

SEVENTH FRAMEWORK PROGRAMME

CloudSpaces

(FP7-ICT-2011-8)

Open Service Platform for the

Next Generation of Personal Clouds

D5.3 Final software release of the service platform

Due date of deliverable: 30-09-2015

Actual submission date: 06-10-2015

Start date of project: 01-10-2012 Duration: 36 months

Summary of the document

Document Type Deliverable

Dissemination level Public

State Final

Number of pages 220

WP/Task related to this document WP5

WP/Task responsible NEC

Author(s) Alberto Gómez (NEC), Raquel Sánchez (EOS),

José Miguel García (TST)

Partner(s) Contributing NEC, EOS, TST

Document ID CLOUDSPACES_D5.3_151006_Public.pdf

Abstract This document is a report on the software

developed and final results obtained through the

research carried out in the context of the

Cloudspaces project.

Keywords Cloud storage, interoperability, Personal Cloud,

Storage API, traces

III

Table of Contents

1. Executive summary ... 6

2. NEC .. 7

2.1. Introduction ... 7

2.1.1 Product features ... 10

2.2. Storage API ... 13

2.2.1 Introduction .. 13

2.2.2 Authentication .. 14

2.2.3 Error handling .. 23

2.2.4 Folder operations ... 23

2.2.5 File operations .. 33

2.3. Interoperability protocol ... 43

2.3.1 Introduction .. 43

2.3.2 Prerequisites ... 43

2.3.3 Protocol foundations .. 44

2.3.4 Interoperability process .. 44

2.3.5 Sequence diagram .. 52

2.4. Traces .. 54

2.4.1 Introduction .. 54

2.4.2 Description of each field .. 55

2.4.3 WebDAV module .. 56

2.4.4 AdvancedFeatures module ... 57

2.4.5 Sample .. 57

2.4.6 Items information ... 57

2.4.7 Sharing information ... 58

3. eyeOS .. 59

3.1 Introduction .. 59

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

I

3.2 eyeOS integration with Personal Clouds ... 61

3.2.1 Integration .. 61

3.2.2 Authorization and authentication (log in/out) 61

3.2.3 Storage API .. 70

3.3 Personal Clouds and eyeOS interoperability 74

3.3.1 Implementation .. 74

3.3.2 Examples .. 76

3.4 Collaborative editing tool... 83

3.5 Replacement U1DB to API .. 88

3.5.1 Implementation .. 88

3.5.2 Comments .. 90

3.5.3 Calendar ... 94

4. Tissat .. 108

4.1 Validation and Feedback analysis from open Internet trials 108

4.1.1 General description .. 108

4.1.2 Setting up a metering service for a storage system 108

4.2 Service Platform reference prototype .. 116

4.2.1 Migrate Keystone v2.0 to Keystone v3 116

4.2.2 Secure our StackSync platform with SSL 118

4.2.3 Development of group-based membership for StackSync users118

4.2.4 Development of a group-based quota web application 121

4.2.5 Migrate web interface back-end from PHP to Python 125

4.2.6 Refactoring of StackSync web client ... 125

4.2.7 Implemented a folder sharing functionality for StackSync users

 ... 126

4.2.8 StackSync support for the ownCloud application 129

4.2.9 Development of IOS App .. 136

4.3 Adding Security Features to StackSync Components 137

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

I

4.3.1 Encryption. Android version .. 139

4.3.2 Encryption. StackSync Mobile App for IOS 141

4.3.3 Implementation of encryption. Web Client (Python) 141

4.3.4 Encryption. Admin Web Client (Python) 142

4.3.5 Encryption. StackSync Desktop Client 142

4.4 Interoperability between clouds. Integration with ownCloud 143

4.5 Traces Analysis .. 145

Annexes ... 148

Annex 1. Configuration file ... 148

Annex 2. Oauth Manager ... 149

Annex 3. Oauth API ... 150

Annex 4. Storage Manager ... 152

Annex 5. Storage API .. 186

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 6 of 220

In this document, we explain the contributions of NEC, eyeOS and Tissat to the

services building block of CloudSpaces project.

It explains how it has done every development. We also provide empirical

evaluations and demonstrations of our software contributions.

NEC explains:

1. Interoperability protocol: used to share files or folders between different

personal clouds.

2. Storage API: used to access these resources

3. Installation of a traces management system to conduct a thorough

analysis of them to see the behaviour of a real use of a personal

cloud.

EyeOS, meanwhile, has integrated its remote virtual desktop with different

personal clouds like StackSync and Cloud Storage. We can see the resources of

any personal cloud and the interoperability among them.

Finally, Tissat has installed a traces management system that can monitor several

parameters of use of the platform. Also, it has done several developments and

new features in Stacksync like the new iOS client.

1. Executive summary

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 7 of 220

2.1. Introduction

NEC Cloud Storage is a carrier oriented online storage platform integrated with

multiple fixed and mobile devices for ubiquitous information access.

With NEC Cloud Storage, companies no longer need to care where the data is

physically located neither from which device it is accessed: all you need to know

is what information you want and you get it transparently. Totally integrated with

Windows folders (the new storage unit in the cloud appears as if local), and

where Cloud Storage uses its small internal memory as a cache, so that the most

common files are available even without coverage or access to the Internet. It’s a

unique virtual storage service (in the network) allows you to have a share space

available with your employees, customers and providers, and in addition have

your own private space to store your personal information. With the so called

network disk you will have available a private storage space and a shared one.

Everything you store will be automatically synchronized between your device

and in the cloud. Thanks to the CloudSpaces project, Cloud Storage has been

able to improve the product and make several features in which is able to interact

with other Personal Clouds.

 Have a private and shared storage space. Everything you store there will

be available on your local device (PC, Mobile, Tablet) and "the cloud" so

you can access it from any computer connected to the Internet.

 All the information is point to point encrypted. If you lose your device no

one will be able to access your files and you’ll be able to restore the

information within minutes from the cloud.

 Get access to Value Added Services such as Mailet, sharing with people

inside and outside Cloud Storage, etc.

 Capability to share files between Personal Clouds

2. NEC

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 8 of 220

 Access to content among Personal Clouds through the Storage API

explained in section 2.2. Cloud Storage will able to access to the

information of files and folders from StackSync and vice versa.

 Use as storage for third-party applications. eyeOS will be able to connect,

browse among folders and perform any operation in Cloud Storage.

Main Benefits of NEC Cloud Storage:

 Mobile storage expanded to the Cloud

 Multi device Support: PC, Mobile (iOS, Android), Web.

 Secure Storage on PC, Mobile & Cloud

 Incremental revenues from additional space allocated on-the-flight

 Tight the users to the operator reducing churn

 Offline most used content availability (My favourites)

 Secure document sharing within a company or with external users

 Fully integrated with operators backend/billing systems

 Files seamlessly synchronized to the cloud

 Remotely administrated by the operator/company IT department

 Create groups of work (for departments, projects, etc…)

 Share files with your group or other groups

 Backup your files just by sending an e-mail to an e-mail account (mailet)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 9 of 220

NEC Cloud Storage allows seamless and secure data synchronization among all

end user devices such as smartphones, tablets, PCs and the Cloud. With NEC

Cloud Storage, companies no longer need to care where the data is physically

located neither from which device it is accessed: all you need to know is what

information you want and you get it transparently.

Totally integrated with Windows folders (the new storage unit in the cloud

appears as if local), and where Cloud Storage uses its small internal memory as a

cache, so that the most common files are available even without coverage or

access to the Internet.

It’s a unique virtual storage service (in the network) allows you to have a share

space available with your employees, customers and providers, and in addition

have your own private space to store your personal information.

With the so called network disk you will have available a private storage space

and a shared one. Everything you store will be automatically synchronized

between your device and in the cloud.

Some features included are:

 Have a private and shared storage space. Everything you store there will

be available on your local device (PC, Mobile, 3G modem) and "the

cloud" so you can access it from any computer connected to the Internet.

 Get more benefits than with classical memories (memory stick) because

the information is also stored in the cloud and you can recover in case of

loss or theft

 All the information is point to point encrypted. If you lose your device no

one will be able to access your files and you’ll be able to restore the

information within minutes from the cloud.

NEC Cloud Storage is not only a social network for the company to share ideas,

but is a whole working environment to assign tasks, upload files, create wiki-like

pages, manage incoming emails, track time, manage permissions, etc.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 10 of 220

NEC Cloud Storage is available as a web application for all browsers and as

mobile applications for iPhone, iPad and Android.

