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1 Executive summary

In this document, we present an analysis of the Ul Personal Cloud service. Based on the
traces provided by Canonical, we provide a battery of interesting insights regarding the
storage workload, the file system structure and the user behavior in U1.

Thanks to our analysis, we contributed with three Personal Cloud optimizations: (i) Ad-
vanced content distribution, (ii) elastic file synchronization and (iii) energy-efficiency for deduplica-
tion systems in the storage back-end.

Finally, we also discuss our future research directions regarding the exploitation of the
U1 traces.
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2 The U1 Personal Cloud

In the context of the EU FP7 CloudSpaces project, we define a Personal Cloud as: “The Per-
sonal Cloud is a unified digital locker for users” personal data offering, at least, three key
services: storage, synchronization and sharing”. Ubuntu One (U1) falls in into this definition,
like other services such as DropBox and iCloud. U1 is a suite of online services from Canon-
ical Ltd. that enables users to store and sync files online and between computers, as well as
sharing files/folders with others using file synchronization.

Until the service shutdown in July 31, U1 provided support to desktop and mobile clients
and a Web front-end. U1 also integrated other Ubuntu services in its operation, like Tomboy
for notes and U1 Music Store for music streaming.

2.1 Storage Protocol

In order to communicate clients and the server-side infrastructure, Ul uses its own pro-
tocol called ubuntuone-storageprotocol based on Google Protocol Buffers'. In contrast
to most commercial solutions, the protocol specifications and implementation are publicly

available?.

To provide a comprehensive description of the protocol, we distinguish between entities
and operations. Operations can be seen as end-user actions intended to manage one/many
entities, such as a file or a directory.

2.1.1 Protocol Entities

Next, we define the main entities in the protocol. In our analysis, we characterize and quan-
tify the role of these entities in the operation of U1.

Volume: It can be considered as a directory. During the installation of the U1 client, the
client creates an initial volume to store files with id=0 (root). There are 3 types of volumes: 1)
root/predefined, ii) udf (user defined folder, which is a folder created by the user) and iii) share
(sub-volume of another user to which the current user has access).

In the back-end, U1 decouples the logical file/directory objects from the actual file con-
tents. Drawing a comparison to a file system, the inodes are stored in a PostgreSQL database
and the extents are stored in Amazon S3 (see Section 2.3). The protocol supports CRUD op-
erations on files (e.g. list volumes, put/get content, delete, etc.) to manage user volumes.
The protocol itself uses UUIDs as identifiers for directory objects and their contents (files).
Requests are always initiated from the client end (pull).

View: On the user’s computer, a view is a directory that is actively being mirrored. Views
can be shared with other users. The view given to another user can be either read-only, or
read-write. To detect changes in a view, users execute a protocol operation that requests all

Inttps://wiki.ubuntu.com/UbuntuOne
“https://launchpad.net/ubuntuone-storage-protocol
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the changes to a volume from a certain generation onwards. The client keeps track of the
generation point, and on reconnection asks for changes from that point onwards.

Session: A user interacts with the server in the context of a U1 storage protocol session
(not HTTP or any other session type). This session is used to identify the requests of a single
user during the session lifetime. Sessions do not usually expire automatically. A client may
disconnect, or a server process may go down, and that will end the session.

Regarding session management, an OAuth [1] token is used for authentication between
the desktop and server side infrastructures. This token is stored in the platform’s keyring
(for Ubuntu it is gnome-keyring).

2.1.2 Protocol Operations

In what follows, we describe the most important protocol operations between users and the
server-side infrastructure. We traced these operations to quantify the system’s workload
and the behavior of users.

ListVolumes: This operation is normally performed at the beginning of a session and
lists all the volumes of a user (root, udf, shared).

ListShares: This operation lists all the volumes of a user that are type share. In this op-
eration, the field shared by is the owner of the volume and shared to is the user to which
that volume was shared with. In this operation, the field shares represents the number of
volumes type share of this user.

(Put/Get)ContentResponse: these are the actual file uploads and downloads, respec-
tively. The notification goes to the Ul back-end but the actual data is stored in a separate
service (Amazon S3). A special process is created to forward the data to Amazon S3.

Make: This operation is equivalent to a “touch” operation in the U1 back-end. Normally
this is associated with RPC upload jobs, in consequence of a file upload.

Unlink: Delete a file or a directory from a volume.

Move: Moves a file from one directory to another.

CreateUDF: Creates a User Defined Volume.

DeleteVolume: Deletes a volume.

GetDelta: Get the differences between the server volume and the local one (generations).

Authenticate: Operations managed by the servers to create sessions for users.
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Figure 1: Architecture of Ul backend.

