
SEVENTH FRAMEWORK PROGRAMME

CloudSpaces
(FP7-ICT-2011-8)

Open Service Platform for the
Next Generation of Personal Clouds

D3.2 Adaptive storage infrastructure

Due date of deliverable: 31-10-2014
Actual submission date: 15-10-2014

Start date of project: 01-10-2012 Duration: 36 months



Summary of the document

Document Type Deliverable

Dissemination level Public

State Final

Number of pages 44

WP/Task related to this document WP3

WP/Task responsible EUR

Author(s) Marko Vukolić, Rahma Chaabouni
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1 Executive summary

This document is a report on CloudSpaces adaptive storage layer. It describes the Cloudspaces
approach to distributed erasure-coding techniques and handling untrusted data reposito-
ries, in particular in relation to Cloudspaces Hybrid Cloud Storage service (the early design
of which was described in Deliverable 3.1.). The document also discusses the prototype of
the adaptive edge platform based on BitTorrent.
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2 Introduction

In this deliverable we give an advanced description of the adaptive storage that underlies
the Cloudspaces. We pay close attention to the use of erasure coding (to minimize the stor-
age consumption of our solutions), handling untrusted cloud repositories, and adaptivity to
different (heterogeneous) data repositories, including different public cloud providers. In
particular, we present:

• Wait-free erasure coding over multiple untrusted repositories (AWE). We further present
AWE, the first erasure-coded distributed implementation of a multi-writer multi-reader
read/write storage object that is, at the same time: (1) asynchronous, (2) wait-free,
(3) atomic, (4) amnesic, (i.e., where nodes store a bounded number of values), and (5)
Byzantine fault-tolerant (BFT), i.e., tolerating untrusted nodes, using the optimal num-
ber of nodes. AWE maintains metadata separately from bulk data, which is encoded
into fragments with a k-out-of-n erasure code and stored on dedicated data nodes that
support only simple reads and writes. Furthermore, AWE is the first BFT storage pro-
tocol that uses only n = 2t + k data nodes to tolerate t Byzantine faults, for any k ≥ 1.
AWE is efficient and uses only lightweight cryptographic hash functions. We present
AWE in Section 3.

• Hybrid cloud storage (Hybris). Hybris is an advanced version of our initial system
described in D3.1, augmented with support for erasure coding, following the guide-
lines behind AWE. Hybris is a multi-cloud storage backend that orchestrates hetero-
geneous public clouds. It provides a robust and efficient storage abstraction over mul-
tiple clouds that can be used as Personal Cloud backend in Cloudspaces. Prototype
design of Hybris, designed by EUR, is described in Section 4.

• Adaptive edge platform. We designed an adaptive edge platform that replaces regular
HTTP cloud unicasts with BitTorrent. BitTorrent effectively leverages swarms of Mul-
tiple personal cloud users to boost the efficiency of personal clouds. The advanced
prototype design of Cloudspaces Adaptive edge platform is described in Section 5.
This adaptive platform prototype has been massively deployed by two Cloudspaces
partners: URV and TISSAT.
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3 Erasure-Coded Storage with Separate Metadata

Erasure coding is a key technique that saves space and retains robustness against faults
in distributed storage systems. In short, an erasure code splits a large data value into
n fragments such that from any k of them the input value can be reconstructed. Erasure
coding is used by several large-scale storage systems [1, 2] that offer large capacity, high
throughput, resilience to faults, and efficient use of storage space.

Whereas the storage systems in production use today only tolerate crashes or outages,
storage systems in the Byzantine failure model (BFT) survive also more severe faults, rang-
ing from arbitrary state corruption to malicious attacks on processes. In general, the BFT
models untrusted data repositories. Here, we consider a model where multiple clients con-
currently access a storage service provided by a distributed set of nodes , where t out of n
nodes may be Byzantine. We model the storage service as an abstract read/write register
object.

Although BFT erasure-coded distributed storage systems have received some attention
in the literature [3, 4, 5, 6, 7], our understanding of their properties is not mature. The role
of different quorums, the semantics of concurrent access, the latency of protocols, and the
processing capabilities of the nodes have been investigated thoroughly for protocols based
on replication [8, 9]; in contrast, our understanding of erasure-coded distributed storage
lies far behind. In fact, the existing BFT erasure-coded storage protocols suffer from multi-
ple drawbacks: some require nodes to store an unbounded number of values [3] or rely on
node-to-node communication [4], others need computationally expensive public-key cryp-
tography [4, 5] or may block clients due to concurrent operations of other clients [5].

We introduce AWE, the first erasure-coded distributed implementation of a multi-reader
multi-writer (MRMW) register that is, at the same time, (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (5) tolerates the optimal number of Byzantine nodes, and (6) does not
use public-key cryptography. Although different subsets of these robustness properties have
been demonstrated so far, they have never been achieved together for erasure-coded storage,
as explained later. Combining these properties, that we describe in the following, has been
a longstanding open problem [3].

More specifically, AWE is an asynchronous protocol that provides the strongest live-
ness and safety properties, namely wait-freedom [10] and atomicity (or linearizability) [11].
Roughly, wait-free liveness means that any correct client operation terminates irrespective
of the behavior of the faulty nodes and clients, whereas atomicity means that all operations
appear to take effect instantaneously. Moreover, protocol AWE is amnesic [12] in the sense
that nodes store a bounded number of values and erase obsolete data.

It has been shown that n > 3t nodes are needed for distributed BFT storage [13], and
all known erasure-coded BFT storage protocols actually use n > 3t nodes to store payload
(bulk) data. This dramatically increases the cost of BFT over crash-tolerant storage, where
less than half of the nodes may be faulty. By distinguishing between metadata (short con-
trol information) and bulk data (the erasure-coded stored values) and by introducing two
separate classes of nodes that store metadata and bulk data, respectively, AWE beats this
bound for the class of data nodes (that store bulk data). In particular, with a k-out-of-n era-
sure code, protocol AWE needs only 2t + k data nodes , for any k ≥ 1. This approach saves
resources in practice, as storage costs for the bulk data often dominate, and it resembles the
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separation between agreement and execution for BFT services [14]. The data nodes may be
passive objects that support read and write operations but cannot execute code, as in Disk
Paxos [15]. In practice, such services may be provided by the key-value stores (KVS) popular
in cloud storage.

We formulate AWE in a modular way using an abstract metadata service that stores
control information with an atomic snapshot object. A snapshot object may be realized in
a distributed asynchronous system from simple read/write registers [16]. For making this
implementation fault-tolerant, these registers must still be emulated from n > 3t different
metadata nodes , in order to tolerate t Byzantine nodes.

Finally, AWE uses simple cryptographic hash functions but no expensive public-key op-
erations. To explain the use of cryptography in AWE, we show that separating data from
metadata and reducing the number of data nodes to 3t or less implies the use cryptographic
techniques. This result is interesting in its own right, as it implies that any distributed BFT
storage protocol that uses 3t or fewer nodes for storing bulk data must involve crypto-
graphic hash functions and place a bound on the computational power of the Byzantine
nodes. As all existing BFT erasure-coded storage protocols (including AWE) rely on cryp-
tography, this result does not pose a restriction on practical systems. However, it illustrates
a fundamental limitation that is particularly relevant for k = 1, i.e., for replication-based
BFT storage protocols.

We continue as follows. The Protocol AWE is presented in Section 3.1. The commu-
nication and storage complexities of AWE are compared to those of existing protocols in
Section 3.2.

3.1 Protocol AWE

This subection introduces the asynchronous wait-free erasure-coded Byzantine distributed
storage protocol (AWE).

3.1.1 Abstractions

Erasure code. An (n, k)-erasure code (EC) with domain V is given by an encoding algo-
rithm, denoted Encode, and a reconstruction algorithm, called Reconstruct. We consider
only maximum-distance separable codes, which achieve the Singleton bound in the follow-
ing sense. Given a (large) value v ∈ V , algorithm Encodek,n(v) produces a vector [ f1, . . . , fn]
of n fragments, which are from a domain F . A fragment is typically much smaller than the
input, and any k fragments contain all information of v, that is, |V| ≈ k|F |.

For an n-vector F ∈
(
F ∪ {⊥}

)n, whose entries are either fragments or the symbol ⊥,
algorithm Reconstructk,n(F) outputs a value v ∈ V or ⊥. An output value of ⊥ means that
the reconstruction failed. The completeness property of an erasure code requires that an
encoded value can be reconstructed from any k fragments. In other words, for every v ∈ V ,
when one computes F ← Encodek,n(v) and then erases up to n − k entries in F by setting
them to ⊥, algorithm Reconstructk,n(F) outputs v.
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Metadata service. The metadata service is implemented by a standard atomic snapshot
object [16], called dir, that serves as a directory. A snapshot object extends the simple storage
function of a register to a service that maintains one value for each client and allows for
better coordination. Like an array of multi-reader single-writer (MRSW) registers, it allows
every client to update its value individually; for reading it supports a scan operation that
returns the vector of the stored values, one for every client. More precisely, the operations
of dir are:

• An Update operation to dir is triggered by an invocation 〈 dir-Update | c, v 〉 by client c
that takes a value v ∈ V as parameter and terminates by generating a response 〈 r-
UpdateAck 〉 with no parameter.

• A Scan operation on dir is triggered by an invocation 〈 dir-Scan 〉 with no parameter;
the snapshot object returns a vector V of m = |C| values to c as the parameter in the
response 〈 r-ScanResp | V 〉, with V[c] ∈ V for c ∈ C.

The sequential specification of the snapshot object follows directly from the specification of
an array of m MRSW registers (hence, the snapshot initially stores the special symbol ⊥ 6∈ V
in every entry). When accessed concurrently from multiple clients, its operations appear
to take place atomically, i.e., they are linearizable. Snapshot objects are weak — they can
be implemented from read/write registers [16], which, in turn, can be implemented from
a set of a distributed processes subject to Byzantine faults. Wait-free amnesic implementa-
tions of registers with the optimal number of n > 3t processes are possible using existing
constructions [17, 18].

Data nodes. Data nodes provide a simple key-value store interface. We model the state
of data nodes as an array data[ts] ∈ Σ∗, initially ⊥, for ts ∈ Timestamps. Every value is
associated to a timestamp, which consists of a sequence number sn and the identifier c of the
writing client, i.e., ts = (sn, c) ∈ Timestamps = N0× (C ∪ {⊥}); timestamps are initialized to
T0 = (0,⊥). Data node di exports three operations:

• 〈 di-Write | ts, v 〉, which assigns data[ts]← v and returns 〈 di-WriteAck | ts 〉;

• 〈 di-Read | ts 〉, which returns 〈 di-ReadResp | ts, data[ts] 〉; and

• 〈 di-Free | TS 〉, which assigns data[ts]← ⊥ for all ts ∈ TS, and returns 〈 di-FreeAck | TS 〉.

3.1.2 Protocol overview

Protocol AWE uses the metadata directory dir to maintain pointers to the fragments stored
at the data nodes. As in standard implementations of multi-writer distributed storage [19],
every value is associated to a timestamp, which consists of a sequence number sn and the
identifier c of the writing client, i.e., ts = (sn, c) ∈ Timestamps = N0× (C ∪ {⊥}); timestamps
are initialized to T0 = (0,⊥). The metadata contains the timestamp of the most recently
written value for every client, and readers determine the value to read by retrieving all
timestamps, determining their maximum, and accessing the fragments associated to the
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highest timestamp. Comparisons among timestamps use the standard ordering, where ts1 >
ts2 for ts1 = (sn1, c1) and ts2 = (sn2, c2) if and only if sn1 > sn2 ∨ (sn1 = sn2 ∧ c1 > c2).