NEC Cloud Storage is considered extremely intuitive and easy to use by our

customers. Setting up an account takes less than 30 seconds, no training needed.

The benefits for a company using NEC Cloud Storage are:

 Improved internal communication

 Effortless project management through progress updates

 More accountability for actions to be performed by team members

 Better tracking of information exchange with customers/providers

 Enriched knowledge sharing through Wiki-style pages and conversations

 Higher engagement of the team members with the company

 Peace of mind thanks to an strict international data privacy and security

policy

2.1.1 Product features

2.1.1.1 File management

 User can upload, delete and modify files

 Multi device experience: from PC to Mobile Device

 Full integration with OS file explorer (Windows PC Client)

 Compatible with all applications (Windows PC Client)

 Files are automatically and seamlessly uploaded to the Cloud

 Local copy of files to support off-line functioning

 Automatic: Most used files, most recent files

 Direct sharing link: User can share files within a group or company or

with external users

 Quota definition

 Multigroup: Groups creation

 Files preview for images

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 11 of 220

2.1.1.2 Multiple Download/Upload

Several files can be uploaded / downloaded by bulk file operation allowing

windows like Drag&Drop Experience.

 Upload:

o Possibility to select up to 1024 files at a single upload action not

exceeding the total amount of free space left.

o Drag&Drop up to 1024 files to the Drag&Drop upload space specified

in the Folder structure environment.

o While being uploaded each file will have a corresponding progress bar

indicating the upload status.

o All the files will be uploaded sequentially.

 Download:

o Files are downloaded individually from the web interface.

o Multiple files/folders can be selected from the PC client to move them

to any other folder

In case the file size is higher than the allowed (block files bigger than 2 GB) the

user will be notified on the attempt to synchronize/upload the file

Whenever the file is dragged and dropped in windows environment or a mobile

device and exceed the limits, the write action to the protected cache partition will

be blocked.

2.1.1.3 Mailet

NEC Cloud Storage incorporates the possibility to allow users to upload files to

their cloud storage accounts through just sending this file as an attachment to a

personal cloud storage mail account. The files sent to NEC Cloud Storage are

stored by default in the root directory of the personal folder. The file limit size is

limited to 20 MB on NEC Cloud Storage side but might be lower depending on

user outgoing mail server configuration.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 12 of 220

The user has the possibility to activate, deactivate or renew its NEC Cloud

Storage mail account (by default disabled) in the personal account tab. If the mail

account is updated the previous mail account is automatically deleted and won’t

be available.

2.1.1.4 Sharing folders

The user will be able to belong to different groups and be able to select any

folder in the personal directory and invite users (internal and external) to access

the files. The sharing capability has the following features:

 All the shared folder properties will be available through the Cloud

Storage web interface.

 The owner of the shared folder can restrict invited users rights to

read/write/download for different users.

 Accepting being part of a shared folder doesn’t increments the storage

occupied by the user as it only occupies the storage of the use who

originally shared the file or folder.

 The owner (creator) of the shared folder can add or remove users from the

folder as well as change their access rights.

 Any shared folder can receive comments and be protected with an access

password.

 External (unregistered) users will be able to access the folders through a

protected link, getting access to a folder navigation structure. Main folder

action features will be kept except sharing.

 Editing: Depending on the rights assigned by the user who shared the

file/folder, all users will be able to edit shared contents

2.1.1.5 Shared files editing

After a file or folder is shared, the user can review the shared file status and edit

the sharing options. Sharing expiration date can be extended. Users in the sharing

list can be added or removed.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 13 of 220

2.1.1.6 Shared file URL

Every shared file or folder has an associated link. The link can be retrieved in the

shared files list for external access to the shared information or distribution

through alternative systems like email.

2.1.1.7 Individual sharing configuration (comments, Permissions)

While sharing a file or folder, the user can select individual permission per

shared contact as well as wright individual sharing messages to each participant.

This allows enough flexibility to control profile access to the shared data as well

as the possibility to set individual tasks.

2.1.1.8 File expiration configuration

While sharing a file or folder, the user can set up the time frame for shared link

expiration. Available time slots range from 1 hour to no expiration at all. After a

file or folder is shared, the user can update the expiration period at any time. If

the link is expired the user can reactivate it by using the sharing properties menu.

2.1.1.9 User groups (Multigroup)

It is possible to create multiple groups of users for the purpose of sharing files

within these groups. This could be useful to share file for a specific project or for

a department. It is possible to configure the assigned quota of these groups as

well as manage the groups defining which user is included or not at any time. It

is also possible to watch the use of the group.

2.2. Storage API

2.2.1 Introduction

Storage API has been created in order to gain access to the information of the

resources of Cloud Storage from another personal cloud.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 14 of 220

In this case, once shared via interoperability protocol, StackSync, for instance,

will be able to order information about a specific file.

Following, we are going to explain how to access these data and the operations

can be done.

2.2.2 Authentication

Before calling any operation, all requests must be signed. We use the Oauth

protocol which explain below.

2.2.2.1 Brief description OAuth

The OAuth protocol enables websites or applications (Consumers) to access

Protected Resources from a web service (Service Provider) via an API, without

requiring Users to disclose their Service Provider credentials to the Consumers.

More generally, OAuth creates a freely-implementable and generic methodology

for API authentication.

The Cloud Storage API uses OAuth 1.0a to authenticate the user and enable him

to authorize the client application to access his data.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 15 of 220

2.2.2.2 Definitions

Field Description

Service provider A web application that allows access via Auth.

User
An individual who has an account with the

Service Provider.

Consumer

A website or application that uses OAuth to

access the Service Provider on behalf of

the User.

Protected resource(s)

Data controlled by the Service Provider, which

the Consumer can access through

authentication.

Consumer developer
An individual or organization that implements a

Consumer.

Consumer key
A value used by the Consumer to identify itself

to the Service Provider.

Consumer secret
A secret used by the Consumer to establish

ownership of the Consumer Key.

Request token

A value used by the Consumer to obtain

authorization from the User, and exchanged for

an Access Token.

Access token

A value used by the Consumer to gain access to

the Protected Resources on behalf of the User,

instead of using the User's Service Provider

credentials.

Token secret
A secret used by the Consumer to establish

ownership of a given Token.

OAuth protocol parameters Parameters with names beginning with oauth_.

2.2.2.3 Signed request

In this section we will look at how the signature process is handled by Cloud

Storage and how each parameter is used with references to flows.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 16 of 220

Cloud Storage takes all the information it has gathered and generated and places

it in a single location. There are two ways of transporting this information,

through the OAuth header or Query string. We highly recommend going the

header route for better security.

Before we can generate this string we must gather all the required parameters and

their values, some of these are used inside of the string directly and others

indirectly through the encryption or encoding of the signature.

Signature Base String

Gathering the Method of the request, the URL of the request and the Parameters

joined together by the ‘&’ symbol would look like this:

Considering:

Method: GET

URL: http://photos.example.net/photos

Parameters:

file=testfile.pdf&oauth_consumer_key=0Fkc84aAH3vP07&oauth_nonce=9e2

87ba35fe96f24&oauth_signature_method=HMAC-

SHA1&oauth_timestamp=1191242096&oauth_token=f8a025ba36023&oauth_

version=1.0&size=original

The Signature Base String would be:

GET&http%3A%2F%2Fphotos.example.net%2Fphotos&file%3D

testfile.pdf%26oauth_consumer_key%0Fkc84aAH3vP07%26oauth_nonce%9e

287ba35fe96f24%26oauth_signature_method%3DHMAC-

SHA1%26oauth_timestamp%3D1191242096%26oauth_token%

f8a025ba36023%26oauth_version%3D1.0%26size%3Doriginal

Encoding the Signature

There are three ways we can do this. PLAINTEXT, HMAC, and RSA

Encryption. Each method is slightly different, and carries own set of pros and

cons.

We have used HMAC method. This encoding method outputs our key into binary

which we update our base with, which after this step gets Base64 encoded into it

is final signature string:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 17 of 220

OAuth Header

The OAuth header is a part of the signed request, it contains the oauth_signature

and oauth_signature_method parameters and their values. It is a single string and

separated generally by a comma (spaces are supported here by some services,

stick to comma by default unless told otherwise by the service) and named

Authorization with OAuth being the Bearer, in other flows this may change such

as the Mac Bearer and other similar methods.