2.2 Synchronization Client

Ul provides a user friendly desktop client with graphical interface that enables users to
manage files. Internally, it runs a daemon in the background that exposes a DBus API inter-
face. It does the actual work of deciding what to synchronize in which direction and handles
doing so.

Other services like DropBox, split files into content-based chunks attempting to minimize
the network overhead related to file updates and to improve cross-user deduplication [2].
However, Ul does not apply chunking to uploaded files. This decision is based on the
observation that most updates are directed to small files (e.g. documents), whereas large
ones normally remain unmodified. Instead, U1 resorts to file-based cross-user deduplication
to reduce the waste of storing repeated files [3]. To detect duplicated files, U1 desktop clients
provide to the server the SHA-1 hash of a file prior to the content upload. Ul engineers
reported storage savings of 11% with the introduction of this deduplication scheme.

By default, one folder called ~/Ubuntu One/ is automatically created and configured for
mirroring (root volume) during the client installation. Changes to this folder (and any oth-
ers added) are watched using inotify. Synchronization metadata about directories being
mirrored is stored in ~/.cache/ubuntuone. When remote content has changed, the agent
acts on the incoming unsolicited notification sent by API slave and starts downloading. The
implementation is written in Python (GPLv3).

2.3 Back-end Infrastructure

The entire Ul back-end is all inside a single datacenter and its objective is to manage the
service metadata. The back-end architecture appears in Fig. 1 and consists of metadata servers
(API/RPCDB), metadata store and data store.

The gateway to the back-end servers is the load balancer. The load balancer (HAProxy,
ssl, etc.) is the visible endpoint for users and it is composed by two racked servers. Be-
yond the load balancer we find the API and RPC database servers that run on separate
racked servers. API servers receive commands from the user, perform authentication, and
translate the commands into RPCDB calls. Subsequently, RPC database workers translate
RPCDB calls into database queries and route queries to the appropriate database shards.
API/RPCDB processes are more numerous than physical machines, so that they can migrate
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among machines for load balancing purposes.

Ul stores metadata in a PostgreSQL database cluster composed by 20 large Dell racked
servers, configured in 10 shards (master-slave). Internally, the system routes operations by
user identifier to the appropriate shard. Thus, metadata of a user’s files and folders reside
always in the same shard. This data model effectively exploits sharding, since normally
there is no need to lock more than one shard per operation (i.e. lockless). Only operations
related to shared files/folders may require to involve more than one shard in the cluster.

As other popular Personal Clouds, such as DropBox or SugarSync, U1 advocates to store
user files in a separate cloud service. Concretely, U1 resorts to Amazon S3 (us-east) to store
user data. This solution enables a service to rapidly scale out without a heavy investment
in storage hardware. In its latests months of operation, Ul had a ~ 20,000$ monthly bill
in storage resources (1 Petabyte), thus becoming the most important Amazon S3 client in
Europe.

With this infrastructure, Ul scaled up to 4 million registered users and 0.5 million of
daily active users.

3 Dataset and Methodology

We present a back-end analysis of the Ul service. In contrast to many measurements of
Cloud services [2, 4], we did not deploy a measurement infrastructure to analyze the service
externally. Instead, we inspected directly the Ul metadata servers to build our trace. This
has been done in collaboration with Canonical Ltd. in the of the project under review.

3.1 Measurement methodology

The traces are taken at both API server and RPCDB server stages. In the former stage we
collected important information about the storage workload (e.g. mimetypes, file size),
whereas the second stage provided us valuable information about the internal life-cycle of
requests.

We built the trace capturing a series of service logfiles. Each logfile corresponds to the
entire activity of a single API/RPCDB process in a machine for a period of time. Each logfile
is within itself strictly sequential and timestamped. Therefore, causal ordering is ensured for
operations done for the same user. However, the timestamp between servers is not depend-
able, even though machines are synchronized with NTP (clock drift may be in the order
of ms). The mapping between services and servers is dynamic within the time frame of
analyzed logs.

To gain better understanding on this, consider a line in the trace with this logname:
production-whitecurrant-23-20140128. They will all be production, because we only
looked at production servers. After that prefix is the name of the physical machine, fol-
lowed by the number of the server process. The server process number can migrate between
nodes to load balance. After that is the date the logfile was “cut” (there is one log file per
server/service and day).
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Normally there are between 8 — 16 processes per physical machine. The identifier of the
process is unique within a machine, although it can migrate from one machine to another.
Sharding is in the metadata storage backend, so it is behind the point where traces are taken.
This means that in these traces any combination of server/process can handle any user. To
have a strictly sequential notion of the activity of a user we should take into account the Ul
session and sort the trace by timestamp (a user may have more than one parallel connection).
A session starts in the least loaded machine and lives in the same node until it finishes,
making user events strictly sequential. Thanks to this information we can estimate system
and user service times.