The directory stores an entry for every writer; it contains the timestamp of its most re-
cently written value, the identities of those nodes that have acknowledged to store a frag-
ment of it, a vector with the hashes of the fragments for ensuring data integrity, and ad-
ditional metadata to support concurrent reads and writes. The linearizable semantics of
protocol AWE are obtained from the atomicity of the metadata directory.

At a high level, the writer first invokes dir-Scan on the metadata to read the highest stored
timestamp, increments it, and uses this as the timestamp of the value to be written. Then
it encodes the value to n fragments and sends one fragment to each data node. The data
nodes store it and acknowledge the write. After the writer has received acknowledgments
from t + k data nodes, it writes their identities (together with the timestamp and the hashes
of the fragments) to the metadata through dir-Update. The reader proceeds accordingly: it
first invokes dir-Scan to obtain the entries of all writers; it determines the highest timestamp
among them and extracts the fragment hashes and the identities of the data nodes; finally,
it contacts the data nodes and reconstructs the value after obtaining k fragments that match
the hashes in the metadata.

Although this simplified algorithm achieves atomic semantics, it does not address timely
garbage-collection of obsolete fragments, the main problem to be solved for amnesic erasure-
code distributed storage. If a writer would simply replace the fragments with those of the
value written next, it is easy to see that a concurrent reader may stall.

Protocol AWE uses two mechanisms to address this: first, the writer retains those values
that may be accessed concurrently and exempts them from garbage collection so that their
fragments remain intact for concurrent readers, which gives the reader enough time to re-
trieve its fragments. Secondly, some of the retained values may also be frozen in response
to concurrent reads; this forces a concurrent read to retrieve a value that is guaranteed to
exist at the data nodes rather than simply the newest value, thereby effectively limiting the
amount of stored values. A similar freezing method has been used for wait-free atomic
storage with replicated data [17, 18], but it must be changed for erasure-coded storage with
separated metadata. The retention technique together with the separation of metadata ap-
pears novel. More specifically, metadata separation prevents straightforward applications
of existing “freezing” techniques, whereas storage that is simultaneously wait-free and am-
nesic requires garbage collection method that we show here for the first time.

For the two mechanisms, i.e., retention and freezing, every reader maintains a reader
index, both in its local variable readindex and in its metadata. The reader index serves for
coordination between the reader and the writers. The reader increments its index whenever
it starts a new r-Read and immediately writes it to dir, thereby announcing its intent to
read. Writers access the reader indices after updating the metadata for a write and before
(potentially) erasing obsolete fragments. Every writer w maintains a table frozenindex with
its most recent recollection of all reader indices. When the newly obtained index of a reader
c has changed, then w detects that c has started a new operation at some time after the last
write of w.

When w detects a new operation of c, it does not know whether c has retrieved the time-
stamp from dir before or after the dir-Update of the current write. The reader may access
either value; the writer therefore retains both the current and the preceding value for c by

Page 6 of 44



FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

storing a pointer to them in frozenptrlist and in reservedptrlist. Clearly, both values have to be
excluded from garbage collection by w in order to guarantee that the reader completes.

However, the operation of the reader c may access dir after the dir-Update of one or more
subsequent write operation by w, which means that the nodes would have to retain every
value subsequently written by w as well. To prevent this from happening and to limit the
number of stored values, w freezes the currently written timestamp (as well as the value) and
forces c to read this timestamp when it accesses dir within the same operation. In particular,
the writer stores the current timestamp in frozenptrlist at index c and updates the reader
index of c in frozenindex; then, the writer pushes both tables, frozenindex and frozenptrlist, to
the metadata service during its next r-Write. The values designated by frozenptrlist (they are
called frozen) and reservedptrlist (they are called reserved) are retained and excluded from
garbage collection until w detects the next read of c, i.e., the reader index of c increases. Thus,
the current read may span many concurrent writes of w and the fragments remain available
until c finishes reading.

On the other hand, a reader must consider frozen values. When a slow read operation
spans multiple concurrent writes, the reader c learns that it should retrieve the frozen value
through its entry in the frozenindex table of the writer.

The protocol is amnesic because each writer retains at most two values per reader, a
frozen value and a reserved value. Every data node therefore stores at most two fragments
for every reader-writer pair plus the fragment from the currently written value. The combi-
nation of freezing and retentions ensures wait-freedom.

Protocol details are available in the Technical Report [20].

Remarks. AWE does not rely on a majority of correct data nodes for correctness, as this
is encapsulated in the directory service. For liveness, though, the protocol needs responses
from t + k data nodes during write operations, which is only possible if n ≥ 2t + k. Further-
more, several optimizations may reduce the storage overhead in practice, e.g., readers can
clean up values that are no longer needed by anyone.

3.2 Complexity comparison

This section compares the communication and storage complexities of AWE to existing
erasure-coded distributed storage solutions, in a setting with n data nodes and m clients.
We denote the size of each stored value v ∈ V by ` = dlog2 |V|e. In line with the intended
deployment scenarios, we assume that ` is much larger (by several orders of magnitude)
than n2 and m2 , i.e., `� n2 and `� m2.

We examine the worst-case communication and storage costs incurred by a client in pro-
tocol AWE and distinguish metadata operations (on dir) from operations on the data nodes.
The metadata of one value written to dir consists of a pointer, containing the cross checksum
with n hash values, the t + k identities of the data nodes that store a data fragment, and a
timestamp. Moreover, the metadata entry of one writer contains also the list of m pointers to
frozen values, the m indices relating to the frozen values, and the writer’s reader index. As-
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Protocol Communication cost Storage cost
Write Read

ORCAS-A [6] (1 + m)n` 2n` n`
ORCAS-B [6] (1 + m)n`/k 2n`/k mn`/k
CASGC [21] n`/k * ∞ mn`/k
CT [4] (n + m)n`/(k + t) ` * n`/(k + t) *
HGR [5] n`/k * ∞ mn`/k
M-PoWerStore [22] n`/k * n`/k ∞
DepSky [7] n`/k * n`/k ∞
AWE (Sec. 4.3) n`/k * (t + k)`/k 2m2n`/k

Table 3.2a: Comparison of the communication and space complexities of erasure-coded dis-
tributed storage solutions. There are m clients, n data nodes, the erasure code parameter is
k = n− 2t, and the data values are of size ` bits. An asterisk (*) denotes optimal properties.

suming a collision-resistant hash function with output size λ bits and timestamps no larger
than λ bits, the total size of the metadata is O(m2nλ).

In the remainder of this section, the size of the metadata is considered to be negligible
and is ignored, though it would incur in practice.

According to the above assumption, the complexity of AWE is dominated by the data
itself. When writing a value v ∈ V , the writer sends a fragment of size `/k and a timestamp
of size λ to each of the n data nodes. Assuming further that ` � λ, the total storage space
occupied by v at the data nodes amounts to n`/k bits. Similarly, a read operation incurs a
communication cost of (t + k)k/` bits.

With respect to storage complexity, protocol AWE freezes and reserves two timestamps
and their fragments for each writer-reader pair, and additionally stores the fragments of the
last written value for each writer. This means that the storage cost is at most 2m2n`/k bits in
total.

Table 3.2a shows the communication and storage costs of protocol AWE and the related
protocols. Observe that in CASGC [21] and HGR [5], a read operation concurrent with an
unbounded number of writes may not terminate, hence we state their cost as ∞. Moreover,
in contrast to AWE, DepSky [7] is neither wait-free nor amnesic and M-PoWerStore [22] is
not amnesic. It is easy to see that the communication complexity of AWE is lower than that
of most storage solutions.
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4 Hybris: Efficient and Robust Hybrid Cloud Storage

4.1 Introduction

Hybrid cloud storage entails storing data on private premises as well as on one (or more)
remote, public cloud storage providers. To enterprises, such hybrid design brings the best of
both worlds: the benefits of public cloud storage (e.g., elasticity, flexible payment schemes
and disaster-safe durability) as well as the control over enterprise data. For example, an
enterprise can keep the sensitive data on premises while storing less sensitive data at poten-
tially untrusted public clouds. In a sense, hybrid cloud eliminates to a large extent various
security concerns that companies have with entrusting their data to commercial clouds 1

— as a result, enterprise-class hybrid cloud storage solutions are booming with all leading
storage providers, such as EMC2, IBM3, Microsoft4 and others, offering their proprietary
solutions.

That said, cloud storage concerns do not end with security and trust. Other potential
issues with commodity cloud storage are related to provider reliability, availability and per-
formance, vendor lock-in concerns, as well as consistency, as cloud storage services are noto-
rious for providing only eventual consistency [23]. To this end, several research works (e.g.,
[24, 25, 26, 27]) considered storing data robustly into public clouds, by leveraging multiple
commodity cloud providers. In short, the idea behind these multi-cloud storage systems
such as DepSky [24], ICStore [25] and SPANStore [26] and SCFS [27] is to leverage multi-
ple public cloud providers with the goals of distributing the trust across clouds, increasing
reliability, availability and consistency guarantees, and/or optimizing the cost of using the
cloud. A significant advantage of the multi-cloud approach (that makes it also interesting
for SMEs) is that it is typically based on client libraries that share data accessing commodity
clouds, and as such, demands no big investments into proprietary storage solutions.

However, the existing robust multi-cloud storage systems suffer from serious limitations.
Often, the robustness of these systems is limited to tolerating cloud outages, but not arbi-
trary or malicious behavior in clouds (e.g., data corruptions) — this is the case with ICStore
[25] and SPANStore [26]. Other multi-cloud systems that do address malice in systems (e.g.,
DepSky [24] and SCFS [27]) require prohibitive cost of relying on 3 f + 1 clouds to mask f
faulty ones. This is a major overhead with respect to tolerating only cloud outages, which
makes these systems expensive to use in practice. Moreover, all existing multi-cloud storage
systems scatter storage metadata across public clouds increasing the difficulty of storage
management and impacting performance.

With Hybris, we unify the hybrid cloud approach with that of robust multi-cloud stor-
age and present Hybris, the first robust hybrid cloud storage system. By unifying the hybrid
cloud with the multi-cloud, Hybris effectively brings together the best of both worlds, in-
creasing security, reliability and consistency. At the same time, the novel design of Hybris
allows for the first time to tolerate potentially malicious clouds at the price of tolerating
only cloud outages.

1See e.g., http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.
html.

2http://www.emc.com/campaign/global/hybridcloud/.
3http://www.ibm.com/software/tivoli/products/hybrid-cloud/.
4http://www.storsimple.com/.
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Hybris exposes the de-facto standard key-value store API and is designed to seamlessly
replace services such as Amazon S3 as the storage back-end of modern cloud applications.
The key idea behind Hybris is that it keeps all storage metadata on private premises, even
when those metadata pertain to data outsourced to public clouds. This approach not only
allows more control over the data scattered around different public clouds, but also allows
Hybris to significantly outperform existing robust public multi-cloud storage systems, both
in terms of system performance (e.g., latency) and storage cost, while providing strong con-
sistency guarantees. The salient features of Hybris are as follows:

• Tolerating untrusted clouds at the price of outages. Hybris puts no trust in any given
public cloud provider; namely, Hybris can mask arbitrary (including malicious) faults
of up to f public clouds. Interestingly, Hybris replicates data on as few as f + 1 clouds in
the common case (when the system is synchronous and without faults), using up to f
additional clouds in the worst case (e.g., network partitions, cloud inconsistencies and
faults). This is in sharp contrast to existing multi-cloud storage systems that involve
up to 3 f + 1 clouds to mask f malicious ones (e.g., [24, 27]).