The header itself is built up by all the oauth_* parameters sorted (by name, then

some more complex things). Here is an example for getting a Request Token:

POST /oauth/request_token HTTP/1.1

User-Agent: xxxxxx

Host: www.neccloudstorage.com

Accept: */*

Authorization:

 OAuth oauth_callback="http%3A%2F%2Flocalhost%2Fsign-in-with-

cloudstorage%2F",

 oauth_consumer_key="cChZNFj6T5R0TigYB9yd1w",

 oauth_nonce="ea9ec8429b68d6b77cd5600adbbb0456",

 oauth_signature="F1Li3tvehgcraF8DMJ7OyxO4w9Y%3D",

 oauth_signature_method="HMAC-SHA1",

 oauth_timestamp="1318467427",

 oauth_version="1.0"

The oauth_callback is what Cloud Storage will invoke or respond to when the

authentication step happens.

2.2.2.4 Oauth 1.0a (Three legged)

The diagram below shows the complete flow of an OAuth request:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 18 of 220

Here is a brief explanation of the steps to follow:

1. Application sends a signed request for a Request Token:

o oauth_consumer_key

o oauth_timestamp

o oauth_nonce

o oauth_signature

o oauth_signature_method

o oauth_version Optional

o oauth_callback

2. Grants application Request Token:

o oauth_token

o oauth_token_secret

o oauth_callback_confirmed

o … Additional Parameters / Arguments

3. Send user to authorize url using:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 19 of 220

o oauth_token

4. Prompts user to authorize / grant access

5. User grants access

6. Directs back to application with:

o oauth_token

o oauth_verifier

7. Exchange Request Token / Verifier for Access Token, signed request

o oauth_token Request Token;

o oauth_consumer_key

o oauth_nonce

o oauth_signature

o oauth_signature_method

o oauth_version

o oauth_verifier

8. Service grants Access Token & Token Secret (same arguments generally

as Step 2)

Application uses oauth_token & oauth_token_secret to access protected

resources.

2.2.2.5 Getting request token

The first step to obtain authorization for a user is to get a Request Token using

your Consumer Key. This is a temporary token that will be used to authenticate

the user to your application. This token, along with a token secret, will later be

exchanged for an Access Token.

URL structure

/oauth/request_token

Method

GET, POST

Parameters

Field Description

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 20 of 220

oauth_consumer_key The Consumer Key.

oauth_signature_method

The signature method the Consumer used to sign

the request. Options are “PLAINTEXT” and

“HMAC-SHA1”.

oauth_signature The signature as defined in Signing Requests.

oauth_timestamp

The timestamp is expressed in the number of

seconds since January 1, 1970 00:00:00 GMT. The

timestamp value must be a positive integer and

must be equal or greater than the timestamp used

in previous requests.

oauth_nonce

Value that is unique for all requests with that

timestamp. A nonce is a random string, uniquely

generated for each request.

oauth_version

OPTIONAL. If present, value must be “1.0”.

Service Providers must assume the protocol

version to be 1.0 if this parameter is not present.

oauth_callback

An absolute URL to which the Service Provider

will redirect the User back when the Obtaining

User Authorization step is completed. If the

Consumer is unable to receive callbacks or a

callback URL has been established via other

means, the parameter value must be set to “oob”

(case sensitive), to indicate an out-of-band

configuration.

Response

A request token and the corresponding request token secret, URL-encoded. This

token/secret pair is meant to be used with /oauth/access_token to complete the

authentication process and cannot be used for any other API calls.

oauth_token=fa78ff7dc2a2559d&oauth_token_secret=a15eb83bfd521a9320

2.2.2.6 Getting the user authorization

After getting the Request Token, your application needs to present the Cloud

Storage authorization page to the user, where they will be asked to give

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 21 of 220

permission to your application to access their data. The authorization page will

present the user with a list of permissions your application is requesting, as

defined in the authentication flow settings.

URL structure

/oauth/authorize

Query parameters

Field Description

oauth_token The request token obtained previously.

After authorization is complete, Cloud Storage will redirect the user back to your

application using the oauth_callback specified with your Request Token.

If the oauth_callback parameter is set to “oob”, the application must find some

other way of determining when the authorization step is complete. For example,

the application can have the user explicitly indicate to it that this step is

complete, but this flow may be less intuitive for users than the redirect flow

2.2.2.7 Obtaining the access token

Once the user has completed the authentication and authorization step, the

application is expected to try to exchange its previously obtained request token

for an access token.

This access token will be used in subsequent calls to retrieve actual Cloud

Storage data. Your application is expected to store this access token so

subsequent application starts won't force the user to go through the OAuth

handshake again.

This call can be invoked via POST or GET.

URL structure

/oauth/access_token

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 22 of 220

Method

GET, POST

Parameters

Field Description

oauth_consumer_key The Consumer Key.

oauth_signature_method

The signature method the Consumer used to sign

the request. Options are “PLAINTEXT” and

“HMAC-SHA1”.

oauth_signature The signature as defined in Signing Requests.

oauth_timestamp

The timestamp is expressed in the number of

seconds since January 1, 1970 00:00:00 GMT. The

timestamp value must be a positive integer and must

be equal or greater than the timestamp used in

previous requests.

oauth_nonce

Value that is unique for all requests with that

timestamp. A nonce is a random string, uniquely

generated for each request.

oauth_version

OPTIONAL. If present, value must be “1.0”.

Service Providers must assume the protocol version

to be 1.0 if this parameter is not present.

oauth_verifier
The value return in the previous step after

successful user authorization.

Response

As a response to the request, your Access Token will be in the "oauth_token"

field and the Token Secret (for signing purposes) will be in the

“oauth_token_secret” field.

oauth_token= 0Fkc84aAH3vP07wLMd34o&oauth_token_secret=

MoB36unfR0g18gyEW5v10U

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 23 of 220

2.2.3 Error handling

Errors are returned using standard HTTP error code syntax. Any additional info

is included in the body of the return call, JSON-formatted.

Standard API errors:

Code Description

400
Bad input parameter. Error message should indicate which one

and why.

401

Authorization required. The presented credentials, if any, were

not sufficient to access the folder resource. Returned if an

application attempts to use an access token after it has expired.

403
Forbidden. The requester does not have permission to access the

specified resource.

404 File or folder not found at the specified path.

405
Request method not expected (generally should be GET or

POST).

5xx Internal server error

2.2.4 Folder operations

2.2.4.1 Get folder content metadata

Retrieve the information about the folder and all resources inside (only one

level).

Request

URL structure

GET /folder/{id}/contents - To get information about root folder, you must set

the id to “0”.

Example

GET /folder/8704/contents

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 24 of 220

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

contents A list of each file/folder’s metadata.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 25 of 220

 "id": "8704",

 "parent_id": null,

 "name": "Personal",

 "is_folder": true,

 "status": "Cached",

 "version": "1.0",

 "size": 0,

 "mimetype": null,

 "is_root": true,

 "modified_at": "2015-05-14T17:56:03.0101203+02:00",

 "contents": [{

 "id": "9216",

 "parent_id": "8704",

 "name": "Interoperability",

 "is_folder": true,

 "status": "Cached",

 "version": "1.0",

 "size": 2,

 "mimetype": null,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

 },

 {

 "id": "12800",

 "parent_id": "8704",

 "name": "Test1",

 "is_folder": true,

 "status": "Cached",

 "version": "1.0",

 "size": 1,

 "mimetype": null,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

 }]

}

2.2.4.2 Get folder metadata

Retrieve the information about the folder.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 26 of 220

Request

URL structure

GET /folder/{id} - To get information about root folder, you must set the id to

“0”.

Example

GET /folder/9216

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 27 of 220

contents A list of each file/folder’s metadata.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

 "id": "9216",

 "parent_id": "8704",

 "name": "Interoperability",

 "is_folder": true,

 "status": "Cached",

 "version": "1.0",

 "size": 2,

 "mimetype": null,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.4.3 Create folder

Create a folder where the application needs to provide as input, a JSON that

identifies the display name of the folder to be created.

Request

URL structure

POST /folder

Request Headers

Field Description

Content-Type

The content type and character encoding of the

response. The content type must be application/json,

and the character encoding must be UTF-8.

Request Body

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 28 of 220

Field Description

name The user-visible name of the folder to be created.

parent_id
ID of the folder where the folder is going to be

uploaded.

Example

POST /folder

Content-Type: application/json

{

 "name": "TestFolder",

 "parent_id": "1536"

}

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 29 of 220

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

Response example

HTTP/1.1 201 Created

Content-Type: application/json;

Content-Length: 248

{

 "id": "9216",

 "parent_id": "8950",

 "name": " TestFolder",

 "is_folder": true,

 "status": "New",

 "version": "1.0",

 "size": 0,

 "mimetype": null,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.4.4 Delete folder

Delete a folder and all its content.