Finally, user names and identifiers have been anonimyzed by Canonical prior to this
analysis. Approximately 1% of traces have not been analyzed due to failures in parsing of
the logs.

Sample Trace duration 32 hours

Unique users 320K

Unique files 1.eM

Unique volumes 19K

Total upload traffic 2.6TB
Table 3.1a: Summary of the trace sample used in this
analysis.

3.2 Dataset

The trace is the result of merging all the logfiles of the U1 servers for 28 days (1.9TB of .csv
text). To ease the analysis, we split the trace in days, sorting the operations by timestamp. A
summary of a trace sample used in this analysis is shown in Table 3.1a>.

The trace contains the API operations (request type storage/storage_done) and their
translation into RPC calls (request type rpc), as well as the session management of users (re-
quest type session). This provides different sources of valuable information. For instance,
we can analyze the storage workload supported by a massive and real-world cloud service
(users, files, operations). Since we captured file properties such as file size, hash and folder
we can study the storage system in high detail. This trace also provides information about
the behavior of users in this kind of system, such as their activity and interactions. This
information may guide us to propose new system optimizations.

Dataset limitations. We mentioned that timestamps among servers are not dependable
since they may be different (in order of ms). This may lead to certain (but not dramatic)
bias on the calculation of system time-based metrics. We only gathered information from
desktop clients. This means that other sources of traffic in Ul (e.g. web front-end, mobile
clients) are not included in this analysis, since they are handled by different software stacks
that were not logged. Finally, this service is mainly used as an online backup, so the analysis
of sharing among users is limited.

The traces and the necessary documentation to work with them will be publicly available
for the community after the publication of the corresponding research analysis. We believe

3Sample of 32 hours of the trace corresponding to 1/3 of the servers.
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Figure 2: Macroscopic characterization of transfers in U1.
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Figure 3: Storage growth and read /write ration in U1.

that this trace represents an unprecedented opportunity for researchers to study in depth a
widely used Personal Cloud.

4 Storage Workload

4.1 Daily Usage

In this section, we focus on macroscopic workload metrics to understand the usage of Ul.

Fig. 2(a) provides a time-series view of the storage operations received during one day.
We observe in Fig. 2(a) that Ul exhibits important daily patterns. To wit, the volume of
uploads per hour can be x10 times higher in the central day hours compared to the nights.
This observation is aligned with previous works, that detected time-based variability in the
usage and performance of Personal Cloud services [2, 4]. This effect is probably related
to the work habits of users, since Ul desktop clients are by default initiated automatically
when users turn on their machines (see Section 6.1).

Fig. 2(b) shows that U1 users upload more data to the system than they download (write-
dominated workload). In this trace, the amount of uploaded data (2.34TB) is 46% higher
than the downloaded data (1.26TB, costing 149.9$ based on Amazon S3 pricing*). This sug-
gests that a large fraction of users make use of U1 as a backup application.

However, if we compare figures 2(a) and 2(b), we observe that the dominance of uploads
is more significant with respect to the traffic than for the number operations. The underlying
reason has to do with the size of transferred files.

4http://calculator.s3.amazonaws . com/
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Figure 4: Transfer speed estimation of uploads/downloads in U1.

In this sense, Fig. 2(c) illustrates the amount of transferred data for files of predefined
size ranges. As we can observe, small files account only for a small fraction of the total
traffic, being similar for both uploads and downloads. However, users store more larger
files than they retrieve (> 25MBytes), increasing the total amount of upload traffic.

Although the storage workload is clearly write-dominated, we want to inspect the vari-
ability of the read/write (r/w) ratio. This ratio represents the relationship between the in-
coming and outgoing data in a period of time (i.e. hour).

Fig. 3(a) illustrates that the variability of the read /write ratio can be important. In fact,
during the same day the r/w ratio can exhibit a difference of x8 comparing the maximum
and minimum values. We also observe that this ratio increases during the morning/night
hours of the day, indicating more presence of download traffic. The most plausible reason
is that users initiate the Ul service with unsynchronized folders in those day times, that
in many cases require file downloads. This peak of downloads increases the r/w ratio.
Such a phenomenon can be exploited to reduce bandwidth costs with sophisticated content
distribution techniques [5].

The dominance of upload traffic has an immediate effect on the storage demands that
U1 should satisfy. In Fig. 3(b) we depict the growth of data that is stored in U1l per hour.
We observe that in a single day, Ul stores in Amazon S3 around 2.34TB of data. Based on
Amazon S3 pricing, keeping such amount of data represents an expense of 71.05%/month
to Ul. The ever-increasing cost in storage might be hard to amortize and it could have been
one of the probable reasons for Canonical to interrupt the U1 service.