• Efficiency. Hybris is efficient and incurs low cost. In common case, a Hybris write in-
volves as few as f + 1 public clouds, whereas reads involve only a single cloud, despite
the fact that clouds are untrusted. Hybris achieves this without relying on expensive
cryptographic primitives; indeed, in masking malicious faults, Hybris relies solely on
cryptographic hashes. Besides, by storing metadata locally on private cloud premises,
Hybris avoids expensive round-trips for metadata operations that plagued previous
multi-cloud storage systems. Finally, to reduce replication overhead, Hybris option-
ally supports erasure coding, along the guidelines developed with protocol AWE (Sec-
tion 3).

• Scalability. The potential pitfall of using private cloud in combination with public
clouds is in incurring a scalability bottleneck at a private cloud. Hybris avoids this
pitfall by keeping the metadata very small. As an illustration, the replicated variant of
Hybris maintains about 50 bytes of metadata per key, which is an order of magnitude
less than comparable systems [24]. As a result, Hybris metadata service residing on a
small commodity private cloud, can easily support up to 30k write ops/s and nearly
200k read ops/s, despite being fully replicated for metadata fault-tolerance.

Indeed, for Hybris to be truly robust, it has to replicate metadata reliably. Given inherent
trust in private premises, we assume faults within private premises that can affect Hybris
metadata to be crash-only. To maintain the Hybris footprint small and to facilitate its adop-
tion, we chose to replicate Hybris metadata layering Hybris on top of Apache ZooKeeper coor-
dination service [28]. Hybris clients act simply as ZooKeeper clients — our system does not
entail any modifications to ZooKeeper, hence facilitating Hybris deployment. In addition,
we designed Hybris metadata service to be easily portable to SQL-based replicated RDBMS
as well as NoSQL data stores that export conditional update operation (e.g., HBase or Mon-
goDB), which can then serve as alternatives to ZooKeeper.

Hybris offers full fledged per-key multi-writer multi-reader capabilities that guarantees
linearizability (atomicity) [29] of reads and writes even in presence of eventually consistent
public clouds [23]. To achieve this, Hybris relies on strong metadata consistency within a
private cloud to mask potential inconsistencies at public clouds — in fact, Hybris treats cloud
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inconsistencies simply as arbitrary cloud fault. Furthermore, our implementation of the
Hybris metadata service over Apache Zookeeper is interesting in its own right as it uses lock-
free (wait-free [30]) concurrency control that further boosts the scalability of our system with
respect to lock-based systems such as SPANStore [26], DepSky [24] and SCFS [27].

Finally, Hybris optionally supports caching of data stored at public clouds, as well as
symmetric-key encryption for data confidentiality leveraging trusted Hybris metadata to
store and share cryptographic keys. While different caching solutions can be applied to
Hybris, we chose to interface Hybris with Memcached5 distributed cache, with Memcached
deployed on the same machines that run ZooKeeper servers.

We implemented Hybris in Java6 and evaluated it using both microbenchmarks and the
YCSB [31] macrobenchmark. Our evaluation shows that Hybris significantly outperforms
state-of-the-art robust multi-cloud storage systems, with a fraction of the cost and stronger
consistency.

The rest of the section is organized as follows. In Section 4.2, we present the Hybris archi-
tecture and system model. Then, in Section 4.3, we give the algorithmic aspects of the Hybris
protocol. In Section 4.4 we discuss Hybris implementation and optimizations. In Section 5.3.3
we present Hybris performance evaluation.

4.2 Hybris overview

Hybris architecture. High-level design of Hybris is given in Figure 1. Hybris mixes two types
of resources: 1) private, trusted resources that consist of computation and (limited) storage
resources and 2) public (and virtually unlimited) untrusted storage resources in the clouds.
Hybris is designed to leverage commodity public cloud storage repositories whose API does
not offer computation, i.e., key-value stores (e.g., Amazon S3).

Hybris stores metadata separately from public cloud data. Metadata is stored within the
key component of Hybris called Reliable MetaData Service (RMDS). RMDS has no single
point of failure and, in our implementation, resides on private premises.

On the other hand, Hybris stores data (mainly) in untrusted public clouds. Data is repli-
cated across multiple cloud storage providers for robustness, i.e., to mask cloud outages and
even malicious faults. In addition to storing data in public clouds, Hybris architecture sup-
ports data caching on private premises. While different caching solutions exist, our Hybris
implementation reuses Memcached7, an open source distributed caching system.

Finally, at the heart of the system is the Hybris client, whose library is responsible for
interactions with public clouds, RMDS and the caching service. Hybris clients are also re-
sponsible for encrypting and decrypting data in case data confidentiality is enabled — in
this case, clients leverage RMDS for sharing encryption keys (see Sec. 4.3.7).

In the following, we first specify our system model and assumptions. Then we define
Hybris data model and specify its consistency and liveness semantics.

5http://memcached.org/.
6Hybris code is available at https://github.com/pviotti/hybris.
7http://memcached.org/.
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Figure 1: Hybris architecture. Reused (open-source) components are depicted in grey.

System model. We assume an unreliable distributed system where any of the components
might fail. In particular, we consider dual fault model, where: (i) the processes on private
premises (i.e., in the private cloud) can fail by crashing, and (ii) we model public clouds as
potentially malicious (i.e., arbitrary-fault prone [32]) processes. Processes that do not fail are
called correct.

Processes on private premises are clients and metadata servers. We assume that any
number of clients and any minority of metadata servers can be (crash) faulty. Moreover,
we allow up to f public clouds to be (arbitrary) faulty; to guarantee Hybris availability, we
require at least 2 f + 1 public clouds in total. However, Hybris consistency is maintained
regardless of the number of public clouds.

Similarly to our fault model, our communication model is dual, with the model bound-
ary coinciding with our trust boundary (see Fig. 1).8 Namely, we assume that the com-
munication among processes located in the private portion of the cloud is partially syn-
chronous [33] (i.e., with arbitrary but finite periods of asynchrony), whereas the communi-
cation among clients and public clouds is entirely asynchronous (i.e., does not rely on any
timing assumption) yet reliable, with messages between correct clients and clouds being
eventually delivered.

Our consistency model is likewise dual. We model processes on private premises as
classical state machines, with their computation proceeding in indivisible, atomic steps. On
the other hand, we model clouds as eventually consistent [23]; roughly speaking, eventual
consistency guarantees that, if no new updates are made to a given data item, eventually all
accesses to that item will return the last updated value.

Finally, for simplicity, we assume an adversary that can coordinate malicious processes

8We believe that our dual fault and communication models reasonably model the typical hybrid cloud
deployment scenarios.
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as well as process crashes. However, we assume that the adversary cannot subvert crypto-
graphic hash functions we use (SHA-1), and that it cannot spoof the communication among
non-malicious processes.

Hybris data model and semantics. Similarly to commodity public cloud storage services,
Hybris exports a key-value store (KVS) API; in particular, Hybris address space consists of
flat containers, each holding multiple keys. The KVS API features four main operations: (i)
PUT(cont, key, value), to put value under key in container cont; (ii) GET(cont, key, value), to
retrieve the value; DELETE(cont, key) to remove the respective entry and (iv) LIST(cont) to
list the keys present in container cont. We collectively refer to Hybris operations that modify
storage state (e.g., PUT and DELETE) as write operations, whereas the other operations (e.g.,
GET and LIST) are called read operations.

Hybris implements a multi-writer multi-reader key-value storage. Hybris is strongly con-
sistent, i.e., it implements atomic (or linearizable [29]) semantics. In distributed storage
context, atomicity provides an illusion that a complete operation op is executed instantly at
some point in time between its invocation and response, whereas the operations invoked by
faulty clients appear either as complete or not invoked at all.

Despite providing strong consistency, Hybris is highly available. Hybris writes by a correct
client are guaranteed to eventually complete [30]. On the other hand, Hybris guarantees a
read operation by a correct client to complete always, except in an obscure corner case where
there is an infinite number of writes to the same key concurrent with the read operation.

4.3 Hybris Protocol

4.3.1 Overview

The key component of Hybris is its RMDS component which maintains metadata associated
with each key-value pair. In the vein of Farsite [34], Hybris RMDS maintains pointers to data
locations and cryptographic hashes of the data. However, unlike Farsite, RMDS additionally
includes a client-managed logical timestamp for concurrency control, as well as data size.

Such Hybris metadata, despite being lightweight, is powerful enough to enable tolerating
arbitrary cloud failures. Intuitively, the cryptographic hash within a trusted and consistent
RMDS enables end-to-end integrity protection: it ensures that neither corrupted values pro-
duced by malicious clouds, nor stale values retrieved from inconsistent clouds, are ever re-
turned to the application. Complementarily, data size helps prevent certain denial-of-service
attack vectors by a malicious cloud (see Sec. 4.4.2).

Furthermore, Hybris metadata acts as a directory pointing to f + 1 clouds that have been
previously updated, enabling a client to retrieve the correct value despite f of them being
arbitrary faulty. In fact, with Hybris, as few as f + 1 clouds are sufficient to ensure both
consistency and availability of read operations (namely GET) — indeed, Hybris GET never
involves more than f + 1 clouds (see Sec. 4.3.3). Additional f clouds (totaling 2 f + 1 clouds)
are only needed to guarantee that write operations (namely PUT) are available as well (see
Sec. 4.3.2). Note that since f clouds can be faulty, and a value needs to be stored in f + 1

Page 13 of 44



FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

clouds for durability, overall 2 f + 1 clouds are required for PUT operations to be available in
the presence of f cloud outages.

Finally, besides cryptographic hash and pointers to clouds, metadata includes a time-
stamp that, roughly speaking, induces a partial order of operations which captures the real-
time precedence ordering among operations (atomic consistency). The subtlety of Hybris
(see Sec. 4.3.5 for details) is in the way it combines timestamp-based lock-free multi-writer
concurrency control within RMDS with garbage collection (Sec. 4.3.4) of stale values from
public clouds to save on storage costs.

In the following we detail each Hybris operation individually.

4.3.2 PUT Protocol

RMDS

w
k put(k|ts

new,v) ack k,ts
new
,H(v),[c
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,c
2
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c
1

c
2

c
3

ack

Figure 2: Hybris PUT protocol illustration ( f = 1). Common-case communication is depicted
in solid lines.

Hybris PUT protocol entails a sequence of consecutive steps illustrated in Figure 2. To
write a value v under key k, a client first fetches from RMDS the latest authoritative time-
stamp ts by requesting the metadata associated with key k. Timestamp ts is a tuple consist-
ing of a sequence number sn and a client id cid. Based on timestamp ts, the client computes
a new timestamp tsnew, whose value is (sn + 1, cid). Next, the client combines the key k and
timestamp tsnew to a new key knew = k|tsnew and invokes put (knew, v) on f + 1 clouds in
parallel. Concurrently, the clients start a timer whose expiration is set to typically observed
upload latencies (for a given value size). In the common case, the f + 1 clouds reply to the
the client in a timely fashion, before the timer expires. Otherwise, the client invokes put
(knew, v) on up to f secondary clouds (see dashed arrows in Fig. 2). Once the client has re-
ceived acks from f + 1 different clouds, it is assured that the PUT is durable and proceeds to
the final stage of the operation.

