,
26 " node_id ": " 538757639 ",
27 " parent_node_id ": "0",
28 "path": "/ Documents ",
29 " resource_path ": "/api/ metadata /538757639 ",
30 " server_modified ": "2013 -03 -08 10:36:41.994 ",
31 " user_id ": "1234",
32 " version ": 1,
33 " volume_id ": " 793249234 ",
34 " x_attributes ": {
35 " generation ": "45",
36 " generation_created ": "42",
37 "key": "abc:def"
38 }
39 }

Page 11 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Return value definitions

is_folder Whether the given entry is a folder.
is_root Whether the given entry is the root folder.

is_deleted .
path The canonical path to the file or directory.
size The file size in bytes (only for files).

mimetype The media type of the file (only for files). http://www.iana.org/
assignments/media-types

hash The file’s hash.
version A unique identifier for the current version of a file. Can be used to

detect changes and avoid conflicts.
filename The name of the file or folder.
user_id The name of the user that made modified this specific version.
node_id A unique identifier for a file or folder.

parent_node_id file_id of the folder’s parent.
client_modified This is the modification time set by the desktop client when the

file was last modified, in the standard date format. Since this time
is not verified (the server stores whatever the desktop client sends
up), this should only be used for display purposes (such as sorting)
and not, for example, to determine if a file has changed or not.

server_modified This is the modification time set by the server at the time of pro-
cessing the file.

x_attributes A dictionary containing provider-specific attributes.
content_path Path to the content.

resource_path Path to the node resource.

Note that status, parent_node_id, client_modified, server_modified, version, user,
path, and checksum are not in the metadata for the root folder.

Status codes

2xx The request was successful. The folder information is in the re-
sponse body.

See also the standard error codes in figure 5.1a.

5.4 Modifying an existing file

Modifies the metadata of a file or folder.

URL structure

API_ROOT/metadata/node_id

Page 12 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Method

PUT

Returns

Metadata of the file just uploaded

Sample JSON return value

1 {
2 " checksum ": -2678858962222278590,
3 " client_modified ": "2013 -03 -08 10:36:41.997 ",
4 " content_path ": "/api/ content /534824681 ",
5 " is_deleted ": false,
6 " is_folder ": false,
7 " mimetype ": " application /pdf",
8 " node_id ": 534824681,
9 " parent_file_id ": 0,

10 "path": "/ StackSync_Guide .pdf",
11 " resource_path ": "/api/ metadata /534824681 ",
12 " server_modified ": "2013 -03 -08 10:36:41.997 ",
13 "size": 775412,
14 "user": "Adrian",
15 " version ": 2
16 }

Status codes

2xx The file has been successfully uploaded

See also the standard error codes in figure 5.1a.

5.5 Creating a file

Uploads a new file.

URL structure

API_ROOT/content/folder_node_id

Page 13 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Method

POST

Parameters

file_name The file name.
folder_node_id (optional) ID of the folder where the file or folder is going to be

uploaded. If no ID is passed, it will use the top-level folder. This
parameter should not point to a file.

Returns

Metadata of the file just uploaded.

Sample JSON return value

1 {
2 " checksum ": -2678858962222278590,
3 " client_modified ": "2013 -03 -08 10:36:41.997 ",
4 " content_path ": "/api/ content /534824681 ",
5 " is_deleted ": false,
6 " is_folder ": false,
7 " mimetype ": " application /pdf",
8 " node_id ": " 534824681 ",
9 " parent_node_id ": "0",

10 "path": "/ StackSync_Guide .pdf",
11 " resource_path ": "/api/ metadata /534824681 ",
12 " server_modified ": "2013 -03 -08 10:36:41.997 ",
13 "size": 775412,
14 " user_id ": "289342",
15 " version ": 2
16 }

Status codes

2xx The file has been successfully uploaded
4xx The file name already exists

See also the standard error codes in figure 5.1a.

5.6 Upload an existing file

Modifies a file.

Page 14 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

URL structure

API_ROOT/content/node_id

Method

PUT

Returns

Metadata of the file just uploaded.

Sample JSON return value

1 {
2 " checksum ": -2678858962222278590,
3 " client_modified ": "2013 -03 -08 10:36:41.997 ",
4 " content_path ": "/api/ content /534824681 ",
5 " is_deleted ": false,
6 " is_folder ": false,
7 " mimetype ": " application /pdf",
8 " node_id ": 534824681,
9 " parent_file_id ": 0,

10 "path": "/ StackSync_Guide .pdf",
11 " resource_path ": "/api/ metadata /534824681 ",
12 " server_modified ": "2013 -03 -08 10:36:41.997 ",
13 "size": 775412,
14 "user": "Adrian",
15 " version ": 2
16 }

Status codes

2xx The file has been successfully uploaded

See also the standard error codes in figure 5.1a.

5.7 Download a file

Retrieves a file’s content.

Page 15 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

URL structure

API_ROOT/content/node_id

Method

GET

Parameters

node_id ID of the file to download.
version (optional) If you want to download a specific version.

Returns

The content of the file in the body response.

5.8 Delete a file or folder

URL structure

API_ROOT/content/node_id

Method

DELETE

Parameters

node_id ID of the file to download.

Returns

The metadata of the file just deleted.

5.9 Create a folder

Touch a folder in the server.

Page 16 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

URL structure

API_ROOT/metadata

Method

POST

Parameters

folder_name Name of the folder to be created.
parent (optional) ID of the folder where the folder is going to be created.

If no ID is passed, it will use the top-level folder. This parameter
should not point to a file.

Returns

Metadata of the folder just created.