Request

URL structure

DELETE /folder/{id}

Example

DELETE /folder/9216

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 30 of 220

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

 "id": "9216",

 "parent_id": "8950",

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 31 of 220

 "name": " TestFolder",

 "is_folder": true,

 "status": "Deleted",

 "version": "1.0",

 "size": 0,

 "mimetype": null,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.4.5 Update folder metadata (move and rename)

An application can update various attributes of a folder. The application needs to

provide as input, JSON that identifies the new attribute values for the folder.

This attributes are:

- name: an application can rename a folder changing the value of the name

element.

- parent_id: an application can move a folder to a different parent folder by

changing the value of the parent element.

Request

URL structure

PUT /folder/{id}

Request Headers

Field Description

Content-Type

The content type and character encoding of the

response. The content type must be application/json,

and the character encoding must be UTF-8.

Request Body

Field Description

name The user-visible name of the folder to be renamed.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 32 of 220

parent_id
ID of the folder where the folder is going to be

moved.

Example

PUT /folder/9216

Content-Type: application/json

{

 "name": "FolderRenamed",

 "parent_id": "8950"

}

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 33 of 220

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

 "id": "9216",

 "parent_id": "8950",

 "name": " FolderRenamed ",

 "is_folder": true,

 "status": "Modified",

 "version": "1.0",

 "size": 0,

 "mimetype": null,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.5 File operations

2.2.5.1 Get file metadata

Retrieve the information about the file.

Request

URL structure

GET /file/{id}

Example

GET /file/7712

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 34 of 220

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

 "id": "7712",

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 35 of 220

 "parent_id": "8704",

 "name": "document.pdf",

 "is_folder": false,

 "status": "Cached",

 "version": "1.0",

 "size": 758525,

 "mimetype": “application/pdf”,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.5.2 Download file

Retrieve the file data.

Request

URL structure

GET /file/{id}/data

Example

GET /file/7712/data

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

The response body contains the retrieved file data.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 36 of 220

Content-Length: 248

<File content…. >

2.2.5.3 Create a file

To create a file, the application needs to provide the file binary in the body and

the file name as a query argument. Optionally, it can also provide the parent

argument to locate the file in a specific folder. Otherwise, the file will be placed

in the root folder.

Request

URL structure

POST /file

Request Headers

Field Description

Content-Type

The content type and character encoding of the

response. The content type must be application/json,

and the character encoding must be UTF-8.

Request query arguments

Field Description

name The user-visible name of the file to be created.

parent_id

ID of the folder where the file is going to be

created. If no ID is passed, it will use the top-level

folder.

Example

POST /file?name=document.pdf&parent_id=1536

Content-Length: 294

<file binary>

Response

Header

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 37 of 220

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been

modified for last time.

Response example

HTTP/1.1 201 Created

Content-Type: application/json;

Content-Length: 294

{

 "id": "5687",

 "parent_id": "1536",

 "name": "document.pdf",

 "is_folder": false,

 "status": "Cached",

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 38 of 220

 "version": "1.0",

 "size": 758525,

 "mimetype": “application/pdf”,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.5.4 Upload file data

An application can upload data to a file. The file binary will be sent in the request

body.

Request

URL structure

PUT /file/{id}/data

Request Headers

Field Description

Content-Type

The content type and character encoding of the

response. The content type must be application/json,

and the character encoding must be UTF-8.

Example

PUT /file/5687/data

Content-Length: 294

<file binary>

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type
The content type and character encoding of the

response.

Response example

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 39 of 220

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 294

2.2.5.5 Delete file

Delete a file.

Request

URL structure

DELETE /file/{id}

Example

DELETE /file/5687

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type The content type and character encoding of the response.

Response Body

Field Description

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 40 of 220

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been modified

for last time.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

 "id": "5687",

 "parent_id": "8704",

 "name": "document.pdf",

 "is_folder": false,

 "status": "Deleted",

 "version": "1.0",

 "size": 758525,

 "mimetype": “application/pdf”,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

2.2.5.6 Upload file metadata (move and rename)

An application can update various attributes of a file. The application needs to

provide as input, JSON that identifies the new attribute values for the folder.

This attributes are:

- name: an application can rename a file changing the value of the name

element.

- parent_id: an application can move a file to a different parent folder by

changing the value of the parent element.

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 41 of 220

Request

URL structure

PUT /file/{id}

Request Headers

Field Description

Content-Type

The content type and character encoding of the response.

The content type must be application/json, and the

character encoding must be UTF-8.

Request Body

Field Description

name The user-visible name of the folder to be renamed.

parent_id ID of the folder where the folder is going to be moved.

Example

PUT /folder/5687

Content-Type: application/json

{

 "name": "documentRenamed.pdf",

 "parent_id": "8950"

}

Response

Header

Field Description

Content-Length The length of the retrieved content.

Content-Type The content type and character encoding of the response.

Response Body

Field Description

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 42 of 220

id A unique identifier for a file or folder.

parent_id A unique identifier for the folder’s parent.

name Name of the file or folder.

is_folder Flag indicating whether it is a file or folder.

status Status of a file or folder.

version Not implemented. It always returns 1.0.

size The number of items inside the folder.

mimetype
The media type of the file.

http://www.iana.org/assignments/media-types

is_root Flag indicating whether it is the root folder or not.

modified_at
It is the date in which the file or folder has been modified

for last time.

Response example

HTTP/1.1 200 OK

Content-Type: application/json;

Content-Length: 248

{

 "id": "5687",

 "parent_id": "8950",

 "name": "documentRenamed.pdf ",

 "is_folder": false,

 "status": "Modified",

 "version": "1.0",

 "size": 758525,

 "mimetype": “application/pdf”,

 "is_root": false,

 "modified_at": "2015-05-14T17:56:03.0572075+02:00"

}

http://www.iana.org/assignments/media-types

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 43 of 220

2.3. Interoperability protocol

2.3.1 Introduction

The interoperability protocol enables different Personal Clouds to share resources

among them via an Application Programing Interface (API), without forcing

users to be in the same provider. More generally, the interoperability protocol

creates a freely-implementable and generic methodology for allowing Personal

Cloud interoperability.

2.3.2 Prerequisites

Having two Personal Clouds (PC1 and PC2) that wish to interoperate with each

other. They must meet the following requirements before using the present

specification.

 Once the interoperability process is completed, Personal Clouds must use

APIs to access protected resources. In case they do not implement the

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 44 of 220

same Storage API, Personal Cloud 1 must implement an adapter to access

Personal Cloud 2 API, and vice versa.

 Personal Cloud 1 must be registered in Personal Cloud 2 and validated as

an authorized service in order to obtain its credentials, and vice versa. The

method in which Personal Clouds register with each other and agree to

cooperate is beyond the scope of this specification.

2.3.3 Protocol foundations

The interoperability protocol is based in three key features/components that are

the foundations of the protocol:

1. OAuth: Is an open standard for authorization. We use it in order to

guarantee data protection and control access to the resources exposed by

Personal Clouds through the interoperability protocol.

2. IDs resource naming: Using unique IDs o identify Cloud resources

instead of other ways of identify them, such as paths, makes the protocol

more robust, less ambiguous and requires less computational effort.

3. Storage API: In order to be able to share and access other Clouds

resources, a Storage API must be implemented, so all the Clouds have a

common way to interact.

2.3.4 Interoperability process

The interoperability protocol used by NEC Cloud Storage is divided in three

steps explained below.

- User invitation

- Invitation acceptance

- Access credentials

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 45 of 220

From a high level perspective, the interoperability process is a very straight

forward process between Personal Clouds and users.

Here there is a brief description of the process from the NEC CS point of view.

Actors Action

NEC CS
1. Creates a sharing proposal

2. Sends a mail to the user

User

3. Opens the sharing proposal

4. Choose Personal Cloud

5. Authorizes the sharing proposal

Personal

Cloud
6. Opens the shared resource

More detailed explanations can be found along this document.

3.3.4.1 User invitation

1. User sends an invitation

NEC Cloud Storage user wants to share a file or folder with another user.

Therefore, the user login in his/her NEC Cloud Storage account, selects the file

or folder he/she wants to share, and enters the email of the user.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 46 of 220

The recipient will receive an email indicating the intention of the user from NEC

Cloud Storage to share a file or folder with him/her and a link to a website

located on NEC Cloud Storage.