In the final step, the client attempts to store in RMDS the metadata associated with key k,
consisting of the timestamp tsnew, the cryptographic hash H(v), size of value v size(v), and
the list (cloudList) of pointers to those f + 1 clouds that have acknowledged storage of value
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v. Notice, that since this final step is the linearization point of PUT it has to be performed in
a specific way as discussed below.

Namely, if the client performs a straightforward update of metadata in RMDS, then it
may occur that stored metadata is overwritten by metadata with a lower timestamp (old-
new inversion), breaking the timestamp ordering of operations and Hybris consistency. To
solve the old-new inversion problem, we require RMDS to export an atomic conditional
update operation. Then, in the final step of Hybris PUT, the client issues conditional update
to RMDS which updates the metadata for key k only if the written timestamp tsnew is greater
than the timestamp for key k that RMDS already stores. In Section 4.4 we describe how we
implement this functionality over Apache ZooKeeper API; alternatively other NoSQL and
SQL DBMSs that support conditional updates can be used.

4.3.3 GET in the common case
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Figure 3: Hybris GET protocol illustration ( f = 1). Common-case communication is depicted
in solid lines.

Hybris GET protocol is illustrated in Figure 3. To read a value stored under key k, the client
first obtains from RMDS the latest metadata, comprised of timestamp ts, cryptographic hash
h, value size s, as well a list cloudList of pointers to f + 1 clouds that store the corresponding
value. Next, the client selects the first cloud c1 from cloudList and invokes get (k|ts) on c1,
where k|ts denotes the key under which the value is stored. Besides requesting the value, the
client starts a timer set to the typically observed download latency from c1 (given the value
size s) (for that particular cloud). In the common case, the client is able to download the
correct value from the first cloud c1 in a timely manner, before expiration of its timer. Once
it receives value v, the client checks that v hashes to hash h comprised in metadata (i.e., if
H(v) = h). If the value passes the check, then the client returns the value to the application
and the GET completes.

In case the timer expires, or if the value downloaded from the first cloud does not pass
the hash check, the client sequentially proceeds to download the data from the second cloud
from cloudList (see dashed arrows in Fig. 3) and so on, until the client exhausts all f + 1
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clouds from cloudList.9

In specific corner cases, caused by concurrent garbage collection (described in Sec. 4.3.4),
failures, repeated timeouts (asynchrony), or clouds’ inconsistency, the client has to take ad-
ditional actions in GET (described in Sec. 4.3.5).

4.3.4 Garbage Collection

The purpose of garbage collection is to reclaim storage space by deleting obsolete versions of
keys from clouds while allowing read and write operations to execute concurrently. Garbage
collection in Hybris is performed by the writing client asynchronously in the background.
As such, the PUT operation can give back control to the application without waiting for
completion of garbage collection.

To perform garbage collection for key k, the client retrieves the list of keys prefixed by
k from each cloud as well as the latest authoritative timestamp ts. This involves invoking
list(k|∗) on every cloud and fetching metadata associated with key k from RMDS. Then for
each key kold, where kold < k|ts, the client invokes DELETE (kold) on every cloud.

4.3.5 GET in the worst-case

In the context of cloud storage, there are known issues with weak, e.g., eventual [23] con-
sistency. With eventual consistency, even a correct, non-malicious cloud might deviate from
atomic semantics (strong consistency) and return an unexpected value, typically a stale one.
In this case, sequential common-case reading from f + 1 clouds as described in Section 4.3.3
might not return a value since a hash verification might fail at all f + 1 clouds. In addi-
tion to the case of inconsistent clouds, this anomaly may also occur if: (i) timers set by the
client for an otherwise non-faulty cloud expire prematurely (i.e., in case of asynchrony or
network outages), and/or (ii) values read by the client were concurrently garbage collected
(Sec. 4.3.4).

To cope with these issues and eventual consistency in particular, Hybris leverages meta-
data service consistency to mask data inconsistencies in the clouds effectively allowing avail-
ability to be traded off for consistency. To this end, Hybris client indulgently reiterates the GET
by reissuing a get to all clouds in parallel, and waiting to receive at least one value match-
ing the desired hash. However, due to possible concurrent garbage collection (Sec. 4.3.4), a
client needs to make sure it always compares the values received from clouds to the most
recent key metadata. This can be achieved in two ways: (i) by simply looping the entire
GET including metadata retrieval from RMDS, or (ii) by looping only get operations at f + 1
clouds while fetching metadata from RMDS only when metadata actually changes.

In Hybris, we use the second approach. Notice that this suggests that RMDS must be able
to inform the client proactively about metadata changes. This can be achieved by having
a RMDS that supports subscriptions to metadata updates, which is possible to achieve in,

9As we discuss in details in Section 4.4, in our implementation, clouds in cloudList are ranked by the client
by their typical latency in the ascending order, i.e., when reading the client will first read from the “fastest”
cloud from cloudList and then proceed to slower clouds.

Page 16 of 44



FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

e.g.., Apache ZooKeeper (using the concepts of watches, see Sec. 4.4 for details). The entire
protocol executed only if common-case GET fails (Sec. 4.3.3) proceeds as follows:

1. A client first reads key k metadata from RMDS (i.e., timestamp ts, hash h, size s and
cloud list cloudList) and subscribes for updates for key k metadata with RMDS.

2. Then, a client issues a parallel get (k|ts) at all f + 1 clouds from cloudList.

3. When a cloud c ∈cloudList responds with value vc, the client verifies H(vc) against
h10.

(a) If the hash verification succeeds, the GET returns vc.

(b) Otherwise, the client discards vc and reissues get (k|ts) at cloud c.

4. At any point in time, if the client receives a metadata update notification for key k from
RMDS, the client cancels all pending downloads, and repeats the procedure by going
to step 1.

The complete Hybris GET, as described above, ensures finite-write termination [35] in
presence of eventually consistent clouds. Namely, a GET may fail to return a value only the-
oretically, in case of infinite number of concurrent writes to the same key, in which case the
garbage collection at clouds (Sec. 4.3.4) might systematically and indefinitely often remove
the written values before the client manages to retrieve them.11

4.3.6 DELETE and LIST

Besides PUT and GET, Hybris exports the additional functions: DELETE and LIST— here, we
only briefly sketch how these functions are implemented.

Both DELETE and LIST are local to RMDS and do not access public clouds. To delete
a value, the client performs the PUT protocol with a special cloudList value ⊥ denoting
the lack of a value. Deleting a value creates metadata tombstones in RMDS, i.e. metadata
that lacks a corresponding value in cloud storage. On the other hand, Hybris LIST simply
retrieves from RMDS all keys associated with a given container cont and filters out deleted
(tombstone) keys.

4.3.7 Confidentiality

Adding confidentiality to Hybris is straightforward.To this end, during a PUT, just before
uploading data to f + 1 public clouds, the client encrypts the data with a symmetric crypto-
graphic key kenc. Then, in the final step of the PUT protocol (see Sec. 4.3.2), when the client
writes metadata to RMDS using conditional update, the client simply adds kenc to metadata
and computes the hash on ciphertext (rather than on cleartext). The rest of the PUT proto-
col remains unchanged. The client may generate a new key with each new encryption, or

10For simplicity, we model the absence of a value as a special NULL value that can be hashed.
11Notice that it is straightforward to modify Hybris to guarantee read availability even in case of an infinite

number of concurrent writes, by switching off the garbage collection.
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fetch the last used key from the metadata service, at the same time it fetches the last used
timestamp.

To decrypt data, a client first obtains the most recently used encryption key kenc from
metadata retrieved from RMDS during a GET. Then, upon the retrieved ciphertext from
some cloud successfully passes the hash test, the client decrypts data using kenc.

4.3.8 Erasure coding

In order to minimize bandwidth and storage capability requirements, Hybris supports era-
sure coding. Erasure codes entail partitioning data into k > 1 blocks plus m additional parity
fragments, each of the k + m blocks taking about 1/k of the original storage space. When us-
ing an optimal erasure code, the original data can be reconstructed from any k blocks despite
up to m erasures. In Hybris, we fix m to equal to f .

Deriving an erasure coding variant of Hybris follows the scheme of protocol AWE, de-
veloped in Section 3. Namely, in a PUT, the client encodes original data into f + k erasure
coded chunks and places one chunk per cloud. Hence, with erasure coding, PUT involves
f + k clouds in the common case (instead of f + 1 with replication). Then, the client com-
putes f + k hashes (instead of a single one in case of replication) that are stored in the RMDS
as the part of metadata. Finally, erasure coded GET involves fetching chunks from k clouds
in common case, with chunk hashes verified against those stored in RMDS. In the worst
case, Hybris with erasure coding uses up to 2 f + k (resp., f + k) clouds in PUT (resp., GET).

Finally, it is worth noting that in Hybris, there is no explicit relation between parameters
f and k which are independent. This offers more flexibility with respect to prior solutions
that mandated k ≥ f + 1.

4.4 Implementation

We implemented Hybris in Java. The implementation pertains solely to the Hybris client side
since the entire functionality of the metadata service (RMDS) is layered on top of Apache
ZooKeeper client. Namely, Hybris does not entail any modification to the ZooKeeper server
side. Our Hybris client is lightweight and consists of about 3400 lines of Java code. Hybris
client interactions with public clouds are implemented by wrapping individual native Java
SDK clients (drivers) for each particular cloud storage provider12 into a common lightweight
interface that masks the small differences across native client libraries.

In the following, we first discuss in details our RMDS implementation with ZooKeeper
API. Then, we describe several Hybris optimizations that we implemented.

4.4.1 ZooKeeper-based RMDS

We layered Hybris implementation over Apache ZooKeeper [28]. In particular, we durably
store Hybris metadata as ZooKeeper znodes; in ZooKeeper znodes are data objects addressed

12Currently, Hybris supports Amazon S3, Google Cloud Storage, Rackspace Cloud Files and Windows Azure.
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by paths in a hierarchical namespace. In particular, for each instance of Hybris, we gener-
ate a root znode. Then, the metadata pertaining to Hybris container cont is stored under
ZooKeeper path 〈root〉/cont. In principle, for each Hybris key k in container cont, we store a
znode with path pathk = 〈root〉/cont/k.

ZooKeeper exports a fairly modest API to its applications. The ZooKeeper API calls
relevant to us here are: (i) create/setData(p, data), which creates/updates znode with path p
containing data, (ii) getData(p) to retrieve data stores under znode with p, and (iii) sync(),
which synchronizes a ZooKeeper replica that maintains the client’s session with ZooKeeper
leader. Only reads that follow after sync() will be atomic.13

Besides data, znodes have some specific Zookepeer metadata (not be confused with Hy-
bris metadata which we store in znodes). In particular, our implementation uses znode ver-
sion number vn, that can be supplied as an additional parameter to setData operation which
then becomes a conditional update operation which updates znode only if its version num-
ber exactly matches vn.