Status codes

201 The folder has been successfully created

See also the standard error codes in figure 5.1a.

Page 17 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

6 Persistence API

The data persistance API implemented has been called “U1DB”.

U1DB is a database API for synchronised databases of JSON documents. It’s simple to use
in applications, and allows apps to store documents and synchronise them between machines
and devices. U1DB is the database designed to work everywhere, backed by the platform’s
native data storage capabilities. This means that you can use U1DB on different platforms,
from different languages, and backed on to different databases, and sync between all of them.

The API for U1DB looks similar across all different implementations. This API is described
at The high-level API. To actually use U1DB you’ll an implementation; a version of U1DB
made available on your choice of platform, in your choice of language, and on your choice of
backend database.

If you’re interested in using U1DB in an application, look at The high-level API first, and
then choose one of the implementations and read about exactly how the U1DB API is made
available in that implementation. Get going quickly with the downloads and Quickstart guide.

If you’re interested in hacking on U1DB itself, read about the rules for U1DB and The
reference implementation.

6.1 The high-level API

The U1DB API has three separate sections: document storage and retrieval, querying, and sync.
Here we describe the high-level API. Remember that you will need to choose an implementation,
and exactly how this API is defined is implementation-specific, in order that it fits with the
language’s conventions.

6.1.1 Document storage and retrieval

U1DB stores documents. A document is a set of nested key-values; basically, anything you can
express with JSON. Implementations are likely to provide a Document object “wrapper” for
these documents; exactly how the wrapper works is implementation-defined.

Creating documents To create a document, use create_doc() or create_doc_from_json
(). Code examples below are from the reference implementation in Python. create_doc()
takes a dictionary-like object, and create_doc_from_json() a JSON string.

1 >>> import u1db
2 >>> db = u1db.open("mydb1.u1db", create=True)
3 >>> doc = db. create_doc ({"key": "value"}, doc_id=" testdoc ")
4 >>> doc. content
5 {’key ’: ’value ’}
6 >>> doc.doc_id
7 ’testdoc ’

Page 18 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Retrieving documents The simplest way to retrieve documents from a u1db is by calling
get_doc() with a doc_id. This will return a Document object7.

1 >>> import u1db
2 >>> db = u1db.open("mydb4.u1db", create=True)
3 >>> doc = db. create_doc ({"key": "value"}, doc_id=" testdoc ")
4 >>> doc1 = db. get_doc (" testdoc ")
5 >>> doc1. content
6 {u’key ’: u’value ’}
7 >>> doc1.doc_id
8 ’testdoc ’

And it’s also possible to retrieve many documents by doc_id.
1 >>> import u1db
2 >>> db = u1db.open("mydb5.u1db", create=True)
3 >>> doc1 = db. create_doc ({"key": "value"}, doc_id=" testdoc1 ")
4 >>> doc2 = db. create_doc ({"key": "value"}, doc_id=" testdoc2 ")
5 >>> for doc in db. get_docs ([" testdoc2 "," testdoc1 "]):
6 ... print doc.doc_id
7 testdoc 2
8 testdoc 1

Note that u1db.Database.get_docs() returns the documents in the order specified.

Editing existing documents Editing an existing document is done with put_doc(). This is
separate from create_doc() so as to avoid accidental overwrites. put_doc() takes a Document
object, because the object encapsulates revision information for a particular document. This
revision information must match what is stored in the database, so we can make sure you
are not overwriting another version of the document that you do not know about (eg, new
documents that came from a background sync while you were editing your copy).

1 >>> import u1db
2 >>> db = u1db.open("mydb2.u1db", create=True)
3 >>> doc1 = db. create_doc ({"key1": "value1"}, doc_id="doc1")
4

5 >>> # the next line should fail because it’s creating a doc that
already exists

6 >>> db. create_doc ({" key1fail ": " value1fail "}, doc_id="doc1")
7 Traceback (most recent call last):
8 ...
9 RevisionConflict

10

11 >>> # Now editing the doc with the doc object we got back ...
12 >>> doc1. content ["key1"] = "edited"
13 >>> db. put_doc (doc1)
14 ’... ’
17

7 Alternatively if a factory function was passed into u1db.open(), get_doc() will return whatever type of
object the factory function returns.

Page 19 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

15 >>> doc2 = db. get_doc (doc1.doc_id)
16 >>> doc2. content
18 {u’key1 ’: u’edited ’}

Finally, deleting a document is done with delete_doc().
1 >>> import u1db
2 >>> db = u1db.open("mydb3.u1db", create=True)
3 >>> doc = db. create_doc ({"key": "value"})
4 >>> db. delete_doc (doc)
5 ’... ’
6 >>> db. get_doc (doc.doc_id)
7 >>> doc = db. get_doc (doc.doc_id, include_deleted =True)
8 >>> doc. content

Document functions

• create_doc()

• create_doc_from_json()

• put_doc()

• get_doc()

• get_docs()

• get_all_docs()

• delete_doc()

• whats_changed()

6.1.2 Querying

To retrieve documents other than by doc_id, you query the database. Querying a U1DB is
done by means of an index. To retrieve only some documents from the database based on
certain criteria, you must first create an index, and then query that index.

An index is created from ‘’index expressions’‘. An index expression names one or more fields
in the document. A simple example follows: view many more examples here.