2. The recipient selects its Personal Cloud

The user who has received the email clicks on the link and is redirected to a NEC

Cloud Storage page (as the origin of the sharing is NEC Cloud Storage the link

should point to this site), where he/she is asked to select a Personal Cloud from a

list of services that have an agreement among different Personal Clouds. In this

case, as an example, the user will select StackSync, because he/she already have

an account on this Cloud.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 47 of 220

In the image above, the user can see the file that someone has shared with

him/her.

On the right top of the image, the user will be able to choose the Personal Cloud

wished.

3. Creating the interoperability proposal

At this time, NEC Cloud Storage creates the interoperability proposal sending an

HTTP POST request to StackSync’s share URL (in this example case, another

instance of NEC Cloud Storage) previously established and that we previously

saved.

Request

POST /AdvancedFeatures/ExternalSharingProposal.aspx

Request parameters

Parameter Type Description

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 48 of 220

Parameter Type Description

share_id string

A unique value that identifies the

interoperability proposal. This is auto

generated with a GUID format.

resource_url string
An absolute URL to access the shared resource

located in NEC Cloud Storage.

owner_name string
The name corresponding to the owner of the

folder.

owner_email string
The email corresponding to the owner of the

folder.

resource_name string The name of the folder or file.

permission string
Permissions granted to the recipient. Options

are read-only and read-write.

recipient string
The email corresponding to the user who the

folder has been shared with.

callback string

An absolute URL to which the destination

Private Cloud (e.g. StackSync) will redirect

the user back when the invitation step is

completed.

protocol_version string

MUST be set to 1.0. Services MUST assume

the protocol version to be 1.0 if this parameter

is not present.

Request sample

POST

/AdvancedFeatures/ExternalSharingProposal.aspx HTTP/1.1

Host: dev.neccloudstorage.com:8090

Content-Length: 384

Content-Type: application/x-www-form-urlencoded

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 49 of 220

share_id=bd346a81-67fa-4e2c-8637-

e173135fab59&resource_url=%2FPersonal%2FCloudspaces%2Finterop-

protocol.pdf&owner_name=Alberto&owner_email=alberto.gomez%40emea.nec.

com&folder_name=interop-protocol.pdf&permission=read-

only&recipient=carlos.torrillas%40emea.nec.com&callback=http%3A%2F%2Fd

ev.neccloudstorage.com%3A8090%2FAdvancedFeatures%2FExternalSharingRe

sponse.aspx&protocol_version=1.0

RESPONSE

HTTP/1.1 200 OK

3.3.4.2 Invitation acceptance

1. The user accepts the invitation

StackSync (in this case NEC Cloud Storage) shows the details of the file or

folder share invitation request to the recipient and the user must provide its

credentials and explicitly accept the invitation.

2. Returning the proposal response

Once StackSync (2nd instance of NEC Cloud Storage) has obtained approval or

denial from user, it uses the callback obtained from the NEC Cloud Storage

request, shown above, to inform NEC Cloud Storage about the user decision.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 50 of 220

Then, StackSync uses the callback to construct an HTTP GET request, and

directs the user’s web browser to that URL.

Request

GET /AdvancedFeatures/ExternalSharingResponse/stacksync

Request parameters

Field Type Description

share_id string
A unique value that identifies the interoperability

proposal.

accepted string

A string indicating whether the invitation has been

accepted or denied. true and false are the only possible

values.

Request sample

GET

/AdvancedFeatures/ExternalSharingResponse.aspx?share_id=bd346a81-67fa-

4e2c-8637-e173135fab59&accepted=true HTTP/1.1

Host: dev.neccloudstorage.com:8090

RESPONSE

HTTP/1.1 302 Found

3.3.4.3 Access credentials

1. Granting access to the service

When NEC Cloud Storage receives the proposal result, firstly it validates these

data and then generates the access credentials. Finally, it sends an HTTP POST

request to StackSync where the resource will be displayed.

NEC Cloud Storage specifies what type of authentication protocol and version

must be used to access the resource. In this case, the authentication protocol

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 51 of 220

used is OAuth 1.0a and at this point, NEC Cloud Storage web module initiates a

standard OAuth process to generate the required token that will be sent to the

second Personal Cloud.

For this purpose, a specific module for processing OAuth authentication

mechanism has been included which provides both consumer and provider

implementations.

To this end, the second Personal Cloud must check the auth_protocol and

auth_protocol_version parameters, and also the specific parameters that will be

included in the request. This information will be used when the user try to access

to the shared resources.

Request

POST /Files.aspx

Request parameters

Field Type Description

share_id
string

A randomly generated value that

uniquely identifies the interoperability

proposal.

auth_protocol string
The authentication protocol used to

access the shared resource (e.g.oauth)

auth_protocol_version string
The version of the authentication

protocol (e.g. 1.0a).

Other authentication-specific parameters are sent together with the above

parameters, these parameters may include values like tokens, timestamps or

signatures which will be necessary to get and perform the actions with the

resource depending on the kind of authentication protocol used.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 52 of 220

NOTE:

In this first release, Cloud Storage does not send the HTTP POST request. It does

a SSO with the data obtained instead.

Request sample (No HTTP POST)

GET

/?SessionId=wMWdX3xy%2bPt89Mq87dGqGkPBjj%2fzmQej68IrO%2bag1hec

OQiipOxCi0460RbJ1Pu1G7MO3lHAPw5tCypVI8wqUA%3d%3d&action=none

HTTP/1.1 Host: dev.neccloudstorage.com:8090

RESPONSE

HTTP/1.1 302 Found

In the image above, StackSync (2nd instance of NEC Cloud Storage) shows the

shared resource. To be able to access to the resource is necessary to use the

tokens sent in last step.

2.3.5 Sequence diagram

Here we can see a complete workflow of the interoperability protocol where an

NEC Cloud Storage user (User A) shares a file or folder with an external

Personal Cloud user (User B).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 53 of 220

Also, we can see an example where an external Personal Cloud user (User A)

shares a resource with a NEC Cloud Storage user (User B).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 54 of 220

2.4. Traces

2.4.1 Introduction

Increasingly, the role of production datasets in today’s research in Cloud

computing is gaining importance. Such valuable information, coming from the

real use of widely deployed Cloud services, constitutes a solid ground for

researchers to devise novel techniques and advances.

In this way, a development was carried out to make a comprehensive analysis of

the use of Cloud Storage. This aims to benefit from the cooperation between

industry partners and universities to produce high-quality research.

This will benefit partners, as well as the whole project, in a twofold manner:

1. Academic partners will work with real-world data, giving to their research

technical strength and impact.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 55 of 220

2. The advances achieved using a specific dataset are applicable to the service

where such a dataset comes from. This represents that many potentially

beneficial and novel techniques will be ready for exploration to industry partners

during the development of the project.

To do this, we have created a log file for each module with a "comma separate

values" (csv) as a type format.

The number of fields is always the same, although not all operations require all

fields. In that case, the fields will be empty, but still separated by commas.

It has been done in this way in order to the log files can be analysed easier later.

Otherwise, it would be very difficult to analyse a log file with irregular

expressions and variable messages.

User records are totally anonymous and no personal information of users are

recorded (e.g. email addresses, IPs). This principle is supported by the

specification of the datasets, which does not include any type of sensitive user

information.

2.4.2 Description of each field

Here is a description for each field:

Field Description

RequestID Unique identifier for operation

Timestamp Time in which the trace is captured

UserID Unique identifier for the user

OrganizationID
Unique identifier for the organization belonging to

the user who is doing the action.

FileID Unique identifier for the file.

FileExtension Extension of the file (.txt, .pdf, …)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 56 of 220

FileSize
Size (in bytes) of the file is being uploading,

downloading…

Failed
Information of the error. In which operation

happened

FreeBytes Available space in user account (in bytes)

Operation
Name of the operation (upload file, move folder,

…)

RequestMsg
Information of the request (Init request, End

request, …)

Module Module where the operation has been made

FolderID Unique identifier for the folder

Server Unique identifier for the server

SharedBy Unique identifier for the user is sharing

SharedTo Unique identifier for the user has been shared

TotalBytes Total space a user has in its account

UsedBytes Used space in user account (in bytes)

Source Client where the request is sent (pc, web, mobile)

Device Detail of the device (iOS, Android)

2.4.3 WebDAV module

WebDAV is responsible for managing files and we get the operations below:

- Login

- Delete file or folder

- Copy file or folder

- Move file or folder

- Create folder

- Upload file

- Download file

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 57 of 220

- Get resource information

2.4.4 AdvancedFeatures module

This module is responsible for performing advanced tasks related to users and

sharing files.