Hybris PUT. At the beginning of PUT (k, v), when client fetches the latest timestamp ts for
k, the Hybris client issues a sync() followed by getData(pathk) to ensure an atomic read of ts.
This getData call returns, besides Hybris timestamp ts, the internal version number vn of the
znode pathk which the client uses when writing metadata md to RMDS in the final step of
PUT.

In the final step of PUT, the client issues setData(pathk, md, vn) which succeeds only if
the znode pathk version is still vn. If the ZooKeeper version of pathk changed, the client
retrieves the new authoritative Hybris timestamp tslast and compares it to ts. If tslast > ts,
the client simply completes a PUT (which appears as immediately overwritten by a later PUT
with tslast). In case, tslast < ts, the client retries the last step of PUT with ZooKeeper version
number vnlast that corresponds to tslast. This scheme (that we believe to be interesting in
its own right) is wait-free [30] and is guaranteed to terminate since only a finite number of
concurrent PUT operations use a timestamp smaller than ts.

Hybris GET. In interacting with RMDS during GET, Hybris client simply needs to make sure
its metadata is read atomically. To this end, a client always issues a sync() followed by
getData(pathk), just like in our PUT protocol. In addition, for subscriptions for metadata
updates in GET (Sec. 4.3.5) we use the concept of ZooKeeper watches (set by e.g., getData)
which are subscriptions on znode update notifications. We use these notifications in Step 4
of the algorithm described in Section 4.3.5.

4.4.2 Optimizations

Cloud latency ranks. In our Hybris implementation, clients rank clouds by latency and pri-
oritize clouds with lower latency. Hybris client then uses these cloud latency ranks in com-
mon case to: (i) write to f + 1 clouds with the lowest latency in PUT, and (ii) to select from

13Without sync, ZooKeeper may return stale data to client, since reads are served locally by ZooKeeper
replicas which might have not yet received the latest update.
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cloudList the cloud with the lowest latency as preferred cloud in GET. Initially, we imple-
mented the cloud latency ranks by reading once (i.e., upon initialization of the Hybris client)
a default, fixed-size (100kB) object from each of the public clouds. Interestingly, during our
experiments, we observed that the cloud latency rank significantly varies with object size
as well as the type of the operation (PUT vs. GET). Hence, our implementation establishes
several cloud latency ranks depending on the file size and the type of operation. In addition,
Hybris client can be instructed to refresh these latency ranks when necessary.

Erasure coding. Hybris integrates an optimally efficient Reed-Solomon codes implementa-
tion, using the Jerasure library [36], by means of its JNI bindings. The cloud latency rank
optimizations remains in place with erasure coding. When performing a PUT, f + k erasure
coded blocks are stores in f + k clouds with lowest latency, whereas with GET, k > 1 clouds
with lowest latency are selected (out of f + k clouds storing data chunks).

Preventing “Big File” DoS attacks. A malicious preferred cloud may mount a DoS attack
against Hybris client during a read by sending, instead of the correct file, a file of arbitrary
length. In this way, a client would not detect a malicious fault until computing a hash of the
received file. To cope with this attack, Hybris client uses value size s that Hybris stores and
simply cancels the downloads whose payload size extends over s.

Caching. Our Hybris implementation enables data caching on the private portion of the
system. We implemented simple write-through cache and caching-on-read policies. With
write-through caching enabled, Hybris client simply writes to cache in parallel to writing to
clouds. On the other hand, with caching-on-read enabled, Hybris client upon returning a
GET value to the application, writes lazily the GET value to the cache. In our implementa-
tion, we use Memcached distributed cache that exports a key-value interface just like public
clouds. Hence, all Hybris writes to the cache use exactly the same addressing as writes to
public clouds (i.e., using put(k|ts, v)). To leverage cache within a GET, Hybris client upon
fetching metadata always tries first to read data from the cache (i.e., by issuing get (k|ts) to
Memcached), before proceeding normally with a GET.

Full Hybris evaluation can be found in our 2014 Symposium on Cloud Computing (SoCC)
paper [37].
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5 Adaptive Edge Platform: Using BitTorrent to Reduce Band-
width Cost

In this world of the internet, people are increasingly opting for cloud storage services, re-
ferred to as Personal clouds. Such services are attracting many customers for the wide range
of services they are offering, including, but not limited to, accessibility, sharing and syncing.
All these advantages in addition to others, make these services very attractive for end- users.
This has resulted in an ever increasing number of users of these services. This means that
a lot of money should be provisioned for storage and bandwidth in order to cope with this
increasing demand.

When a client adds a new file to his personal folder, the content is divided into small
entities called “chunks" that are pushed to the storage servers while the meta-data is kept
in a different server. Once the file is uploaded, all the synchronized devices will be notified
of the addition of the new file and will request a copy of it from the cloud storage servers.
This will result in the repeated distribution of the same content in a short period of time.
From a technical point of view, most of them use HTTP as a transfer protocol and miss
the opportunity to benefit from the common interest of users in the same content. In such
scenarios, the cloud can benefit from the clients’ upload capacities to save its bandwidth. In
this context, we propose to introduce the BitTorrent [38] protocol when the load on a specific
file becomes high. In fact, the efficiency of the peer-assisted paradigm makes it especially
suitable for files shared between a set of devices.

Unfortunately, the use of BitTorrent may incur a longer download time compared to
HTTP especially for small files. According to previous studies, these small files form a very
high percentage of the data stored in personal cloud servers; 99% of the files are of size
smaller than 16 MB according to [39]. The main challenge is to decide when it is worth
switching to BitTorrent. The key elements in making the decision are the gain in download
time and the peers’ contribution. The former represents the difference in download time
between HTTP and BitTorrent. The latter measures the total amount of data that can be
obtained from the peers. To our knowledge, there were no previous studies that compare
the BitTorrent and HTTP protocols for distributing small files. Thus, it comes the need to
draw a complete comparative study between both protocols.

(a) (b) 

User A 

User A 

User B 
User C 

Figure 4: Synchronisation and sharing in personal cloud systems

Let’s consider a classic personal cloud system where the storage server is responsible
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for storing the clients files and managing the corresponding requests. Each client i has an
upload bandwidth ui and a download bandwidth di. The two following common file distri-
bution scenarios could benefit from our hybrid download strategy:

1. Synchronization: User A is adding a new file f to his personal account. During the syn-
chronization process, the same file will be downloaded by all the other synchronized
devices of the user. (Part (a) of Fig. 4)

2. Sharing: User A is sharing a file f with other users. In this case, the file will be down-
loaded by all the synchronized devices of the users. (Part (b) of Fig. 4)

Both cases can be modeled by the problem of distributing a file f of size F from the cloud
server to L distinct nodes. We denote by S the set of cloud seeds serving f and by u(S)
their aggregated upload speed dedicated to f . In personal clouds, file synchronization and
content distribution follow a client-server model centralized in the cloud storage provider.
As mentioned above, the download protocol adopted by these providers is HTTP. The choice
of this protocol is made because it uses the port 80 which is generally kept open. While this
kind of architecture (client-server) is appropriate for some use cases, it is not optimal when
the number of nodes requesting the same content is high, as it might result in bandwidth
bottlenecks in the cloud.

A possible solution is to benefit from the high number of requests and use the clients’
spare upload bandwidth to offload the server. The main idea is to switch from HTTP to
BitTorrent upon detection of an increasing number of requests on a specific content. The
architecture of our system consists of a Cloud storage system and a personal cloud client.
The main components of the resulting architecture are:

• Cloud side:

– OpenStack Swift: The client’s files are replicated in each of our Storage nodes in
order to keep the system in a consistent state in the face of drive failures. The
Proxy Server is the entity responsible for handling the requests. For each request,
it looks for the location of the requested object and routes the request accordingly.
This server is also responsible for monitoring the incoming requests and upon
detection of a certain mass on a specific content, decides to switch to BitTorrent.

– Torrent server: This server is triggered when the Proxy decides to switch to the
BitTorrent protocol for a specific content. Then, it runs a seed whose role is to
extract the requested chunks from the storage nodes. The server will generate
later a corresponding meta-info (.torrent) file that will be transmitted to the client.

• Personal Cloud Client side: The personal cloud client is extended with an implemen-
tation of a BitTorrent client to allow a transparent switch to BitTorrent.

Our system is able to transparently switch from a regular client-server model using the
HTTP to a peer-to-peer model using the BitTorrent protocol, following a protocol decision
algorithm (see section 5.2). During content download, users do not need to take any action
for the switching of protocols. The specific time at which the switch is made is configurable
depending on the input of the algorithm.
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In this context, we foresee two challenges that we will address throughout this document.
The first challenge is to identify the best switching point that will help avoiding bottlenecks
without affecting significantly the download time. There are many important parameters
that should be considered when choosing this point, including: the size of the shared file,
the bandwidth of the cloud allocated to that file, the number of peers downloading the file
and their corresponding bandwidth capacities. To this extent, the choice of the switching
point should be based on a complete comparative study of BitTorrent and HTTP in order
to determine the most convenient one in each specific case. This study should be able to
answer the following question: How much time would the clients gain (or lose) and how much
bandwidth could the cloud save, if the download protocol is switched from HTTP to BitTorrent?

The second challenge is how to allocate the limited bandwidth on the data center side to
a different set of swarms to maximize content download throughput to also increase the effi-
ciency and responsiveness of the system compared to current solutions. For this, we propose
a smart seeding strategy which grants bandwidth according to swarm characteristics.

For the rest of this document, we will consider the following swarm-level notation:

Parameter Description

F size of the requested file f

S set of providers of f (seeder nodes)

L set of requesters of f (leecher nodes), L= |L| is the number of requesters

I set of all the nodes, I = L ∪ S
ui upload speed of node i ∈ L
di download speed of node i ∈ L

dmin dmin = min
i∈L

(di) download speed of the slowest leecher requesting f

u(A) u(A) = ∑
i∈A

ui aggregated upload bandwidth of A ⊆ I

d(A) d(A) = ∑
i∈A

ui aggregated download bandwidth of A ⊆ I

C f C f = {(ui, di), ∀i ∈ L} set of upload and download bandwidths of all the
leechers interested in f .

5.1 Client-server Versus Peer-Assisted File Distribution

It is commonly believed that BitTorrent is not convenient for the distribution of small files.
But, to our knowledge, there is no proof of such assumption. Wei et al. noticed in [40] that,
in their specific experimental settings, BitTorrent outperforms the FTP protocol only when
the file size is greater than 20 MB. However, in practice, we found that BitTorrent can be
efficient for small files. We ran several experiments distributing files of sizes 1, 5 and 10
MB using a unique seed. We used the following common ADSL bandwidth settings: the
clients had an upload bandwidth ui=1 Mbps, a download bandwidth di=2 Mbps and the
bandwidth allocated by the cloud to each exchanged file was u(S)=5 Mbps. We measured
the average download time in HTTP and BitTorrent for each experiment and calculated the
corresponding gain or loss in download time. We also measured the total amount of data
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contributed by the peers. We report the results in table 5.1a. All the download times in the
table are in seconds.

Clients
1 MB file 5 MB file

HTTP BT Time Data from HTTP BT Time Data from
count diff peers diff peers

2 4 s 5.51 s -1.51 s 236.13 KB 20 s 21.52 s -1.52 s 2.9 MB
3 4.8 s 5.47 s -0.67 s 819.6 KB 24 s 21.69 s +2.31 s 6.02 MB
4 6.4 s 6.03 s +0.37 s 1.57 MB 32 s 23.06 s +8.94 s 7.84 MB
5 8 s 6.25 s +1.75 s 1.64 MB 40 s 24.05 s +15.95 s 11.59 MB

Table 5.1a: Measured download times for small files using HTTP and BitTorrent. The seed
bandwidth is limited to 5 Mbps and the clients are homogeneous each having an upload
and download speed of respectively 1 and 2 Mbps.