Given a database with the following documents:
1 >>> import u1db
2 >>> db1 = u1db.open("mydb6.u1db", create=True)
3 >>> jb = db1. create_doc ({" firstname ": "John", " surname ": "Barnes"

, " position ": "left wing"})
4 >>> jm = db1. create_doc ({" firstname ": "Jan", " surname ": "Molby",

" position ": " midfield "})

Page 20 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

5 >>> ah = db1. create_doc ({" firstname ": "Alan", " surname ": "Hansen"
, " position ": " defence "})

6 >>> jw = db1. create_doc ({" firstname ": "John", " surname ": "Wayne",
" position ": " filmstar "})

an index expression of "firstname" will create an index that looks (conceptually) like this

index expression value document
Alan ah
Jan jm
John jb
John jw

and that index is created with:
1 >>> db1. create_index ("by - firstname ", " firstname ")
2 >>> sorted(db1. get_index_keys (’by - firstname ’))
3 [(u’Alan ’,), (u’Jan ’,), (u’John ’,)]

—that is, create an index with a name and one or more index expressions. (Exactly how to
pass the name and the list of index expressions is something specific to each implementation.)

Index expressions An index expression describes how to get data from a document; you
can think of it as describing a function which, when given a document, returns a value, which
is then used as the index key.

Name a field. A basic index expression is a dot-delimited list of nesting fieldnames, so
the index expression field.sub1.sub2 applied to a document with below content:

1 >>> import u1db
2 >>> db = u1db.open(’mydb7.u1db ’, create=True)
3 >>> db. create_index (’by - subfield ’, ’field.sub1.sub2 ’)
4 >>> doc1 = db. create_doc ({"field": {"sub1": {"sub2": "hello", "

sub3": "not selected "}}})
5 >>> db. get_index_keys (’by - subfield ’)
6 [(u’hello ’,)]

gives the index key “hello”, and therefore an entry in the index of

Index key doc
hello doc1

Name a list. If an index expression names a field whose contents is a list of strings,
the document will have multiple entries in the index, one per entry in the list. So, the index
expression field.tags applied to a document with content:

Page 21 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

1 >>> import u1db
2 >>> db = u1db.open(’mydb8.u1db ’, create=True)
3 >>> db. create_index (’by -tags ’, ’field.tags ’)
4 >>> doc2 = db. create_doc ({"field": {"tags": ["tag1", "tag2", "

tag3"]}})
5 >>> sorted(db. get_index_keys (’by -tags ’))
6 [(u’tag1 ’,), (u’tag2 ’,), (u’tag3 ’,)]

gives index entries

Index key doc
tag1 doc2
tag2 doc2
tag3 doc2

Subfields of objects in a list. If an index expression points at subfields of objects in
a list, the document will have multiple entries in the index, one for each object in the list
that specifies the denoted subfield. For instance the index expression managers.phone_number
applied to a document with content:

1 >>> import u1db
2 >>> db = u1db.open(’mydb9.u1db ’, create=True)
3 >>> db. create_index (’by -phone -number ’, ’managers . phone_number ’)
4 >>> doc3 = db. create_doc (
5 ... {" department ": " department of redundancy department ",
6 ... " managers ": [
7 ... {"name": "Mary", " phone_number ": "12345"},
8 ... {"name": " Katherine "},
9 ... {"name": "Rob", " phone_number ": "54321"}]})

10 >>> sorted(db. get_index_keys (’by -phone -number ’))
11 [(u’12345 ’,), (u’54321 ’,)]

would give index entries:

Index key doc
12345 doc3
54321 doc3

Transformation functions. An index expression may be wrapped in any number of
transformation functions. A function transforms the result of the contained index expression:
for example, if an expression name.firstname generates “John” when applied to a document,
then lower(name.firstname) generates “john”.

Available transformation functions are:

• lower(index_expression) - lowercase the value

Page 22 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

• split_words(index_expression) - split the value on whitespace; will act like a list and
add multiple entries to the index

• number(index_expression,width) - takes an integer value, and turns it into a string,
left padded with zeroes, to make it at least as wide as width; or nothing if the field type
is not an integer.

• bool(index_expression) - takes a boolean value and turns it into ‘0’ if false and ‘1’ if
true, or nothing if the field type is not boolean.

• combine(index_expression1,index_expression2,...) - Combine the values of an ar-
bitrary number of sub expressions into a single index.

So, the index expression splitwords(lower(field.name)) applied to a document with
content:

1 >>> import u1db
2 >>> db = u1db.open(’mydb10.u1db ’, create=True)
3 >>> db. create_index (’by -split -lower ’, ’split_words (lower(field.

name))’)
4 >>> doc4 = db. create_doc ({"field": {"name": "Bruce David

Grobbelaar "}})
5 >>> sorted(db. get_index_keys (’by -split -lower ’))
6 [(u’bruce ’,), (u’david ’,), (u’grobbelaar ’,)]

gives index entries

Index key doc
bruce doc3
david doc3
grobbelaar doc3

Querying an index Pass an index key or a tuple of index keys (if the index is on multiple
fields) to get_from_index; the last index key in each tuple (and only the last one) can end
with an asterisk, which matches initial substrings. So, querying our by-firstname index from
above:

1 >>> johns = [d.doc_id for d in db1. get_from_index ("by - firstname ",
"John")]

2 >>> assert(jw.doc_id in johns)
3 >>> assert(jb.doc_id in johns)
4 >>> assert(jm.doc_id not in johns)

will return the documents with ids: ‘jw’, ‘jb’.

get_from_index("by_firstname","J*") will match all index keys beginning with “J”, and
so will return the documents with ids: ‘jw’, ‘jb’, ‘jm’.