4.2 Estimating Transfer Speeds

Next, we focus on estimating the transfer speeds that users experienced, which is an impor-
tant indicator of the service quality. We compare our results with previous measurements of
Amazon S3, in order to contrast our results.

The logs collected describe the transfer life-cycle between users and the U1 service. We
are interested on measuring the client transfer speed, which can be tracked by inspecting
Put/GetContentResponse events (see Section 2.1.2).

To estimate the speed of client transfers, we elaborated the following methodology (see
Fig. 4(a)). We analyze the sessions of users, since they provide a strictly sequential view of
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Figure 5: File size distribution.

their activity. A transfer (XContentResponse) starts by notifying in the message field that the
request is being scheduled. Moreover, log operations contain request identifiers that remain
until they are completed. Thus, we keep track of the session and request identifiers, as well
as the timestamp. Subsequently, we find a new event with the same session and request
identifiers, notifying that the transfer has finished. This event also contains the size of the
transferred file. In that point, we estimate the transfer speed by dividing the time lapse
between both events by the file size.

Upon the reception of a new transfer, Ul instantiates a new process to store/retrieve the
tile contents to/from Amazon S3. Such a process may take lapse of time that might affect
the estimation accuracy for small files. However, for medium/large files (e.g. > 5MBytes)
our method can provide an acceptable degree of accuracy. In this sense, Fig. 4(b) shows the
distribution of transfer speeds at file granularity, i.e. the result of dividing the file size by
the time needed to transfer it.

Taking into account the distribution of all files, in Fig. 4(b) we observe that in general
uploads are slightly faster than downloads. This observation is in line with our previous
active measurement of Personal Cloud APIs [4]. However, the differences are not dramatic
since most of the values are related to very small files, where transfers are underutilized
and the synchronization overhead is relatively important. This is also a reason for the poor
transfer speeds exhibited in these distributions.

Expectedly, for larger files we see that the distribution is completely different, exhibit-
ing higher transfer speed values. In fact, around the 90% download transfer speeds fall
between 0.01 and 1 MByte/sec. Furthermore, these results are much more heterogeneous
than our previous measurement, where file transfer heterogeneity was between 0.2 and 0.8
MBytes/sec. In our view, the transfer heterogeneity in our trace is due to the quality of
clients” Internet connections and their geographic locations.

Finally, we observe that an important fraction of file uploads present a very fast transfer
speed, deviating importantly from the download distribution. Although in our previous
measurement we observed that Personal Cloud API services exhibit faster uploads than
downloads, the deviation exceeds our previous results [4]. The most likely reason is that
U1 deduplicates files for many uploads, thus avoiding to actually perform the data transfer.
This makes upload transfer speeds to be abnormally high in many cases.
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4.3 File-centric Usage

In this section, we focus on file-centric workload characteristics that can help us to under-
stand the behavior of files in the system, potentially guiding system optimizations.

First, we focus on the file size distribution in Ul. Fig. 5 shows the distribution of trans-
ferred files in the system. At first glance, we realize that the vast majority of files are small. To
wit, 90% of files are smaller than 1IMByte. In our view, this can have important implications
on the performance of the back-end storage system. The reason is that Personal Clouds like
U1 use object storage services offered by Cloud providers as data back-end, which are not
specifically optimized for very small files. We discuss this in Section 7.

In Fig. 5 we also depict the size distribution of transferred files larger than 1MByte.
Unlike the distribution of all file sizes, larger files tend to be more related to uploads than to
downloads. This is also supported by the fact that upload traffic is dominant.

5 File System

Next, we analyze the structure of the Ul file system. Unlike a traditional file system, Ul
stores file metadata in a database cluster to build a virtual organization of files, directories
and volumes. The actual file contents are stored in Amazon S3. Users send file system
management operations through their clients that are received via the Ul API front-end.
In the trace sample, we identified around 1.6M files, 206K directories and 19K non-root
volumes.

5.1 File Taxonomy

In this section, we analyze the characteristics of files that users store in U1.

Fig. 6 depicts the number of files grouped in the most relevant categories that we iden-
tified by mime-type®. In Fig. 6 we observe that the most relevant file category identified
is Pictures (. jpg, .png, etc.). This is not surprising, since Personal Clouds are specifically
designed to manage personal information of users.

°In our traces, file mime-types can only be extracted from Make operations.
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Figure 8: Lifetime of files and directories in the trace sample.

Interestingly, we also found that the Code category is also very popular (.html, . java,
etc.). This suggests that there is an important fraction of users that are code developers. In
fact, editing code in a synchronized folder represents a stress test for the synchronization
protocol, as well as a huge network overhead in many cases. This observation may lead to
specifically tune the synchronization protocol for this kind of users [6].