We notice that, with four clients downloading a 1 MB file, BitTorrent can reduce the
download time compared to HTTP. The peers contribution can reach 40% of the total data
volume in some cases.

In this section, we present our estimation for the distribution time of small files via Bit-
Torrent. We also introduce the gain and offload ratios in order to measure the trade-off
between this protocol and HTTP.

5.1.1 The Distribution Time for Small Files in BitTorrent

Background To get an estimation of the download time in BitTorrent-like systems, we bor-
row the following formula proposed in [41] by Kumar and Ross:

Tpa
(
u(S), C f , F

)
=

F

min
{

dmin, u(I)
L , u(S)

} , (1)

where Tpa is the minimum time needed to distribute a file of size F to L leechers. This time
depends on the download speed of the slowest peer dmin, the aggregated upload bandwidth
of all the nodes divided equally between all the L leechers, and the upload bandwidth of the
cloud seed(s). The authors presented in their paper a complete proof of the download time.
The proof is organized into the following exhaustive cases depending on the parameter that
may be responsible for the transfer bottleneck:

1. Case A: dmin ≤ min
{

u(I)
L , u(S)

}
and dmin ≤ u(L)

L−1 :
In this case, the download speed of the peers is limited by the download bandwidth
of the slowest peer in the swarm dmin.

2. Case B: dmin ≤ min
{

u(I)
L , u(S)

}
and u(L)

L−1 ≤ dmin:
In Case B, the transfer is limited by the maximum speed at which a leecher can get
data from the other leechers, that is u(L)

L−1 .
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3. Case C: u(I)
L ≤ min {dmin, u(S)}:

The transfer bottleneck in this case is limited by the aggregated upload speed of the
network u(I) divided equally between the L leechers.

4. Case D: u(S) ≤ min
{

dmin, u(I)
L

}
:

In this case, the upload bandwidth of the seed u(S) is the maximum limit at which
each peer can download “fresh” content.

For each of the cases listed above, the authors in [41] constructed a seeding rate profile
si(t) which denotes the bit rate at which the seeds send pieces to leecher i at time t.
The adopted distribution scheme is the following: As soon as a leecher li begins to receive
data from the seed, it replicates it to each of the other (L− 1) leechers at a rate xi(t), where
xi(t) ≤ si(t), as shown in Figure 5. For each case, the distribution scheme consists of L
application-level multicast trees, each rooted at a specific seed, passing through one of the
leechers and terminating at each of the L− 1 other leechers.

Figure 5: General distribution scheme structure: Leecher li (i ∈ {1, 2, 3}) downloads “fresh”
data at the rate si(t) from the seeds. The data is replicated later to the other 2 leechers at a
rate xi(t) < si(t).

To calculate the offload ratio in the following section, we need to measure the volume
of data offloaded from the cloud. We present here the seeding rate for each case. This rate,
denoted by si(t) for the sake of clarity, depends on the time t, the file size F, the upload
speed of the seeds u(S), and the set of upload and download speeds of all the leechers C f .
For a complete proof and more details regarding these formulas, we kindly refer the reader
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to the original paper [41].

si(t) =



ui×dmin
u(L) Case A

ui−u(L)
L−1 + dmin Case B

ui−u(L)
L−1 + u(I)

L Case C
ui×u(S)

u(L) Case D

(2)

Adding the BitTorrent overheads One of the limitations of (1) is that it does not take into
consideration the overhead that peer-assisted systems may present compared to the client-
server ones. These overheads may be neglected for large files. However, they cannot be
ignored for the small ones, for which the download time is in the order of a few seconds.

To illustrate the important role that this overhead plays in the distribution of small files,
we ran several experiments distributing a 1MB file to several clients. We considered swarms
whose size ranged from 2 to 5. We considered the same bandwidth settings as in the exper-
iments used in Table 5.1a. We measured the experimental download times and compared
them to the estimated ones using (1). We calculated also the absolute and relative errors. We
group all these results in Table 5.1b, where the estimated and experimental download times,
and the absolute error are all measured in seconds.

Clients count 2 3 4 5

Estimated time 4 s 4 s 4 s 4 s

Experimental time 5.51 s 5.47 s 6.03 s 6.25 s

Absolute error 1.51 s 1.47 s 2.03 s 2.25 s

Relative error 37.75% 36.75% 50.75% 56.25%

Table 5.1b: Estimated versus experimental distribution time with BitTorrent of a 1MB file.

As we can see in Table 5.1b, the difference between the estimated and experimental re-
sults can exceed 50% in some cases, which proves that an accurate estimation should include
the protocol overheads. These overheads can be mainly of two types, each related to a dif-
ferent phase of BitTorrent:

- Overhead related to the start-up phase: Before starting the download, there are a few steps
that each leecher needs to perform: First, the leecher has to get and read the .torrent file
that contains all the meta-info data about the requested content. And then, it needs to
contact the tracker(s) to get a list of other peers sharing or downloading the same file.
After locating and connecting to the peers, the leecher can finally begin the transfer.
This overhead is relative to the architecture of the system. It can be monitored and
dynamically adapted based on the load of the system. We experimentally studied this
overhead and noticed that it can be simply modeled as a constant duration αbt added to
the download time. For more details about the experimental evaluation of αbt, please
refer to Fig. 6.
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- Overhead related to the download phase: In BitTorrent, peers upload to each other even
though they may only have parts of the file. This can result in upload interruptions
when the uploader has no pieces to offer to his unchoked peers.
Fortunately, this problem has already been tackled in [42], where the authors intro-
duced a parameter to scale down the upload speed of leechers. This parameter, de-
noted as η ∈ [0, 1], measures the effectiveness of file sharing. It can be computed as
follows:

η = 1−P

{
downloader i has no piece that

his unchoked peers need

}
.

The authors derived this probability and came to the conclusion that η can be ex-
pressed as: 14

η = 1−
N−1

∑
ni=0

1
N

(
N − ni

N (ni + 1)

)k
,

where N is the number of pieces of the served file and k the number connections a peer
has.
The authors in [42] focused on the case of large files and concluded that η ≈ 1 when
N is high. Let us now consider a small file of 1MB composed of k = 4 chunks each of
256KB. For N = 2, the above equation yields η = 0.7069, which means that there is
a probability of about 30% that a peer has no pieces for its unchoked peers. This can
affect the download time and make it relatively longer. Thus, this overhead should be
also considered when estimating the download time in BitTorrent.

Considering the above listed overheads, we were able to extend Eq. (1) in order to provide
an accurate estimation of the download time in BitTorrent as follows:

Tbt
(
u(S), C f , F

)
=

F

min
{

dmin, u′ (I)
L , u(S)

} + αbt, (3)

where u
′
(I) = u(S) + η u(L) is the scaled aggregated upload speed of all the nodes, in-

cluding both the seeders and the leechers.

Validation of αbt and Tbt To validate our extended formulas of the download time, we run
repeated experiments using a 1 MB file. The experimental scenario is to distribute the file
via BitTorrent starting with a unique seed. The reasons behind the choice of such a small
file lies in the fact that in personal cloud systems most of the files are in the order of a few
megabytes in size. The experimental setting is the following: the upload bandwidth of the
cloud dedicated for the file is u(S) = 5 Mbps. The number of clients ranges from 2 to 10.
Each of them has an upload bandwidth of 1 Mbps and a download bandwidth of 2 Mbps.

We repeated each experiment 5 times and measured the average values of the download
time and the overhead αbt for each client. Figure 6 represents a box-plot of the time interval
between the moments when the clients are launched and when they start downloading the
file. This time interval corresponds to αbt. We notice that the average value of the over-
head is about 2.5 seconds for our architecture. Using this value for the discovery overhead

14The rectified version of [42] which contains the correct expression of η can be found at: http://users.
encs.concordia.ca/~dongyu/paper/bittorrent.pdf
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Figure 6: The overhead αbt: time before clients start downloading for a file of 1 MB size
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Figure 7: Comparison of the experimental download time (boxplot), our estimation and the
estimation proposed in [41] (KR Estimation)

(αbt = 2.5), Figure 7 compares our estimation, the one proposed in [41] and the experimen-
tal results. We can clearly see that the error can reach 40% in the case of Kumar and Ross’s
estimation. This error is reduced to about 10% using the estimation we propose.

5.1.2 Comparative Analysis of BitTorrent Relative to HTTP

We introduce here two metrics that measure the comparative efficiency of HTTP and Bit-
Torrent, especially for small files. These metrics are the gain and offload ratios. The former
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represents the normalized ratio of the difference between download times. The latter models
the amount of data offloaded from the cloud.

The Gain Ratio To measure the difference between the download times of client-server
and peer-assisted systems, we introduce the gain ratio as follows:

Gain(u(S), C f , F) =
Tcs(u(S), C f , F)− Tbt(u(S), C f , F)

Tcs(u(S), C f , F)
,

where Tcs is the distribution time in a client-server architecture. Tcs is limited by the
download speed of the slowest peer dmin or the bandwidth of all the seeds u(S) divided
equally between the L clients. Tcs can be simply defined as follows:

Tcs
(
u(S), C f , F

)
=

F

min
{

dmin, u(S)
L

} . (4)

Clearly, the gain can take negative or positive values and can be also equal to zero. For
instance, if the gain is positive, this means that downloading the file via BitTorrent takes less
time than using HTTP. To derive the equation of the gain, we distinguish four different cases
based on the values of min

{
dmin, u′(I)

L , u(S)
}

and min
{

dmin, u(S)
L

}
:

1. Case I: dmin ≤ u(S)
L and dmin ≤ min

{
u′(I)

L , u(S)
}

:
In this case, the bottleneck in HTTP and BitTorrent is the download speed of the slow-
est peer. The corresponding download times are: Tcs =

F
dmin

and Tbt =
F

dmin
+ αbt.

2. Case II: u(S)
L ≤ dmin and dmin ≤ min

{
u′(I)

L , u(S)
}

:

In Case II, the bottleneck in HTTP is u(S)
L , while it is equal to dmin in BitTorrent. The

corresponding download times are: Tcs =
F×L
u(S) and Tbt =

F
dmin

+ αbt.

3. Case III: u′(I)
L ≤ min {dmin, u(S)}:

In this case, the bottleneck in BitTorrent is u′(I)
L . And since u(S) ≤ u

′
(I) and u′(I)

L ≤
dmin, this means that u(S)

L is always ≤ dmin. Thus, in this case, Tcs = F×L
u(S) and Tbt =

F×L
u′(I) + αbt.