1 >>> js = [d.doc_id for d in db1. get_from_index ("by - firstname ", "J
*")]

Page 23 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

2 >>> assert(jw.doc_id in js)
3 >>> assert(jb.doc_id in js)
4 >>> assert(jm.doc_id in js)

Index functions

• create_index()

• delete_index()

• get_from_index()

• get_range_from_index()

• get_index_keys()

• list_indexes()

6.1.3 Synchronising

U1DB is a syncable database. Any U1DB can be synced with any U1DB server; most U1DB
implementations are capable of being run as a server. Synchronising brings both the server and
the client up to date with one another; save data into a local U1DB whether online or offline,
and then sync when online.

Pass an HTTP URL to sync with that server.

Synchronising databases which have been independently changed may produce conflicts.
Read about the U1DB conflict policy and more about synchronising at Conflicts, Synchronisation,
and Revisions.

Running your own U1DB server is implementation-specific. The reference implementation
is able to be run as a server.

6.1.4 Dealing with conflicts

Synchronising a database can result in conflicts; if your user changes the same document in
two different places and then syncs again, that document will be ‘’in conflict’‘, meaning that
it has incompatible changes. If this is the case, has_conflicts will be true, and put_doc to
a conflicted doc will give a ConflictedDoc error. To get a list of conflicted versions of the
document, do get_doc_conflicts(). Deciding what the final unconflicted document should
look like is obviously specific to the user’s application; once decided, call resolve_doc() to
resolve and set the final resolved content.

Page 24 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Synchronising Functions

• sync()

• get_doc_conflicts()

• resolve_doc()

6.2 U1DB implementations

Let us move to concrete U1DB implementations

6.2.1 U1DB APIs

Implementations should expose the APIs presented previously and choose and utilize a stor-
age backend appropriate and meaningful for the platform they cover to realize the semantics
sketched.

User API these APIs for databases and documents should be rendered with as little as possi-
ble language variations so that user can transfer and reuse their u1db knowledge between
languages

Sync API this API is HTTP based and allows with few requests to exchange the delta between
the current state of a database – that means the changed documents – and a previous
synchronization point. The exchange is asymmetric insofar are there is a source and a
target, the target is the HTTP server implementing the API and after a sync conflicts are
registered/created only on the source. The Sync API is also the means by which different
implementations can introperate and exchange data, possibly through an intermediate
target if they only implement the source side.

6.2.2 U1DB test suite

Together with the reference implementation comes an extensive test suite that checks the
methods and semantics of the API, both the user API and the syncing with a server aspect of
it.

The test suite is written in Python as the implementation, but that as we proved can be
reused for other languages and implementations using bridging techniques either pre-existing
like Cython which we employ to reuse the suite for the C implementation, or ad hoc techniques
like passing operation requests over a pipe for interpretation by a small driver as we use for the
Javascript implementation.

An implementation to be considered compliant and able to interoperate and sync with
others should pass these tests.

Page 25 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

6.2.3 Available implementations

Currently the following implementations exist:

• compliant/complete

– C backed by SQLite
– Python backed by SQLite and also the reference implementation
– Javascript for browser use, backed by local storage

• not compliant/incomplete

– Qt C++ provides declarative, easy to use, local data storage for QML applications,
part of the Ubuntu SDK

– Vala
– Go

6.2.4 The reference implementation

The u1db reference implementation is written in Python, with a SQLite back end. It can be
used as a real working implementation by Python code. It is also used to document and test
how u1db should work; it has a comprehensive test suite. Implementation authors should port
the u1db reference test suite in order to test that their implementation is correct; in particular,
sync conformance is defined as being able to sync with the reference implementation.

Fetch with bzr branch lp:u1db or from Launchpad.

To open a new database, use u1db.open:

u1db.open(path, create, document_factory=None)

Open a database at the given location.
Will raise u1db.errors.DatabaseDoesNotExist if create=False and the database
does not already exist.

Parameters
path The filesystem path for the database to open.
create True/False, should the database be created if it doesn’t already exist?
document_factory A function that will be called with the same parameters

as Document.__init__.
Returns An instance of Database.

Opening returns a Database object.

Page 26 of 49

http://launchpad.net/u1db
http://launchpad.net/u1db
https://code.launchpad.net/~pedronis/u1db/u1db-js
https://launchpad.net/u1db-qt
https://launchpad.net/shardbridge/
https://launchpad.net/gouda/
http://launchpad.net/u1db

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

class u1db.Database

A JSON Document data store.
This data store can be synchronized with other u1db.Database instances.

close()

Release any resources associated with this database.

create_doc(content, doc_id=None)

Create a new document.
You can optionally specify the document identifier, but the document must not
already exist. See ‘put_doc’ if you want to override an existing document.
If the database specifies a maximum document size and the document exceeds it,
create will fail and raise a DocumentTooBig exception.

Parameters
content A Python dictionary.
doc_id An optional identifier specifying the document id.

Returns An instance of Document.

create_doc_from_json(json, doc_id=None)

Create a new document.
You can optionally specify the document identifier, but the document must not
already exist. See ‘put_doc’ if you want to override an existing document.
If the database specifies a maximum document size and the document exceeds it,
create will fail and raise a DocumentTooBig exception.

Parameters
json The JSON document string
doc_id An optional identifier specifying the document id.

Returns An instance of Document.

create_index(index_name, *index_expressions)

Create an named index, which can then be queried for future lookups.
Creating an index which already exists is not an error, and is cheap.
Creating an index which does not match the index_expressions of the existing
index is an error.
Creating an index will block until the expressions have been evaluated and the index
generated.

Page 27 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Parameters
index_name A unique name which can be used as a key prefix
index_expressions Index expressions defining the index information.