In this sense, figures 7(a) and 7(b) show the size distribution of files per category and
extension. Fig. 7(a) shows that the most popular file categories may not be responsible for
the largest part of consumed storage. That is, we can observe that the median size of binary
objects is around 50 times larger than code files. Thus, although binary files are less common
in number, they occupy a much larger fraction of the storage capacity of U1.

In Fig. 7(b) we observe the distribution of file sizes for the most common file extensions
found. Clearly, this provides interesting clues to emulate the size of files for realistic Personal
Cloud benchmarks [7].

5.2 Object Lifetime

In this section, we focus on the lifetime of file system objects (files, directories) within a
volume (see Fig. 8).

Fig. 8 illustrates and interesting fact: the 16% of files and the 5.5% of directories are
deleted within 32 hours. This observation can be used to optimize the write path of files
within a storage service.
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Moreover, Fig. 8 shows that most of the objects are deleted just after their creation (spe-
cially for files). Itis also interesting to note the correlation between the deletion of directories
and files. Actually, deleting a directory triggers a deletion in cascade of all the files inside it.

5.3 Volume Content

Next, we analyze the content of volumes, in terms of files and directories (see Fig. 9). Con-
cretely, Fig. 9 the fraction of volumes in which we identified files and during during the
trace sample analyzed.

Unsurprisingly, Fig. 9 shows that files are much more numerous than directories. That
is, in the trace sample, around 50% of volume identifiers has been associated with at least
one volume. This percentage is 17% in the case of directories.

Another interesting issue is how files and directories are distributed across directories.
To this end, the inner plot in Fig. 9 shows the ratio of files w.r.t. directories within a volume.
Clearly, this ratio is dominated by files meaning that we can find many more files than
directories within a volume. Only for a small fractions of volumes (< 2%) this ratio is lower
than 1.
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Figure 11: Storage operations and transferred data per user.

5.4 Deduplication Estimation

Deduplication is a popular technique used to increase the storage capacity of a system by
removing duplicated data, at either chunk or file levels. Ul implements a file-based cross-
user deduplication scheme. This means that, upon the arrival of a client upload operation,
the system checks if the file to be uploaded already exists (e.g. by file hash). In the affirmative
case, the user is logically linked to the existing file and the actual data transfer does not take
place. To make this possible, desktop clients send the hash of the file to be uploaded to the
server. In our interviews with U1l engineers, this deduplication scheme saved 11% of Cloud
storage resources.

In Fig. 10 we provide a simple example of the effectiveness of deduplication. In the trace
sample, we found a deduplication ratio of 3.47 only within a 30 hour time window. Clearly,
the deduplication ratio is more important as more data is already stored in the system. How-
ever, we cannot get the actual system-wide deduplication ratio since it would require from
having all the file hashes already stored in Ul.

Moreover, we can observe that the distribution of file deduplication ratios is heavy tailed.
This means that a small number of files account for very high number of duplicates (e.g.,
popular songs), whereas most files have a very low number of duplicates.

6 Modeling User Behavior

Understanding the behavior of users is a key source of information to optimize large-scale
systems. This section provides several insights about the behavior of users in U1.

6.1 User Activity

In this section, we analyze the interactions of users with the U1 service.

In terms of storage operation (data transfers), Fig. 11 shows the distribution of up-
loads/downloads that users performed during the trace sample. We observe that, as stated
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above, users perform more uploads than downloads. This observation hold for both the
number of storage operations and for the amount of data transferred.

Fig. 12 provides a wider view of the interactions of users with the server-side infras-
tructure. We observe that the different protocol operations present a very disparate behav-
ior. That is, there are operations such as deleting/creating volumes which are uncommon,
whereas operations such as listing volumes are very frequent —they are executed when the
desktop client is started. Thus, if common operations are not optimized in terms of perfor-
mance, they can become an important system bottleneck.

Furthermore, both Figures 11 and 12 present heavy tailed distributions. This means that
there is a small fraction of users exhibit a really high activity, whereas most user remain
almost inactive. This observation can be potentially used to identify and handle the most
active users in a specific way to optimize the system.

6.2 Population Dynamics

In what follows, we analyze the dynamics of the Ul user population. In the trace sample
analyzed, we identified 320K users, which we believe is a representative number.

Fig. 13 depicts a time-series view of the fraction of active users per hour with respect
to the total number of users detected. We consider a user as active if its desktop client has
exchanged at least one message with the server within one hour slot.
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In Fig. 13 we observe that the population exhibits remarkable daily patterns. That is, in
the central hours of the day there can be up to x5 times more users than during the nights.
This is due to the working and connection habits of users, which can be predicted to perform
a better workload consolidation on the server side.