4. Case IV: u(S) ≤ min
{

dmin, u′(I)
L

}
:

Since u(S)
L ≤ u(S) and u(S) ≤ dmin, this means that u(S)

L is always ≤ dmin. In this case,
Tcs =

F×L
u(S) and Tbt =

F
u(S) + αbt.
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For each of the previous cases, we substitute Tcs and Tbt to derive the gain ratio as follows:

Gain
(
u(S), C f , F

)
=



− αbt×dmin
F Case I

1− u(S)
L.dmin

− αbt.u(S)
F×L Case II

1− u(S)
u′(I) −

αbt.u(S)
F×L Case III

1− 1
L −

αbt×u(S)
F×L Case IV

(5)

The Offload Ratio The offload ratio defines the amount of data offloaded from the cloud
seed. It is determined by the total amount of data exchanged between the peers divided by
the total downloaded data volume:

Offload
(
u(S), C f , F

)
=

data from peers
total data sent

= 1− data from cloud
total data sent

= 1−
∑

i∈L

∫ Tbt(u(S),C f ,F)
0 si(t)dt

F× L

where si(t) is the seeding rate. Taking into consideration the seeding rate as defined in (2),
we can deduce the offload rates as follows:

Offload
(
u(S), C f , F

)
=



1− 1
L Case A

η.u(L)
L×dmin

Case B

1− u(S)
u′(I) Case C

1− 1
L Case D

(6)

Validation of the Gain and Offload Ratios Since the gain is a key parameter in the pro-
tocol decision algorithm, it is important to verify the accuracy of our estimation compared
to real experimental values. We ran experiments using the same bandwidth distribution as
mentioned above. The goal is to compare the experimental and the estimated gain ratios
when distributing a file to a set of nodes whose size range from 2 to 12 nodes. The file size
varies from 1 to 25 MB. Figure 8 represents a 3-dimensional plot of the results. The Gain= 0
plane represents the threshold τ = 0. As we can see , the experimental and estimated sur-
faces are very close and the difference between them is slight.

Figures 9a, 9b and 9c present some vertical sections of the previous plot for files of size
1, 5 and 25 megabytes along with the corresponding estimation and experimental values of
the offload ratio. We notice that the estimations are very close to the experimental results in
most cases. For instance, for the smallest file of size 1 MB, the error in the gain estimation
is moderate for very small swarms with only 2 or 3 clients. That error could represent an
increase in the download time of a few seconds. However, we notice that the bigger the
swarms is, the closer the estimation gets, in a way that the error becomes negligible for
swarms of size ≥ 4 clients. For bigger files, the estimation is very accurate and the error
does not exceed 5% in most cases.
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Figure 8: Experimental versus estimated gain ratios and the τ = 0 gain plane
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Figure 9: Estimated versus experimental gain and offload ratios for files with different sizes

5.2 Switching Algorithm

In this section, we first study the criteria that can be considered in the definition of the
switching point. We present later our proposed algorithm for the management of the down-
load protocols.

5.2.1 Switching Criteria

We presented in the previous section two key parameters that can help us measure the trade-
off between HTTP and BitTorrent. The gain ratio measures the gain or loss in time that the
leechers might experience when switching from HTTP to BitTorrent. The offload ratio gives
an estimation of the amount of data that can be offloaded from the server thanks to Bit-
Torrent. It is clear that if we neglect a potential increase in download time caused by the
switch to BitTorrent, the overall offload ratio will always be the highest possible. However,
it is equally important to not degrade significantly the download service for the clients. We
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distinguish the four following cases based on the constraints that can be placed on these
parameters:

i. The first possible solution is to put no constraints, that is, BitTorrent is always used
when the number of leechers L≥ 2. In this case, the overall offload ratio will be the
highest possible. However, clients might experience a longer download time.

ii. Another possible solution is to put a limit on the offload ratio: the cloud switches to
BitTorrent only when the offload is important. For example, the cloud can decide to
switch only when the estimated offloaded bandwidth is above 50% of the total band-
width, regardless of the download time.

iii. The third possible case is fixing a gain limit: the cloud decides to switch only when the
download time in BitTorrent compared to HTTP does not exceed a certain threshold.
This threshold can be put on the gain ratio to ensure a minimal bound on the permitted
loss in download time.

iv. The last possibility is fixing both the gain and offload ratios. While this case presents
an efficient strategy to avoid unnecessary switches, it might be too strict and could
limit the overall offload ratio.

After listing all the possible scenarios, we believe that the most convenient procedure
to manage the download protocols is the third one. To this extent, we pose τ as the gain
constraint. If τ ≤ 0, it means that the system tolerates a potential increase in the download
time that could occur because of the switch. However, a positive value of τ reflects a stricter
constraint. For instance, τ = −0.5 means that an increase up to 50% of the download time is
tolerated. Note that a constraint of this magnitude is possible, because τ = −0.5 could rep-
resent, for small files, a slight increase in the download time, in the order of a few seconds,
to be more precise.

τ can take different values depending on the type of the user account. The choice of its
concrete value is left up to the system administrator depending on his needs. A possible
concrete example of τ is the following: Suppose that a given service provider cannot gain
in bandwidth at the expense of worsening the download time for premium users who are
those who are paying money for the service. For this type of clients, τ should be always≥ 0.
However, for free users, which represent a significant portion of the overall user mass15, it
is possible to loosen that constraint, and tolerate delays of up to 50% (which corresponds
to τ = −0.5), for instance. To get an idea about the tradeoff between HTTP and BitTorrent,
please refer to Table 5.2a in which we measured the overall offload ratio based on different
values of τ.

5.2.2 Implementation of the Switching Algorithm

For the management of the download protocols, we propose Algorithm 1, which is executed
upon the arrival of each new download request on a certain file.

15 96% of Dropbox clients use the free version of the service (Souce: http://www.economist.com/blogs/
babbage/2012/12/dropbox)
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We suppose that our system keeps track of the state of each file f as a boolean value
switched f , where switched f =true if the current download protocol is BitTorrent (the switch
has already taken place) and false otherwise.

Algorithm 1 Protocol Decision Algorithm

Require: τ: the gain constraint
Require: switched f : the state of file f
Require: F: the size of file f
Require: u(S): the upload speed of the seeder nodes
Require: C f = {(ui, di), ∀i ∈ L}: set of upload and download bandwidths of all the leech-

ers interested in f .
if ( not switched f ) then

calculate Gain(u(S), C f , F)
if (Gain(u(S), C f , F) ≥ τ ) then

create a .torrent
launch a BT seed in the cloud
for all clients requesting f do

get the .torrent from the server
launch a BT leecher
start BT transfer

end for
switched f =true

else
download the file via HTTP

end if
else

send the .torrent to the new requester
launch a BT leecher inside that requester

end if

The algorithm works as follows: Whenever there is a new download request on a file
f , the system verifies the download protocol already in use to distribute f . If it is being
downloaded by the default protocol (HTTP), the system computes the estimated gain and
compares it with τ. If the resulting gain is below the constraint, the file will be sent to the
requester via HTTP. Otherwise, the distribution protocol will be switched to BitTorrent. A
.torrent file will be created and sent to all the clients requesting f . In parallel, a seed will
be launched in the cloud. Upon the reception of the .torrent file, a BitTorrent leecher will be
launched inside each of these clients. After this phase, the clients will start downloading the
file in BitTorrent, while offloading the cloud from doing all the serving.

5.2.3 Validation of the Algorithm

To validate our proposal and measure how much bandwidth can be saved using our algo-
rithm, we used a real trace of UB1 [43]. The trace was collected based on the behavior of
real users, each represented by a hash code for privacy reasons. Each line of the trace repre-
sents an operation of download or upload performed by a user on a file. For each operation,
several information were collected, including: the time-stamp, the type of operation (‘up’ or
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‘down’), the hash and size of the file in question and finally the identifier of the user. For
a period of 30 hours, 3,318,950 operations on 1,887,247 distinct files were logged including
2,231,791 upload operations (67.24%) and 1,087,159 (32.76%) download operations. The total
downloaded volume was about 1,240.25 GB. The total number of different users involved in
this trace was 19,319.

We applied our algorithm on the trace using the following settings:

- The upload speed of the seed: u(S) = 2 Mbps. We remind our reader that u(S) does
not refer to the total upload bandwidth of the cloud, but to the portion of its bandwidth
allocated to the each specific file/swarm.

- The clients are homogeneous and have an upload and download speed of 512 Kbps
and 1 Mbps, respectively.

- The peers discovery overhead is αbt = 2.5 seconds.

We went through the trace focusing on the files that have been downloaded more than
once. Our goal was to identify the files with collapsing download times which are the can-
didates for the switch to BitTorrent. In other words, for each file, we checked if there were
consecutive download operations (at time stamps t1 and t2) that came before the end of the
theoretical download time in HTTP: t2 − t1 ≤ Tcs. Tcs is calculated based on the settings
listed above. After the identification of these files, we calculated for each case the gain ratio
using (5). Depending on the gain value and the τ constraint, we identified the files that were
subject to switching and measured the corresponding offloaded volume of data using (6).

Constraint Offloaded Volume Overall Offload%
τ = −1.0 207.35 GB 16.7183%
τ = −0.5 207.33 GB 16.7170%
τ = −0.2 207.04 GB 16.6938%
τ = 0.0 137.64 GB 11.0979%
τ = 0.2 137.59 GB 11.0942%
τ = 0.5 90.60 GB 7.3055%
τ = 1.0 0.0 GB 0.0%

Table 5.2a: Offloaded volume and offload percentage resulting from the application of Al-
gorithm 1 using different τ values

Table 5.2a presents the results of the application of Algorithm 1 on the trace. The overall
offload percentage is calculated based on the percentage ratio between the offloaded vol-
ume and the total downloaded volume (1,240.25 GB). We varied the values of the switching
constraint τ in order to get a global idea of the gains, and we noticed that if we fixed τ to
tolerate losses of 20% (τ = −0.2), the cloud load could be reduced up to 16%. In the case
of stricter constraints, e.g., no loss is tolerated (τ = 0), or no switch unless we gain 20% in
download time (τ = 0.2), the overall offload percentage falls down to around 11%.

Even though the UB1 system is not very popular, our algorithm could achieve savings
up to 16% in terms of cloud bandwidth. We strongly believe that this offload would be
higher on other systems, like Dropbox or Google Drive, which have more users and more
file sharing.
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Monetary Cost To measure the amount a money that can be saved using our algorithm, we
consider a cloud storage system that uses Amazon Simple Storage Service (S3) as a storage
back-end.
At the time of writing this deliverable, the standard charging rates for data transfer were16:

- $0.0 per GB for the first 1 GB/month

- $0.12 per GB for transfers up to 10 TB/month

- $0.09 per GB for the next 40 TB/month

Using these rates, the overall data transfer cost is approximately $3, 000 per month. Fix-
ing the gain constraint to τ = −1 would lead to savings of about $450 per month which is
about $5, 374 per year. These savings will be higher for systems that involve more sharing
than UB1.

Effect of file bundling Bundling consists in grouping a batch of small files that need to be
transferred as a single object. This technique is used by Dropbox [44] in an attempt to reduce
both transmission latency and control overhead.

If we take a look at equation (5), we notice that the gain ratio and the file size F are re-
lated in a way that if F increases, the gain will increase too. Similarly, file bundling should
presumably increase the overall offload too. Here, we study the effect of applying this tech-
nique in our trace. For a given “bundling period", we group the files that are requested by
the same users and consider them as a single file, so that a single .torrent file is created for all
of them.