Examples:
fieldname, or fieldname.subfieldname to index alphabetically sorted
on the contents of a field.
number(fieldname, width) to index numerically sorted on the contents
of a field.
lower(fieldname) to index alphabetically sorted on the case-normalized
contents of a field.

delete_doc(doc)

Mark a document as deleted.
Will abort if the current revision doesn’t match doc.rev. This will also set doc.
content to None.

Parameters
doc The document we are removing.

delete_index(index_name)

Remove a named index.

Parameters
index_name The name of the index we are removing.

get_all_docs(include_deleted=False)

Get the JSON content for all documents in the database.

Parameters
include_deleted If set to True, deleted documents will be returned with

empty content. Otherwise deleted documents will not be included in the
results.

Returns (generation,[Document]) The current generation of the database, fol-
lowed by a list of all the documents in the database.

Page 28 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

get_doc(doc_id, include_deleted=False)

Get the JSON string for the given document.

Parameters
doc_id The unique document identifier
include_deleted If set to True, deleted documents will be returned with

empty content. Otherwise asking for a deleted document will return None.
Returns a Document object.

get_doc_conflicts(doc_id)

Get the list of conflicts for the given document.
The order of the conflicts is such that the first entry is the value that would be
returned by “get_doc”.

Parameters
doc_id The unique document identifier

Returns [doc] A list of the Document entries that are conflicted.

get_docs(doc_ids, check_for_conflicts=True, include_deleted=False)

Get the JSON content for many documents.

Parameters
doc_ids A list of document identifiers.
check_for_conflicts If set to False, then the conflict check will be skipped,

and None will be returned instead of True/False.
include_deleted If set to True, deleted documents will be returned with

empty content. Otherwise deleted documents will not be included in the
results.

Returns iterable giving the Document object for each document id in matching
doc_ids order.

get_from_index(index_name, *key_values)

Return documents that match the keys supplied.
You must supply exactly the same number of values as have been defined in the in-
dex. It is possible to do a prefix match by using * to indicate a wildcard match. You
can only supply * to trailing entries (e.g. val, *, * is allowed, but *, val, val is
not.). It is also possible to append a * to the last supplied value (e.g. val*, *, *
or val, val*, *, but not val*, val, *)

Page 29 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Parameters
index_name The index to query
key_values values to match. eg, if you have an index with 3 fields then you

would have: get_from_index(index_name,val1,val2,val3)

Returns List of Document

get_index_keys(index_name)

Return all keys under which documents are indexed in this index.

Parameters
index_name The index to query

Returns A list of tuples of indexed keys.

get_range_from_index(index_name, start_value, end_value)

Return documents that fall within the specified range.
Both ends of the range are inclusive. For both start_value and end_value, one
must supply exactly the same number of values as have been defined in the index, or
pass None. In case of a single column index, a string is accepted as an alternative for
a tuple with a single value. It is possible to do a prefix match by using * to indicate
a wildcard match. You can only supply * to trailing entries (e.g. val, *, * is
allowed, but *, val, val is not.). It is also possible to append a * to the last
supplied value (e.g. val*, *, * or val, val*, *, but not val*, val, *)

Parameters
index_name The index to query
start_values tuples of values that define the lower bound of the range. eg, if

you have an index with 3 fields then you would have: (val1, val2, val3)
end_values tuples of values that define the upper bound of the range. eg, if

you have an index with 3 fields then you would have: (val1, val2, val3)

Returns List of Document

get_sync_target()

Return a SyncTarget object, for another u1db to synchronize with.

Returns An instance of SyncTarget.

list_indexes()

List the definitions of all known indexes.

Returns A list of (index-name,[field1,field2]) definitions.

Page 30 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

put_doc(doc)

Update a document.
If the document currently has conflicts, put will fail.
If the database specifies a maximum document size and the document exceeds it,
put will fail and raise a DocumentTooBig exception.

Parameters
doc A Document with new content.

Returns new_doc_rev, the new revision identifier for the document.
The Document object will also be updated.

resolve_doc(doc, conflicted_doc_revs)

Mark a document as no longer conflicted.
We take the list of revisions that the client knows about that it is superseding. This
may be a different list from the actual current conflicts, in which case only those
are removed as conflicted. This may fail if the conflict list is significantly different
from the supplied information. (sync could have happened in the background from
the time you GET_DOC_CONFLICTS until the point where you RESOLVE)

Parameters
doc A Document with the new content to be inserted.
conflicted_doc_revs A list of revisions that the new content supersedes.

set_document_factory(factory)

Set the document factory that will be used to create objects to be returned as
documents by the database.

Parameters
factory A function that returns an object which at minimum must satisfy the

same interface as does the class DocumentBase. Subclassing that class is
the easiest way to create such a function.

set_document_size_limit(limit)

Set the maximum allowed document size for this database.

Parameters
limit Maximum allowed document size in bytes.

Page 31 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

sync(url, creds=None, autocreate=True)

Synchronize documents with remote replica exposed at url.

Parameters
url the URL of the target replica to sync with.
creds optional dictionary giving credentials to authorize the operation with

the server. For using OAuth the form of creds is:
1 {"oauth": {
2 " consumer_key ": ...,
3 " consumer_secret ": ...,
4 " token_key ": ...,
5 " token_secret ": ...
6 }}

autocreate ask the target to create the database if non-existent.
Returns

local_gen_before_sync, the local generation before the synchronisation was
performed. This is useful to pass into whats_changed, if an application wants
to know which documents were affected by a synchronisation.

whats_changed(old_generation=0)

Return a list of documents that have changed since old_generation. This allows
apps to only store a db generation before going ‘offline’, and then when coming back
online they can use this data to update whatever extra data they are storing.