Moreover, we see that a significant fraction of users do not interact with the service dur-
ing the day, which can suggest that at that point other Personal Clouds provided more at-
tractive services than Ul. This means that the market is currently dominated by very big
players, whereas smaller Personal Clouds have problems to compete.

6.3 Sharing
Sharing is a main feature of Personal Clouds. In Fig. 14 we observe the number of udf and
shared volumes of users.

As observed by Canonical engineers, sharing is not a popular feature in Ul. Fig. 14
shows that for only the 0.003% of users we could detect at least one shared volume. Al-
though analyzing the full trace may increase this number, we observe that udfs volumes are
much more popular for the same trace period.

The conclusion is that U1 has been used more as an on-line backup service rather than
for working collaboratively among users.

7 Optimizations for Personal Clouds

Understanding the operation of a real-world Personal Cloud like U1 is only the first part of
our objective. In this section, we describe a number of system optimizations for Personal
Clouds that are supported by the insights of our analysis.

7.1 Content Distribution

Cloud storage services have become very popular these days as a paradigm that enables
individuals and organizations to store, edit and retrieve data stored in remote servers and
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which can be accessed all over the Internet. Such systems are generally equipped with a
set of features that allow sharing and collaboration between the users. That is why, nowa-
days, millions of users are putting their files into online cloud storage systems (like Dropbox,
Google Drive or Box...) in order to be able to access them wherever they go or as a backup.
When a client adds a new file to his personal folder, the content is divided into small entities
called “chunk” that are pushed to the storage servers while the meta-data is kept in a dif-
ferent server. Once the file is uploaded, all the synchronized devices will be notified of the
addition of the new file and will request a copy of it from the cloud storage servers. This will
result in the repeated distribution of the same content in a short period of time. To avoid
that, the cloud can benefit from the clients upload capacities to save its bandwidth. In this
context, we propose to introduce the BitTorrent [8] protocol when the load on a specific file
becomes high. In fact, the efficiency of the peer-assisted paradigm makes it especially suit-
able for files shared between a set of devices. In such scenarios, it is possible to benefit from
the common interest of users in the same file and use their upload bandwidth to offload the
cloud from doing all the serving.

Unfortunately, the use of BitTorrent may incur a longer download time compared to
HTTP especially for small files. According to previous studies, these small files form a very
high percentage of the data stored in personal cloud servers; 99% of the files are of size
smaller than 16 MB according to [2]. The main challenge is to decide when it is worth
switching to BitTorrent. The key elements in making the decision are the gain in download
time and the peers’ contribution. The former represents the difference in download time
between HTTP and BitTorrent. The latter measures the total amount of data that can be
obtained from the peers. To our knowledge, there were no previous studies that compare
the BitTorrent and HTTP protocols for distributing small files. Thus, there is the need to
draw a complete comparative study between both protocols. We first study the download
time in HTTP and BitTorrent and measure the efficiency of each protocol. Then, we propose
a dynamic switching algorithm that can be applied in real personal cloud systems. Our key
contributions are the following;:

1. We conduct a comparative study between BitTorrent and HTTP. We first confute the
general statement that BitTorrent is not effective for small files based on a real exper-
imental study. Then, we propose an analytical estimation of the distribution time in
BitTorrent that takes into account the overheads related to the nature of the protocol. In
addition, we introduce two general metrics to decide when it is better to use one pro-
tocol with respect to the other: the gain and the offload ratios. The gain measures the
degree of improvement in download time of BitTorrent relative to HTTP. The offload
ratio quantifies the amount of data that can be offloaded if the peers adopt BitTorrent.
We validate all the proposed formulas with focus on small files.

2. We propose a dynamic algorithm for the decision of the most appropriate download
protocol. The algorithm uses simple parameters that can be collected by the system
and predicts the efficacy of HTTP and BitTorrent for each case. The most suitable
protocol is decided based on the predefined constraints.

3. We analyze a public trace of the Ubuntu One system and study the users and files
characteristics and the access patterns. Later, we apply our algorithm on the trace and
measure the amount of data that can be offloaded based on different time constraints.
We notice that the overall offloaded data volume exceeds 16% of the total amount of
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data exchanged. From an economic point of view, this corresponds to savings of the
order of hundreds to thousands of dollars per month. We also study the effect of file
bundling on the trace and notice that it can only improve the overall offload by a small
increment.

This work has been published in IEEE P2P 2014 under the title “Reducing Costs in the Personal
Cloud: Is BitTorrent a Better Bet?”.