We get the following operations:

- Add account

- Delete account

- Add user

- Delete user

- Share

- Unshare

- Get total quota

- Get used quota

2.4.5 Sample

Here is an example of a user has made two actions from different devices:

2.4.6 Items information

We have obtained the user, the size and the location for each file.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 58 of 220

2.4.7 Sharing information

We have obtained all shared resources. To do this, can see the user who has

shared, the user who has been shared, the file or folder shared, the size of the file

and the container where the resource is.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 59 of 220

3. eyeOS

3.1 Introduction

eyeOS is a web platform that provides a remote virtual desktop for the end user.

The overall user experience is strongly influenced by the classic desktop design,

widely known thanks to the most popular operating system on the market. eyeOS

Personal Web Desktop includes several features such as: file manager, contacts,

groups and other collaborative capabilities. eyeOS Personal Web Desktop is a

disruptive technology that fits in perfectly with the CloudSpaces Open Personal

Cloud paradigm.

One of the key values that eyeOS provides is the possibility to work directly with

files in the cloud. eyeOS does not require users to manually download any files

onto their computer nor is it necessary to install anything locally, so the

experience is totally transparent: users just log into a website and start working

with their files normally.

Furthermore, eyeOS lets you add additional services and applications within the

web desktop, so that all the company or organization’s web resources are

available within a single controlled environment that can be accessed using

single sign-on.

By combining eyeOS’ web file management capabilities with Personal Cloud,

users can access their Personal Cloud contents via web, with a user experience

very similar to local desktop environments.

eyeOS allows users to quickly and safely access private data stored in their

Personal Cloud and use them remotely. They are able to access the information

from multiple devices. Desktop PC, laptop, tablet, smartphone, anywhere and

any time.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 60 of 220

In a constantly changing environment such as today’s, being able to access data

regardless of the device used, and share said data with other users who only need

an Internet connection and a browser, constitutes an important advantage.

Within the eyeOS platform, one of its key features is file management. It

provides an interface that allows the user to access the files stored in their

Personal Cloud directly from the browser, with an experience similar to the file

manager of any desktop operating system, such as Microsoft Windows™ or

GNU/Linux. For example users can see any saves documents they have saved

online on Stacksync and NEC, create directories, move files, share documents,

etc.

In order for eyeOS to provide these services to the user, it needs to communicate

with the Personal Cloud to obtain all the user information it needs. This

communication is made using the Storage API and it provides all the resources

necessary that allows the user to manage their files efficiently.

User can share their information with other users, regardless of the Personal

Cloud that they use (interoperability). For example, a Stacksync user can share

files with another Stacksync user of with another NEC user. eyeOS provides an

interface that helps the user at all times to decide whether the carpet should

continue to be shared and which users may access it.

A main feature of the eyeOS platform is to establish collaborative environments

so that users can exchange information in real time. It provides the eyeDocs

application, a word processor that allows users to edit files previously shared

between them in a collaborative environment.

eyeOS users also have tools to add comments to files and manage their calendars

within their Personal Cloud. An API Sync has been developed which allows all

of these functions to be developed, replacing the U1DB synchornisation API

previously used for this purpose.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 61 of 220

3.2 eyeOS integration with Personal Clouds

3.2.1 Integration

The eyeOS platform integrates the services of the Personal Cloud in the file

manager, which allows users to go online and see files they have saved in the

Personal Cloud, create directories, move files, share documents, etc.

This file manager is developed in JavaScript, HTML, and CSS, allowing users to

directly view their files in the browser. The interface is similar to any file

manager in any operative system. Users can carry out different operations on

files in a very intuitive manner.

Once the user is in CloudSpaces they can access their protected data by selecting

a specific and existing cloud in the clouds configuration of eyeOS (see annex 1)

which is listed in the “Clouds” tab to configure access.

3.2.2 Authorization and authentication (log in/out)

The eyeOS platform integrates the OAuth authorization to interact with the user’s

protected data stored in the Personal Cloud. OAuth is an authorization protocol

which allows the user (owner of certain resources) to authorize eyeOS to access

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 62 of 220

said resources in their name but without having to at any time give their

authentication credentials; that is, without giving their name and password.

The first time that access is requested to the resources of a specific user of a

Personal Cloud, authentication is used to obtain a securitytoken for that same

cloud, which allows for interaction with the user’s data. The keys are stored in

the “token” table of the DBMS database based in MySQL. These keys are linked

to the cloud and user who started the session in the platform, so the system can

determine the access token for a specific user trying to use the services at any

stage.

Below the communication dialog box is shown:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 63 of 220

Step 1:

Request the key and secret token from StackSync that identifies eyeOS as a

resource user of CloudSpaces. This communication was carried out via email.

Step 2:

Request the token and provide Stacksync with the forwarding URL to eyeOS

once the user has given authorization.

StackSync responds to the aforementioned request with a valid token and

authorization URL.

Step 3:

Redirect the user to the authorization URL where the user gives eyeOS access to

their private area.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 64 of 220

Once StackSync verifies the user, the user is redirected to the eyeOS URL

provided in the previous step.

Paso 4:

Request the access token and secret token from StackSync, which will be used to

identify eyeOS when it accesses the private area of the user in CloudSpaces.

The implementation of the authentication in eyeOS is detailed in the following

diagram:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 65 of 220

The Oauth Manager and Oauth API functions are detailed in annexes 2 and 3

respectively.

Below is a visual representation of the authorization process for allowing eyeOS

access to the user’s private area in a private or public cloud. This process is only

carried out once, when the platform does not have the security token of the active

user:

Access the “CloudSpaces” directory from Home and select the cloud for which

access is going to be authorized to eyeOS, for example, StackSync, from the

“Clouds” tab located on the bar on the right (social bar).

The user is asked whether they provide their credentials to allow eyeOS to access

their protected data.

 If the user selects “No”, the eyeOS file structure is shown without displaying

the directory of the “StackSync” cloud.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 66 of 220

 If the user selects “Yes” in the first screen of the process, communication

with StackSync begins to obtain the accesstoken.

 A new window is opened in the browser, which redirects the user to the

authorization URL received from StackSync, where the user gives eyeOS

access to their private area.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 67 of 220

 Once access to StackSync has been given, the user is redirected to the URL

provided by eyeOS to obtain the requesttoken. The page informs the user that

the process has been successfully completed and they can return to the eyeOS

desktop.

 The accesstoken is saved for the current user of eyeOS. From that moment

the user can access their protected data from the StackSync directory without

having to log in again.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 68 of 220

If the cloud appears active in the list and its folder is present in “CloudSpaces”,

access can be removed by selecting the name again from the list in the “Clouds”

tab. The de-authorization process is started on the following screens:

 Access the “CloudSpaces” directory from Home and select the cloud for

which eyeOS access is to be removed, for example NEC, from the “Clouds”

tab located on the right bar (social bar).

 The user is asked whether they want to close access with NEC.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 69 of 220

 If the user selects “No”, the file structure of eyeOS is shown with the “NEC”

cloud directory.

 If the user selects “Yes” in the initial screen of the process, the process of

deleting the data related to the specific user and cloud begins.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 70 of 220

 The accesstoken of the current eyeOS user is deleted. From that moment the

user cannot access their protected data from the NEC directory without

starting the authentication process.

3.2.3 Storage API

Once access to the cloud has been established, the private data can be accessed

from eyeOS by sending queries to the Storage API. This returns metadata with

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 71 of 220

all the structural information regarding directories and files, which uses eyeOS to

generate a local replica.

The directories and files are created without content. Once an element is selected

in any operation is carried out, such as opening, moving, or copying, the content

is then downloaded from it. This process manages not to overload the system,

recovering information that the user is not going to use at that moment. If a file

or directory has been open before and no change has been made, it will not be

updated.

The content of the current directory is synchronized with the Personal Cloud

directory through a process carried out in the background, which sends queries

every 10 seconds to check whether any changes have been made. If there are

changes the current structure is updated.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 72 of 220

The API Storage of the Personal Cloud is essential in the file manager, because is

provides different services which allow the user to carry out operations with their

files.

The importance of the API Storage will be better understood with the following

example, where the user accesses the Comments folder in StackSync and creates

the folder New Folder.

A call is made with the GET method using a token that is valid in StackSync to

check the content of the Comments folder (id: 2053).