Parameters
old_generation The generation of the database in the old state.

Returns (generation,trans_id,[(doc_id,generation,trans_id),...])
The current generation of the database, its associated transaction id, and a list
of changed documents since old_generation, represented by tuples with for
each document its doc_id and the generation and transaction id corresponding
to the last intervening change and sorted by generation (old changes first)

class u1db.Document(doc_id=None, rev=None, json="{}", has_conflicts=False)

Container for handling a single document.

Variables
doc_id Unique identifier for this document.
rev The revision identifier of the document.
json The JSON string for this document.
has_conflicts Boolean indicating whether this document has conflicts

Page 32 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

content

Content of the Document.

get_json()

Get the JSON serialization of this document.

is_tombstone()

Return True if the document is a tombstone, False otherwise.

make_tombstone()

Make this document into a tombstone.

same_content_as(other)

Return True if the documents have the same content, False otherwise.

set_json(json)

Set the json serialization of this document.

6.2.5 The JavaScript implementation

The u1db JavaScript implementation is meant to be used by web applications from browsers,
currently it uses browser local storage as backend. This means that the data stored in the
backend can be used and updated while offline, compatible sync to a remote target server is
supported as well so to interoperate with other implementations and save the data for use
across machines using a remote server.

The implementation can be fetched with bzr branch lp:~pedronis/u1db/u1db-js or
from Launchpad.

The implementation itself lives in one u1db.js file of around 2000 lines. Code to reuse the
reference implementation test suite is also present, this is based on a simple bridging approach
in which API calls in the tests become operation requests piped over by the bridge to a simple
interpretative driver running on the JavaScript side (either Rhino, or inside a browser page).
This infrastructure is around a bit more than 1000 lines of Python and JavaScript, compared
to the 8000 lines and counting in the reference test suite itself.

The API is quite close to the Python’s one as it should be. This also allow for the automatic
mapping performed by the bridge for testing. Arguments can usually be passed positionally or
through a dictionary:

Page 33 of 49

https://code.launchpad.net/~pedronis/u1db/u1db-js

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

db = new U1DB("testing"); // creates a db

doc = db.create_doc({’v’: 2}, ’my-doc’);
// or equivalently
doc = db.create_doc({’v’: 2}, {doc_id: ’my-doc’});

got = db.get_doc(’my-other-doc’);

Syncing to a remote target database can be requested with one line as with the reference
implementation:

db.sync(target_db_url, {autocreate: true,
creds: {"oauth": {

"consumer_key": ...,
"consumer_secret": ...,
"token_key": ...,
"token_secret": ...

}}});

Page 34 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

7 Client prototypes

7.1 EyeOS

7.1.1 Introduction

eyeOS is a web platform that provides a remote virtual desktop for the end user. The overall
user experience is strongly influenced by the classic desktop design, widely known thanks to the
most popular operating system on the market. eyeOS Personal Web Desktop includes several
features such as: file manager, contacts, groups and other collaborative capabilities. eyeOS
Personal Web Desktop is a disruptive technology that fits in perfectly with the CloudSpaces
Open Personal Cloud paradigm. One of the key values that eyeOS provides is the possibility
to work directly with files in the cloud. eyeOS does not require users to manually download
any files onto their computer nor is it necessary to install anything locally, so the experience is
totally transparent: users just log into a website and start working with their files normally.

Furthermore, eyeOS lets you add additional services and applications within the web desk-
top, so that all the company or organization’s web resources are available within a single
controlled environment that can be accessed using single sign-on.

By combining eyeOS’ web file management capabilities with Personal Cloud, users can
access their Personal Cloud contents via web, with a user experience very similar to local
desktop environments.

7.1.2 Authentication

The eyeOS platform uses OAuth authentication in order to interact with the user’s protected
data stored in Personal Cloud. OAuth is an authorization protocol that enables the user
(resource owner) to authorize eyeOS to access the resources on their behalf without giving
eyeOS their authentication credentials i.e. username and password.

Page 35 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 2: eyeOS authentication flow

When the user accesses eyeOS, a newly developed plugin is used to get a security token with
which the keys required for interacting with user data stored in Personal Cloud can be obtained.
The Access Token and Token Secret keys are stored in a relational database (managed via a
RDBMS based on MySQL). These keys are linked with the user who logged onto the platform,
meaning the system can determine at any stage the access token for a specific user who attempts
to use the service.

Page 36 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 3: eyeOS file management

7.1.3 Integrated file management

Within the eyeOS Personal Web Desktop, one of the key features of the platform is file manage-
ment. eyeOS includes a web file manager developed in JavaScript, HTML and CSS that enables
users to manage all their files directly from their browser, but with an experience similar to a
file manager of any desktop operating system, such as Microsoft Windows™ or GNU/Linux.

Figure 4: eyeOS file management

Page 37 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

By integrating Personal Cloud services in the eyeOS platform, users can use eyeOS’ web file
manager and all its features with their Personal Cloud files. For example, users can display on-
line their MS Office or OpenOffice documents saved in their Personal Cloud, create directories,
move files, view PDFs, share documents, etc.

7.1.4 Storage Provider

The storage provider eyeOS uses to store user files can point to a NFS, CIFS or arbitrary mount
point; this way you can indicate which storage provider to use for managing files instead of the
local disk when installing eyeOS.

eyeOS as a platform is not limited to the web environment. Its web file manager is only
one of the many services the platform includes. eyeOS has CIFS endpoints so users can access
their files in a way similar to a Windows shared drive, for example.