7.2 Elastic Synchronization for Personal Clouds

In the last years, we have witnessed a rush of Personal Cloud Storage services offering file
synchronization to millions of users. In this line, Dropbox [2] has achieved massive scalabil-
ity thanks to a decoupled architecture that separates control flows (Dropbox sync servers)
from data flows (Amazon S3 Object Storage). While the elasticity of Cloud Object Storage
Services like Amazon S3 is ensured, the design of elastic and scalable file synchronization
protocols is complex [9]. Among the major challenges, we outline the following two issues:
fine-grained programmable elasticity and efficient change notification to millions of users.
The first challenge is related to the observation that scaling up some types of cloud applica-
tions is not straightforward using traditional VM resource utilization metrics (CPU, RAM,
etc.) [10], because, for instance, they are not CPU or memory intensive, but I/O bound, as is
the case for file synchronization [9]. In those cases, it is better to rely on metrics such as the
average and message handling response times exhibited by VM instances to cope with the
varying demand. This implies that fine-grained elasticity management components must be
built for the synchronization service as argued in the paper.

The other challenge is that the high read-write ratio of file syncing services makes it
more suitable to make use of one-to-many push communication for rapid notification. Anal-
ogously, to efficiently maintain the consistency of files, any change performed elsewhere
must be advertised as soon as they occur to reduce conflicts [2], in particular, when a file is
susceptible to be modified by more than one client at the same time. This requires the file
syncing service to operate as quickly as possible to commit changes, along with an efficient
notification service to inform clients about file mutations.

To face the above challenges, we propose a novel architecture for elastic file synchroniza-
tion. The major contributions of our work are:

1. ObjectMQ: a lightweight framework for providing programmatic elasticity to distributed
objects using message queues as their underlying communication middleware. The
efficient use of indirect communication in our middleware removes the need for pre-
processing client stubs for scaling out and down, it provides transparent load balanc-
ing mechanisms based on queues, it simplifies one-to-many communications, and it
enables flexible programmatic elasticity based on queue message processing.

2. StackSync: an elastic file synchronization architecture decoupling metadata and data
flows in structured and object storage services. StackSync implements predictive and
reactive provisioning policies on top of ObjectMQ that adapt to real traces from the
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Ubuntu One service. Furthermore, the ObjectMQ unicast and multicast communica-
tion primitives have considerably simplified the code of the synchronization protocol.
It also enables efficient change notification in a transparent way on top of the underly-
ing messaging service.

3. StackSync has been extensively tested using real traces from the Ubuntu One system to
validate its elasticity and efficient use of resources. Furthermore, we extended an open
benchmark [4] for Personal Clouds which provides trace generators and test scripts.
Using this benchmark, we compared our service with Dropbox, Box, OneDrive, and
Google Drive. StackSync is a stable open source project after two years of development
that is being used in several public institutions and data centers.

This work has been published in ACM/IFIP/USENIX Middleware 2014 under the title “StackSync:
Bringing Elasticity to Dropbox-like File Synchronization”.

7.3 Energy-awareness for In-line Deduplication Systems

Nowadays, data volumes to be managed by enterprises and data-centers are growing at
an exponential rate [11]. This motivates researchers to devise novel techniques to improve
storage efficiency. In this sense, data deduplication, a technique intended to eliminate data re-
dundancies by splitting files into smaller and indexed chunks for avoiding storing repeated
ones, has attracted much attention from both industry and academia. Particularly, in-line
deduplication clusters are emerging and becoming increasingly popular, since they reproduce
the operation of a single-node deduplication system at a larger scale [3, 12, 13, 14, 15].

Inherently, the design of in-line deduplication clusters is geared towards high perfor-
mance and scalability. To wit, in a deduplication cluster, the proxy exploits parallel access to
storage nodes depending on the data routing algorithm. Thus, superchunks belonging to a
tile are addressed based on their content towards different storage nodes [12, 13, 15]. This
design leverages horizontal scalability since storage nodes can be dynamically added to the
cluster to increase capacity and throughput. Existing commercial products provide high
performance in-line deduplication services that are increasingly fitting the needs of scalable
storage and archival of enterprises and organizations [16, 17, 18].

However, in terms of energy, the unintended consequence of this design is that it may
prevent storage nodes’ disks from remaining in standby mode for larger periods to save up energy [19,
20]. To wit, Fig. 15 (left) shows the fraction of activated nodes storing a single file in a
simulated deduplication cluster. Clearly, Fig. 15 suggests that a large fraction of nodes may
be in accessed in parallel on each request.

The actual problem arises if we consider the variation on workload intensity typically found
in enterprises and organizations as a result of users” habits [21, 4] (see Fig. 15, right). The
parallel and randomized nature of data routing in a deduplication cluster makes it difficult
for hard disks by themselves to fully exploit load valleys to save up energy by switching to
low-power mode. This may lead to a potentially high expense in disk energy, since disks of
storage nodes would be kept idle even during low load periods.
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Figure 15: Fraction of nodes involved in a store operation in a deduplication cluster (10MB
superchunks) (left). Workload supported by URV’s Moodle servers (right).