Bundling Period Constraint Offloaded Volume Overall Offload%

10 seconds
τ = −0.2 213.97 GB 17.2526%
τ = 0.0 140.95 GB 11.3658 %

30 seconds
τ = −0.2 214.43 GB 17.2895 %
τ = 0.0 140.95 GB 11.3658 %

Table 5.2b: Results using file bundling

Table 5.2b shows the results of grouping files considering 2 different bundling periods.
We notice that, compared to the previous results, bundling is not very effective in this sce-
nario: a slight improvement of the overall offload percentage in the order of 0.55% for
τ = −0.2 and about 0.26% for τ = 0. Even with a long grouping period of 30 seconds,
the increase of the overall offload percentage remains limited: in the order of 0.03% com-
pared to a bundling period of 10 seconds. However, these results do not imply that the use
of this technique could not be effective in increasing the offload rate in other systems.

16More information about the complete and updated rates can be found at http://aws.amazon.com/s3/
pricing/
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5.3 Smart Cloud Seeding for BitTorrent swarms

Following the previous model of operation, the data center could be serving different popu-
lar content to different swarms at the same time. Thus, considering the benefits of transpar-
ently integrating BitTorrent in the data center to deliver content, we now face the problem
of allocating the limited bandwidth of the data center in a multi-swarm scenario. Our main moti-
vation is to increase the overall throughput of content delivery to provide a higher number
of users with a responsive system which minimizes content download time.

Our goal is to determine the upload bandwidth ws that the data center should allocate
to a swarm s ∈ S, assuming an upper bound on bandwidth consumption W = ∑s∈S ws,
in order to maximize the aggregate download bandwidth considering all swarms ∑s∈S Ds,
where Ds is the aggregate download bandwidth of the peers in swarm s. By maximizing the
download speed of swarms, we ensure that download times are minimized and that content
is distributed as fast as possible within a restricted bandwidth budget.

5.3.1 Bandwidth Response Model

Our smart seed strategy uses information about the dynamic state of the swarm to properly
decide the amount of bandwidth that needs to be allocated. This key piece of information
is the response curve which represents the swarm aggregate bandwidth as a function of the
allocated seeder bandwidth [45]. This function fs(ws) embodies information about the cur-
rent sustainable download bandwidth of the swarm (a = ∑p∈s ap) and the aggregate upload
(u = ∑p∈s up) and download (d = ∑p∈s dp) saturation bandwidth of the swarm (see Fig. 10).
These response curves depend on a number of factors like the number of leechers (n) and
seeders, their actual bandwidth contribution to the swarm and the current distribution of
unique blocks, elements that are naturally dynamic in BitTorrent swarms.

However, bandwidth response curves have a characteristic shape which can be modeled
approximately using known information about the state of a swarm. Specifically, we used a
family of hyperbolic functions of the form fs(ws) = a + (d−a)ws

ws+c where ws is the seeder band-
width allocated to swarm s, and c = d−u

n is the parameter that shapes the increment rate of
the function – the higher the value, the flatter the curve. This parameter is obtained by sub-
stituting the coordinate (x, y) = (u−a

n , u) on the bandwidth response curve, and represents
the point at which the data center provides enough bandwidth to saturate the upstream
links of peers.

The intuition behind this model is initially sketched in [45] and is as follows. When the
data center bandwidth allocated to a swarm is zero, the swarm does not receive any new
block from the data center seeder and thus, the swarm’s aggregate bandwidth is the current
download bandwidth of the swarm sustained by any seeder other than the datacenter, which
is responsible to inject new blocks (a). If no other seeder is present, a will drop to zero as
soon as no new blocks are present for exchange. For the rest of this section we will assume
that a = 0 for simplicity.

The second interesting point of our response curve model is when the datacenter band-
width is equal to the average uplink capacity of peers (u

n ). At this seeder bandwidth, the
datacenter is able to inject new blocks to the swarm at enough rate to saturate the uplink
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Figure 10: Response of the swarm aggregate bandwidth to the data center allocated band-
width.

capacity of leechers, achieving an aggregate download speed equal to the aggregate upload
speed of leechers.

From this point onwards, since saturated upload links render it unable to redistribute
blocks to other peers, any addition to the datacenter bandwidth capacity only benefit the
peer receiving this increment, and the curve starts to flatten until the download links of
clients saturate. At this point the swarm reaches its maximum aggregate bandwidth and any
further bandwidth provisioned to the seed will not have any impact on download times.

Our implementation gathers two different sets of information to build this model: i) static
information from our instrumented clients like maximum upload capacity (up) and maxi-
mum download capacity (dp) which are measured every time a client upload and down-
load new content directly to and from OpenStack Swift. This values are supposed to rarely
change during a client life-time; and ii) dynamic information gathered also from our instru-
mented client like the effective download speed of a peer belonging to a swarm (ap) and
the number of peers in a swarm (n) obtained from the public information on the tracker.
Because of the dynamic nature of swarms, we update this information every 5 minutes in
our implementation.

5.3.2 Optimization problem and implementation

The previous function closely resembles the bandwidth response curve of a swarm com-
posed of heterogeneous peers in terms of upstream and downstream bandwidth. Given
that our main goal is to maximize the aggregate bandwidth of all swarms, our problem is
therefore stated as the following constrained optimization problem.

Page 37 of 44



FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

max F(w1, . . . , wm) = ∑
s∈S

fs(ws) (7)

where fs(ws) = as +
(ds − as)ws

ws + cs

subject to ∑
s∈S

ws ≤W

ws ≥ 0

The constraints restricts the solution space to those allocation which yield positive band-
width allocations and those in which the sum of the allocated bandwidth to each swarm
cannot exceed the bandwidth budget of the data center.

An optimal solution w∗ = [w∗1 , . . . , w∗n] exists for Equation (7) because the objective func-
tion is continuously differentiable, strictly increasing and concave. This kind of optimization
problems have been studied extensively in the literature ([46][47] as examples) and provide
a computationally efficient solution using Lagrange multipliers as shown in Algorithm 2.
We omit the details of the proofs and the mathematical development for the sake of clarity,
and we refer the reader to [48].

Algorithm 2 Data center Bandwidth Allocation Algorithm

Require: W {Data center bandwidth budget}
Require: {(u1, d1, a1, c1), . . . , (um, dm, am, cm)} {Swarms’ parameters}

Sort increasingly the set of swarms by its marginal value di−ai
ci

Compute largest k such that
√

ck(dk−ak)

∑k
i=1

√
ci(di−ai)

(W +
k

∑
i=1

ci)− ck ≥ 0

Set wj = 0 for j > k, and for 1 ≤ j ≤ k, set:

wj =

√
cj(dj−aj)

∑k
i=1

√
ci(di−ai)

(W +
k

∑
i=1

ci)− cj

return (x1, . . . , xm)

The computational complexity of this algorithm is O(n log n) which is dominated by
the initial sorting algorithm. In practice, this algorithm would be computed once any of the
parameters that specify the response curve changes which happens only when swarm mem-
bership change –e.g. a client leave or join the swarm or when a client finishes downloading
the content and become a seeder.

5.3.3 Evaluation

We have successfully integrated transparently BitTorrent within our open source personal
cloud storage client which currently uses OpenStack swift as a storage back-end. Besides,
our smart seeding strategy has been tested in a real setting using PlanetLab [49] nodes as
well as with a simulator to speed up testing [50].
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For our simulation experiments, we used standard values for the BitTorrent protocol
(64 KB per block, 30s between optimistic unchokes, 10s between regular unchokes) and
selected upload and download bandwidths from a distribution used in other works related
to BitTorrent [50]. Our simulated setup consists of 300 swarms which membership sizes are
drawn from the distribution Zipf(z = 2.4) which leads to a small number of big swarms
and a higher number of small swarms, a typical distribution for the popularity of files. We
included in our evaluation three other strategies to distribute bandwidth among swarms in
addition to our smart seeding strategy for comparison purposes:

i. Equal sharing, which grants the same up-link capacity to all swarms (wi =
W
m )

ii. Proportional sharing, which allocates bandwidth proportionally to the size of each
swarm in terms of peers (wi =

ni
∑m

j nj
∗W)

iii. The Antfarm strategy [45], the most similar system in terms of objectives to our mech-
anism –i.e. maximize aggregate bandwidth.

To give an overview of the Antfarm mechanism, at the beginning it allocates a small
amount of seeder bandwidth to every swarm, and then allocates the remaining bandwidth
in small increments to swarms with the highest increase since the last update. This way,
Antfarm is able to slowly build response curves for each swarm and have an estimate of the
swarm performance as a function of seeder bandwidth. This response curve is computed
fitting a piecewise-linear function to the set of measurements it takes periodically producing
a shape similar to our model (see Fig. 10). In steady state, Antfarm uses a greedy hill-
climbing algorithm to allocate bandwidth to swarms with the highest gradient.

Fig. 11a shows how the aggregate bandwidth of swarms evolves as we increase the data
center bandwidth budget and Fig. 11b presents the speed up gains of our strategy using
the equal sharing strategy as a baseline. Our mechanism outperform equal and propor-
tional sharing by a factor of x55 and x45 respectively in the best case when the data center
bandwidth is scarce. These differences are reduced as the seeder bandwidth becomes less
congested. We can observe as well that our solution outperforms the AntFarm strategy no
matter the data center bandwidth, also achieving a more stable aggregate throughput in
steady state. The AntFarm variability comes from the fact that the small increments in their
initial phase not always awards bandwidth to the swarm which will obtain a higher benefit
because of innacurate measurements.

The difference between these approaches comes from the way different swarms compete
for the same bandwidth bottleneck. Our strategy is able to differentiate which swarms will
benefit the most from the limited supply of data center capacity by granting more band-
width to those swarms which will be able to redistribute more efficiently blocks of content
to peering participants, whereas the other strategies make no distinction among swarms and
award capacity as long as their downstream capacity is not saturated.

Besides the maximum aggregate bandwidth obtained by each mechanism, we also eval-
uated the convergence time. Fig. 11c shows the evolution of the aggregate bandwidth of
swarms for different strategies during a simulated period of 10000 seconds when the data
center bandwidth is 2048kbps. We can see that the smart seeding strategy as well as equal and
proportional sharing converge to a steady state in few minutes. This is because all available
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Figure 11: Experimental evaluation. Our smart seeding strategy outperforms other strate-
gies by simulation.

datacenter bandwidth is split among different swarms –according to the different strategies–
at the beginning of the measurement period. In contrast, the Antfarm strategy takes longer
time to converge to a steady state –an order of magnitude 6 times higher– because of the
slow initial phase in which it awards seeder bandwidth in small increments until all avail-
able bandwidth is allocated. This slow initial phase would worsen as the available data
center bandwidth is even higher.

If we consider the benefits from the user experience point of view, the faster conver-
gence time jointly with the higher throughput achieved by the smart seeding strategy is
translated into lower download times for clients compared to the other strategies evaluated.
This conclusion about the relation between the initial start up phase and download times is
confirmed by the work of Sharma et al. [51].

Finally, to validate our simulations with deployed a real prototype using the planetary-
scale testbed PlanetLab. The setup consisted in eight different swarms (sharing a single file
each one) of membership sizes of 14, 5, 2 and 5 singleton swarms. We limited the upload
bandwidth of peers to 50 kbps and the seeder bandwidth capacity was limited to 128 kbps.
Using this setup, we compared our smart seeding strategy with the equal sharing strategy
to asses the performance gains for around 30 minutes. As shown in Fig. 11d, the simulation
shows that our smart seeding strategy outperforms by a factor of 3x in this specific scenario.
We confirm our simulation results by comparing them to the results obtained from an ex-
periment with real nodes on PlanetLab using the same setup (solid lines), which faithfully
match our simulations (dashed lines).
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