Given the wide range of services eyeOS provides for user files, the disk access layer is not
implemented at web app level, as then the files would not be visible from the CIFS or any other
external service.

eyeOS’ web app delegates resource access to the system. Hence the operating system is
responsible for resolving this access, not the web app.

To do this, eyeOS has a FUSE module that lets it create mount points in the system (virtual
disk drives) that map disk access to the appropriate provider. There is only one provider for
the web app: FUSE.

To integrate the Personal Cloud storage service in the solution, an event notification ser-
vice is created which will interact with Personal Cloud’s API, updating the file manager and
notifying the user with a message.

Figure 5: eyeOS storage flow

This service will extend StoreStackSync, which will enable requests to be sent and received
from Personal Cloud’s Store API:

Page 38 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

1 @Interface StoreStackSync
2 interface StoreStackSync {
3 @ Metadata request, returns a ResponseStackSync class
4 public function retrieveMetadata(int $file_id = 0, bool $list = true,
5 bool $include_deleted = false , int $version = 0);
6 @ Versions request, returns a ResponseStackSync class
7 public function getVersions(int $file_id, int $limit_versions) ;
8 @ Restore files request, returns a ResponseStackSync class
9 public function restoreFile(int $file_id, int $version);

10 @ Upload files request, returns a ResponseStackSync class
11 public function uploadFile(string $file_name, int $parent=0, bool $overwrite) ;
12 @ Download file content request, returns a
13 ResponseStackSync class
14 public function downloadFile(int $file_id, int $version);
15 @ Delete files or folders request, returns a ResponseStackSync class
16 public function deleteElement(int $file_id);
17 @ Create files or folders request, returns a ResponseStackSync class
18 public function createElment(string $name, bool $file = true, int $parent = 0);
19 }

1 @class ResponseStoreStackSync
2 class ResponseStoreStackSync {
3 @ var error
4 private $error;
5 @ var json
6 private $json;
7 @ Set variable value error
8 public function setError($error) ;
9 @ Get variable value error

10 public function getError() ;
11 @ Set variable value json
12 public function setJson($json);
13 @ Get variable value json
14 public function getJson() ;
15 }

Through the Persistence API, the files in use by the user and that cannot be changed are
controlled, although the service gets any differences from the Store API. In these cases, the
user is informed so a decision can be made to resolve any conflicts that have occurred.

The following diagram shows the process in detecting a new file in the user’s Personal Cloud:

Page 39 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 6: eyeOS file manager flow

All applications/services that the eyeOS platform provides, including the web app that has
a web file manager, are limited to requesting files from the operating system.

The operating system (GNU/Linux) delegates FUSE to resolve this request, which in turn
calls on Personal Cloud’s Rest API to resolve the request and get the results.

However, this is not enough for all functionalities, as eyeOS’ web file manager also needs to be
able to perform file-sharing operations on Personal Cloud resources. The operations described
are beyond the scope of the typical operations of a file provider and cannot be completed by
FUSE.

The additional functionalities that do not form part of the interface of a file storage provider
are covered directly by the web app itself. By using the files through CIFS or other services, files
can be simply viewed and worked on as usual. By accessing through the eyeOS file manager,
additional operations such as share file can be performed.

These operations are performed by the web app directly against Personal Cloud’s API. As
a result, the final scheme is as follows:

Page 40 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 7: eyeOS direct access to file system

As can be seen above, the basic operations of the file system are performed transparently
by the system through FUSE. Additional aggregated functions are performed by the web app
by directly accessing the Personal Cloud API.

Both the FUSE module and the web platform have access tokens to the Personal Cloud
services on behalf of the user, which have been obtained during authentication.

The final operation is as follows:

Page 41 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 8: eyeOS final sequence diagram

7.1.5 Token management

To operate, the system must ensure that it has the appropriate user access tokens for Personal
Cloud. If these tokens are not available, then the services cannot be accessed via the Personal
Cloud API and the user cannot access their files via the web manager or any other way in
eyeOS.

The access tokens have a specific timespan and a refresh token is obtained that can be used
to get a new token when the access token has expired. The system can continue to request
tokens while the user has specified eyeOS as authorized application within Personal Cloud’s
OAuth.

A daemon has been developed that periodically checks in the DBMS which tokens are about

Page 42 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

to expire and uses the refresh token to get new tokens with a renewed timespan. Both FUSE
and the web app operate under the premise that there are valid tokens at all times.

Figure 9: eyeOS token renewal flow

If the token stops operating for some reason, the system warns the user that it has lost
access to Personal Cloud and closes the session. On closing the session, the user returns to the
authentication page where they can repeat the login process against Personal Cloud’s OAuth,
enabling the system to get new tokens and continue operating with the service as normal.

Token management is crucial in ensuring service continuity; hence, the token management
daemon (tokensd) is monitored and self-healing functionalities have been added via monitd.

7.1.6 Scalability

eyeOS architecture is based on stateless web front-ends that can be replicated horizontally
without limitation. A traditional load balancer is used in front-ends to distribute requests.
Since the front-ends are stateless, sticky sessions are not necessary. The only state is in the
database and the file system. Since the file system is delegated to Personal Cloud, the state
that remains is in the database. eyeOS uses a MySQL cluster based on Percona to horizontally
scale the DBMS. The platform’s messaging systems use their own daemon, webqueued, which
has a shared state and can be horizontally scaled without any problems. Access to Personal
Cloud is done by each front-end node using the tokens taken from the DBMS (managed by
tokensd). Requests to Personal Cloud are done asynchronously and are non-blocking, meaning
FUSE continues to serve requests while it waits for responses to previous requests.