Our motivation is to make deduplication clusters able to exploit load valleys to save
up disk energy. To this end, we investigate the feasibility of deferred writes, diverted access and
workload consolidation in this particular context. Technically, we contribute with:

* We propose an analytical model to estimate the energy savings bring out by deferred writes
in a deduplication cluster. We provide insights about when deferring writes in a subset
of cluster nodes pays off.

* We propose a workload consolidation algorithm based on our analytical model. Based on
the workload, the algorithm dynamically diverts writes to a subset of nodes (or not)
considering the potential energy savings.

To materialize our insights, we present eWave: a novel energy-efficient storage middle-
ware targeted at supporting existing in-line deduplication systems. The main goal of eWave
lies on enabling the energy-aware operation of deduplication clusters through a temporary
energy-aware data management that takes place during low load periods. eWave does not mod-
ity the deduplication layer (e.g. data routing, deduplication rate) and it can be integrated
with most existing systems that use stateless data routing [3, 12, 13, 14, 15]. Through exten-
sive simulations and experiments in an 8-machine cluster, we conclude that eWave is able
to achieve energy savings from 16% to 60% in several scenarios with moderate impact on
performance during low load periods.

This work has been published in ACM SYSTOR 2014 under the title “eWave: Leveraging Energy-
Awareness for In-line Deduplication Clusters”.

8 Related Work

The performance evaluation of Cloud storage services is an interesting topic with several
papers appearing recently. The authors in [22] explore the performance of Microsoft Azure,
including storage. In this line, the authors in [23] execute an extensive measurement against
Amazon S3 to elucidate whether Cloud storage is suitable for scientific Grids or not. Sim-
ilarly, [24] presents a performance analysis of the Amazon Web Services, with no insights
regarding Personal Clouds.
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File hosting and file sharing Cloud services have been analyzed in depth by several
works [25, 26]. They provide an interesting substrate to understand both the behavior of
users and the QoS of major providers (e.g. RapidShare).

Closer to our work, the term Personal Cloud has gained momentum in the latest years.
Personal Clouds are built on top of traditional cloud storage to provide advanced services to
users: file storage, synchronization and sharing. Despite their commercial popularity, only few
research works have turned attention to measure and analyze the performance of Personal
Cloud storage services [27, 2, 4].

The first work to specifically analyze Personal Cloud services we are aware of is [27]. Hu
et. al. [27] compare Dropbox, Mozy, Carbonite and CrashPlan backup services. However,
their analysis of the performance, reliability and security levels is rather lightweight, and
more work is needed to characterize these services with enough rigor. In this sense, authors
in [4] provide an extensive analysis of the REST interface provided by three major Personal
Clouds, analyzing important aspects of their QoS (e.g. variability, failures).

Recently, the authors in [2] presented an extensive measurement of DropBox in two sce-
narios: in a university campus and in residential networks. They analyzed and characterized
the traffic transmitted by users, as well as the functioning and architecture of the service.
Authors in [28] also modeled the client behavior of DropBox users.

Conversely to most works, instead of measuring a Personal Cloud from outside, we an-
alyzed the metadata back-end servers of UbuntuOne. This approach provides to us a global
view of the service, as well as golden opportunities to characterize important aspects of
UbuntuOne (e.g. storage workload, user behavior). Furthermore, we believe that our in-
sights will help to guide future works on improving several aspects of these services, such
as synchronization [6, 29], security [30] and bandwidth reduction [5].

9 Conclusions and Future Directions

In this document, we analyzed in depth the characteristics of the Ul service. We analyzed
the storage workload, the file system and the behavior of users, among other aspects. This
analysis revealed important insights that can be common in other Personal Clouds, which
may motivate potential optimizations from the research community.

Furthermore, thanks to our analysis, we contributed with three Personal Cloud optimiza-
tions: (i) Advanced content distribution, (ii) elastic file synchronization and (iii) energy-efficiency
for deduplication systems in the storage back-end.

Our current and future research directions are the following ones:

* Analysis of the U1 back-end: At this moment, we analyzed the workload of U1 in various
domains. However, we also gathered information about the internal metadata back-
end which we believe important to understand. We are currently preparing the whole
trace to work on this issue. Our insights in this regard may also motivate optimizations
in the metadata back-end.
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e Personal Cloud Benchmarking Framework: We are developing an integrated benchmark-
ing framework for Personal Clouds that largely extend the existing proposals [7]. Among
other novelties, we feed our benchmarking framework with Ul traces to replay real
workloads in the Personal Clouds under test.
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