URL parameters: {“id”: “2053”}

URL: http://api.stacksync.com:8080/v1/folder/:id/contents

It returns metadata with the files in the Comments folder.

{"status": "RENAMED", "mimetype": "inode/directory", "checksum": 0,

"modified_at": "2015-06-12 09:53:55.312", "filename": "Comments", "is_root":

false, "parent_id": "null", "version": 2, "is_folder": true, "id": 2053, "contents":

[{"status": "CHANGED", "mimetype": "text/plain", "checksum": 296026785,

"modified_at": "2015-06-15 12:59:57.414", "filename": "New File.txt",

"parent_id": 2053, "version": 2, "is_folder": false, "chunks": [], "id": 2059,

"size": 10}], "size": 0}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 73 of 220

A call is made with the POST method to the Storage API to create the folder

New Folder within the Comments folder (id: 2053).

URL: http://api.stacksync.com:8080/v1/folder

POST: {“name”: New Folder,”parent”:2053}

The following metadata confirms that the folder has been created correctly:

{"status": "RENAMED", "mimetype": "inode/directory", "checksum": 0,

"modified_at": "2015-06-12 09:53:55.312", "filename": "Comments", "is_root":

false, "parent_id": "null", "version": 2, "is_folder": true, "id": 2053, "contents":

[{"status": "CHANGED", "mimetype": "text/plain", "checksum": 296026785,

"modified_at": "2015-06-15 12:59:57.414", "filename": "New File.txt",

"parent_id": 2053, "version": 2, "is_folder": false, "chunks": [], "id": 2059,

"size": 10}, {"status": "NEW", "mimetype": "inode/directory", "checksum": 0,

"modified_at": "2015-09-05 12:13:55.107", "filename": "New Folder", "is_root":

false, "parent_id": 2053, "version": 1, "is_folder": true, "id": 2062, "size": 0}],

"size": 0}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 74 of 220

Annexes 4 and 5 detail the queries made by the file manager to the Storage API

to allow the user to carry out different actions in their files.

3.3 Personal Clouds and eyeOS interoperability

3.3.1 Implementation

The eyeOS platform provides access to multiple clouds as well as interoperability

between them, both in a private and public environment.

A possible definition of interoperability would be: “It is the capacity of

information systems and the procedures which they support to share data and

enable the exchange of information and knowledge between them”.

Interoperability is the condition which allows different systems or products to

relate to each other to exchange data. The aim is to be able to share information

with any user regardless of the system that they use.

The implementation of interoperability is detailed in the following diagram, with

the exchange of information between two Clouds (Personal Cloud A and

Personal Cloud B) and the eyeOS platform:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 75 of 220

Step 1:

The user makes a request to Personal Cloud A with the URL and a valid

ACCESS TOKEN from Personal Cloud A, to list all of the directories and files

that a directory identified with a specific ID contains

Step 2:

Personal Cloud A returns a structure of directories and files. In this structure it is

possible to find directories shared with Personal Cloud B. The feature which

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 76 of 220

identifies these directories is a URL and a valid ACCESS TOKEN from Personal

Cloud B.

Step 3:

To list the content of this directory, the user makes a request to the API of

Personal Cloud B with the URL, directory ID, and ACCESS TOKEN received in

Step 2.

Step 4:

Personal Cloud B returns a structure of directories and files corresponding to the

directory specified in the URL. From this point, all requests implemented in the

Storage API which are carried out in this directory will use the URL and the

ACCESS TOKEN of Personal Cloud B.

3.3.2 Examples

The following example details how a StackSync user creates a folder called New

Folder in the folder interop1 shared by another NEC user:

A call is made with the GET method using a valid StackSync token to check the

content of the StackSync root folder:

URL parameters: {“id”: “0”}

URL: http://api.stacksync.com:8080/v1/folder/:id/contents

It returns metadata with the files in the StackSync root folder. Within this

metadata there are new tags: resource_url, access_token_key and

access_token_secret. These tags show us that the folder is shared with another

NEC user and it provides the connection URL and a token to be able to make

calls to the Storage API of NEC:

{"status": "null", "mimetype": "null", "checksum": "null", "filename": "root",

"is_root": true, "parent_id": "null", "version": "null", "is_folder": true, "id":

"null", "contents": [{"status": "NEW", "mimetype": "application/pdf",

"checksum": 2230714779, "modified_at": "2015-03-27 16:46:33.243",

"filename": "chicken.pdf", "parent_id": "null", "version": 1, "is_folder": false,

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 77 of 220

"chunks": [], "id": 1587, "size": 51500},{"status": "RENAMED", "mimetype":

"inode/directory", "checksum": 0, "modified_at": "2015-04-23 12:11:09.351",

"filename": "interop1", "is_root": false, "parent_id": "null", "version": 2,

"is_folder": true, "id": 1972, "size": 0, ,”resource_url”:

”http://csdev.neccloudhub.com:1080/api/cloudspaces/”, “access_token_key”:

“e7e2b8e-14bc-4a75-942b-d757fe7035da”, “access_token_secret”: “30c60a55-

0b50-4262-9720-c50e0e3489f0”}], "size": "null"}

A call is made with the GET method using the URL and token of NEC recovered

in the previous query to find out the content of the folder interop1 (id: 1972):

URL parameters: {“id”: “1972” }

URL: http://csdev.neccloudhub.com:1080/api/cloudspaces/folder/:id/contents

It returns metadata with the files contained in the folder interop1 of NEC:

{"status": "RENAMED", "mimetype": "inode/directory", "checksum": 0,

"modified_at": "2015-06-12 09:53:55.312", "filename": "interopr1", "is_root":

false, "parent_id": "null", "version": 2, "is_folder": true, "id": 2053, "contents":

[], "size": 0}

A call is made using the POST method with the token obtained from the first

query to create the folder New Folder within the folder interop1 (id: 1972).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 78 of 220

URL: http://csdev.neccloudhub.com:1080/api/cloudspaces/folder

POST: {“name”: New Folder,”parent”:1972}

The following metadata confirms that the folder has been created correctly:

{"status": "RENAMED", "mimetype": "inode/directory", "checksum": 0,

"modified_at": "2015-04-23 12:11:09.351", "filename": "interop1", "is_root":

false, "parent_id": "null", "version": 2, "is_folder": true, "id": 1972, "contents":

[{"status": "NEW", "mimetype": "inode/directory", "checksum": 0,

"modified_at": "2015-09-06 13:04:03.15", "filename": "New Folder", "is_root":

false, "parent_id": 1972, "version": 1, "is_folder": true, "id": 2063, "size": 0}],

"size": 0}

The user can also share or stop sharing any directory with users from the same or

different Personal Clouds. Using the options of the context menu and the activity

tab of the Social Bar, the user can manage the directories that they share,

deciding at each moment which users can or cannot have access to them.

The following example details the process of how the eyeos user shares the

folder share with the user tester1 from the same Personal Cloud as them

(StackSync):

A call is made with the GET method using a valid StackSync token to obtain

information of the users who share the folder share (id: 1973):

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 79 of 220

URL parameters: { “id”: “1973” }

URL: http://api.stacksync.com:8080/v1/folder/:id/members

It returns metadata with the users who share that folder, in this case since it is not

shared, it only returns the owner user:

[{"joined_at": "2015-03-27", "is_owner": true, "name": "eyeos", "email":

"eyeos@test.com"}]

 The share option is selected from the context menu to share the folder share

with the user tester1:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 80 of 220

 The email of the user tester1 is added so that StackSync can share this folder

with this user:

In a POST call the list of emails is sent of the users with whom the folder is

going to be shared:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 81 of 220

URL parameters: { “id”: “1973” }

URL: http://api.stacksync.com:8080/v1/folder/:id/share

POST: { [“tester1@test.com”] }

When doing another GET call to check which users share the folder, it can be

seen that it has been shared with the user tester1 in the tab Activity of the Social

Bar:

URL parameters: { “id”: “1973” }

URL: http://api.stacksync.com:8080/v1/folder/:id/members

[{"joined_at": "2015-03-27", "is_owner": true, "name": "eyeos", "email":

"eyeos@test.com"},[{"joined_at": "2015-03-27", "is_owner": false, "name":

"tester1", "email": “tester1@test.com”}]

 The shared directories are identified in the Files Manager with the icon

 The unShare option is selected from the context menu to stop sharing the

folder share with the user tester1:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 82 of 220

 Once “unShare” has been selected, a form is displayed to select the users with

whom the directory is no longer going to be shared. The directory cannot be

unshared with the owner of said directory, so they are not shown on the list.