In our tests, after having integrated Personal Cloud as an authentication and storage
provider, the architecture of the solution has not changed essentially and it continues to allow
horizontal scalability, as described in the standard eyeOS scalability documents.

However, the responsiveness of the file system has worsened significantly. By using a Rest
API in an external storage provider, the disk requests are slower and the file manager responds
with latency to certain operations. There is the overall perception that the experience has
worsened, although it still remains within acceptable limits and is comparable to the experience
achieved in integration with other similar storage systems.

Page 43 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

7.2 Web Management Interface

7.2.1 Web client

The web client seeks to create a web interface able to manage different users and their data
storage environment.

The system is being designed considering aspects of i18n (internationalization).

The framework developed is the following process flow:

Figure 10: Framework flow

As indicated in the flow chart, we have incorporated features that allow self-registration of
users and password management, new options to upload, download and delete files from the
user’s environment and functionality to create and delete folders.

Below we show the screens developed.

Login Form

This form includes two text input areas, allowing the user to be logged in at the application
with its email and password.

The user is the same for the web application than the Openstack user; this coincidence
forces us to encrypt personal data for avoiding security vulnerabilities, and also avoids to have
two different passwords (one for web interface, another for openstack platform).

The Login Screen links to:

1. Create an account. if you are a new user, you can register to the platform.

2. Forgot my password. Send an email to a registered user, if the password is forgotten.

Page 44 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 11: Login form

Registration Form

The registration form allows to new users, register at the Openstack platform, and have
access their own disk space.

Several fields should be filled by the user, like name, birth date, user icon, and of course
email and password fields.

The user must read and accept terms and conditions in order to complete successfully
the process. This check field gives us the warranty that the user is currently informed about
payment and privacy terms, noticing the user that this is a research project, and stability,
privacy and protection against data loss are not assured at this platform.

The user language is also asked at this form, in more mature versions, this field will let us
to personalize contents and to implement a default visualization for each language.

When the user confirms the register, the system calls Openstack for creating a new user,
it’s ‘tenant’ and space, with a pre-assigned default quota.

Page 45 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 12: Registration form

Password Recovery

This is a simple form, with an email field.

The user can write its email address, and a email will be sent, with instructions about how
to restore the password.

The next version will include a captcha field, to avoid automatic bot actions.

Page 46 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Figure 13: Password recovery form

CloudSpaces Framework

This is the main interface, that allows the user to access to its CloudSpaces Openstack
environment upload or download files and work with folders.

There are four main buttons:

• Home. Direct Access to the highest level of the file tree.

• Upload. For uploading files.

• More. Expand the main menu with other options.

• Log out. Close the application, logging out the user.

The user can also enter in a folder when clicking on its name, or visualize to the file options
clicking in a existing file.

Figure 14: Listing content in the framework

More menu

Page 47 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

At this option menu, It will be shown to the user new options:

Profile. The user can access to its own data for updating.

Add folder. It adds a folder in the actual folder.

Delete folder. It deletes the actual folder and its files.

Figure 15: “More” menu

File menu

When clicking in a file, the interface will show options for the selected file. Actual version
includes:

Download. Download the file directly.

Delete. Delete the selected file.

Figure 16: File menu

Page 48 of 49

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

7.2.2 Admin panel

The developed administration panel aims to be a tool for centralized management of users of dif-
ferent platforms, giving to the system new properties of scalability, ease of use and user control.

Although we have developed a functionality that allows a user to self-register by calling
the OpenStack APIs. Tissat has developed an interface that lists active users on the platform,
making easiest the management of the platform with thousand of users.

The Administration Panel functionalities are divided into the following aspects:

- Basic Management

Allows the system administrator to register a new user by editing its properties and setting
quota limits.

This section allows the obtaining of user lists through their interconnection with the Open-
Stack API, as well as searching and filtering basic data.

Specifically, the developed areas which will be housed on a secure server, not accessible from
any location, includes the functionalities named below:

• Listing the users of the platform.

• Edit User.

• Delete User.

• Add User.

• Definition of quotas to user or groups.

By default, all users are belonging to the same generic group, but the system will provide
the possibility of creating different types of groups with their own characteristics.

- Advanced User Management

Provides for the creation of groups of users who share the same container, creates a Group
Profile, to allow easy management (add user, delete user ...) and easy monitorization of a
specific group of users, including quota definition for them.

The Web Management Interface will get traces about the use of the platform, registering
logging data and enabling queries about how is used, controlling bandwidth consumption by
registering the size of files uploaded and downloaded per month, including also capabilities
for add or cancel monitoring of a user or group, and get listings of use and access to the
environment, in order to perform security audits and performance.

Page 49 of 49

	Executive summary
	Motivation and Context
	Related work
	Sharing protocol
	Prerequisites
	Request URL
	Interoperability process overview
	User invitation
	User sends an invitation
	The recipient selects its Personal Cloud
	Creating the sharing proposal

	Invitation acceptance
	The user accepts the invitation
	Returning the proposal response

	Access credentials
	Granting access to the service

	Store API
	Error Handling
	Getting user representation
	Metadata
	Modifying an existing file
	Creating a file
	Upload an existing file
	Download a file
	Delete a file or folder
	Create a folder

	Persistence API
	The high-level API
	Document storage and retrieval
	Querying
	Synchronising
	Dealing with conflicts

	U1DB implementations
	U1DB APIs
	U1DB test suite
	Available implementations
	The reference implementation
	The JavaScript implementation

	Client prototypes
	EyeOS
	Introduction
	Authentication
	Integrated file management
	Storage Provider
	Token management
	Scalability

	Web Management Interface
	Web client
	Admin panel