In a POST call the list of emails is sent of the users with whom the folder is

going to be unshared:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 83 of 220

URL parameters: { “id”: “1973” }

URL: http://api.stacksync.com:8080/v1/folder/:id/unshare

POST: { [“tester1@test.com”] }

If all of the users are removed from the list, the directory will no longer be

available for those users and the “unshare” option in the context menu will

disappear.

3.4 Collaborative editing tool

The eyeOS platform offers the native eyeDocs app, a word processor which

allows users to create and edit documents in the eyeOS format. Since it is a

Cloud application, text editing with eyeDocs can be done from any computer

without pre-installed local programs. Like other Cloud-based text editors, it does

not guarantee that the formatting of documents with sophisticated borders and

tables will be preserved. Therefore, far from competing with applications such as

Microsoft Word, eyeDocs is optimized to load quickly and be a comfortable tool

to create documents and take notes.

It is a tool made for collaborating with functions that allows different users to

edit or see the content of a document at the same time. These functions are only

available for users of eyeOS who share a single document in the cloud.

The collaboration between users is achieved by linking the data of the editing

user to the file, in a server synchronized with other eyeOS platforms. When a

user opens a file, a query is sent to a Sync API which collects information from

the server to indicate its current state.

The implementation of the collaboration between users to edit a document is

detailed in the following diagram:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 84 of 220

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 85 of 220

Step 1:

The user stacksync (User A) opens the document eyeos2.edoc (id: 1980) located

in the folder Comments of StackSync. Two checks are made:

- The document is not being used by any user.

- The document is being used by another user, but the date and time of the last

update is greater in minutes than the time specified in settings.php in the root of

the project.

In both cases it is blocked by the current user.

To configure the maximum blocking time of the file, the constant

TIME_LIMIT_BLOCK in settings.php should be modified. In the following

example it is set at 10 minutes:

If (!defined('TIME_LIMIT_BLOCK') define('TIME_LIMIT_BLOCK',10);

To block the file the user stacksync (User A) makes a call with the POST method

using a valid StackSync token to the Sync API:

URL: http://api.stacksync.com:8080/v1/lockFile

POST: {"id":"1980", "cloud": "Stacksync", "user": "stacksync" ,"ipserver":

"192.68.56.101, "datetime": "2015-05-12 10:50:00", "timelimit":10}

Step 2:

The user stacksync (User A) gets permission to edit the requested document.

{"lockFile":true}

Step 3:

The user stacksync2 (User B) opens the same document that the user stacksync

(User A) is editing. It is confirmed that the user does not have permission to edit

the document.

The same call is made as in Step 1:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 86 of 220

URL: http://api.stacksync.com:8080/v1/lockFile

POST: {"id":"1980", "cloud": "Stacksync", "user": "stacksync2" ,"ipserver":

"192.68.56.101, "datetime": "2015-05-12 10:55:00", "timelimit":10}

Step 4:

The user stacksync2 (User B) is informed that they do not have permission to

edit the document:

{"lockFile":false}

In the eyeDocs application this document will be identified with the label ‘(Read

Only)’ in the title bar and the Menu, Toolbar, and document container will be

blocked.

Step 5:

The user stacksync (User A) updates the content of the document. Each content

update causes the time and date of the last document update to change to current

values.

The user stacksync (User A) makes a call using the PUT method to the Sync API

to update the time and date of the document:

URL: http://api.stacksync.com:8080/v1/updateTime

PUT: {"id":"1980", "cloud": "Stacksync" ,"user": "stacksync", "ipserver":

"192.68.56.101", "datetime":"2015-05-12 10:57:00"}

It returns metadata showing that the update has been made:

{"updateFile":true}

Step 6:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 87 of 220

The user stacksync (User A) still has permission to edit the document.

Step 7:

Every 10 seconds the user stacksync2 (User B) checks if the document is still

being blocked by the user stacksync (User A). As it continues to be blocked the

user makes a request for the content of the document.

Step 8:

The content is updated in the eyeDocs document of the user stacksync2 (User B).

Step 9:

The user stacksync (User A) closes the document and frees the editing

permissions.

A PUT call is made to the Sync API to remove the document block.

URL: http://api.stacksync.com:8080/v1/unLockFile

PUT: {"id":"1980", "cloud": "Stacksync", "user": "stacksync", "ipserver":

"192.68.56.101", "datetime":"2015-05-12 10:59:00"}

It returns metadata that states that the file has been freed:

{"unLockFile":true}

Step 10:

User B checks if the document is still being blocked by User A. Since it has been

freed, User B unblocks it and makes a request to recover the content of the

document.

Step 11:

The same procedure is carried out as in Step 8 and the following message

appears:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 88 of 220

User B closes the document and frees the editing permissions.

The functions used to block and unblock files are detailed in annexes 4 and 5.

3.5 Replacement U1DB to API

3.5.1 Implementation

Previously, the comments and calendars used U1DB, which is an API to

synchronize JSON document databases created by Canonical. It allows

applications to store documents and synchronize them between machines and

devices. U1DB is a database designed to work everywhere, offering storage

backup for the data that is native to the platform. This means that it can be used

on different platforms, with different languages, with support and

synchronization between all of them.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 89 of 220

Currently, the use of the U1DB database has been removed, implementing a new

Sync API which stores the comments and calendars of the user on their Personal

Cloud.

The following image details how the new Sync API is implemented:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 90 of 220

3.5.2 Comments

The eyeOS platform implements a tool that allows users to manage comments on

files shared in the Personal Cloud. Comments can be created or deleted, and

comments made by other users can also be seen.

In the settings file (See annex 1), there is the key “comments”, which indicates

whether comments can be visualized or inserted in the files in the cloud. If it is

deactivated (value set at false), the “Comments” tab will be shown but no

comments will be listed, and new ones will not be able to be made.

The following diagram establishes a framework for detailing the process

involved in checking, creating, and deleting comments based on the collaboration

between two users:

Step 1:

When selecting a file shared with other users from the same or different cloud,

when clicking on the “Comments” tab of the file 2005 12 10-w50s.flv (id:1950)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 91 of 220

located in the folder Information, the user stacksync will make a GET request

using the valid StackSync token to obtain the comments related to the file:

URL parameters: { “id”: “1950, “cloud”: “Stacksync”}

URL: http://api.stacksync.com:8080/v1/comment/:id/:cloud

Step 2:

It returns metadata with the list of comments associated to the file:

[{ “id”: “1950”, “user”: “stacksync”,”cloud”: “Stacksync”, ”text”: “Test 1”,

”time_created”: “201509071822”, “status”: “NEW” }, { “id”: “1950”, ”user”:

“stacksync”, ”cloud”: ”Stacksync”, ”text”: ”Test user”, ”time_created”:

“201509071823”, “status”: “NEW”}]

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 92 of 220

The comments are shown in a list which shows the most current comments first.

Step 3:

Clicking on the New button will bring up a form which will allow the user

stacksync2 to insert a comment associated to the shared file.

A POST call is made to the Sync API to add the comment of the user stacksync2

to the file on StackSync:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 93 of 220

URL: http://api.stacksync.com:8080/v1/comment

POST: { “id”: “1950”, “user”: “stacksync2”, “cloud”: “Stacksync”, “text”: “Test

comment” }

Step 4:

It returns metadata with the data of the new comment.

{ “id”: “1950”, “user”:“stacksync2”, “cloud”:“Stacksync”, “text”: “Test

comment”, “time_created”: “201509071827”, “status”: “NEW” }

Step 5:

The user stacksync makes a query as in Step 1.

Step 6:

It returns metadata with the comment introduced by the user stacksync2:

[{ “id”: “1950”, “user”: “stacksync2”,”cloud”: “Stacksync”, ”text”: “Test

comment”, ”time_created”: “201509171710”, “status”: “NEW” }, { “id”:

“1950”, “user”: “stacksync”,”cloud”: “Stacksync”, ”text”: “Test 1”,

”time_created”: “201509071822”, “status”: “NEW” }, { “id”: “1950”, ”user”:

“stacksync”, ”cloud”: ”Stacksync”, ”text”: ”Test user”, ”time_created”:

“201509071823”,”status”: “NEW”}]]

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 94 of 220

It is possible to witness one of the more important restrictions of this tool, which

is to not allow for comments made previously by another user to be deleted. In

the previous image the current user (stacksync2), who lists the comments, is not

able to delete comments made by other users, such as the comment made by

stacksync.

If at any time the file changes its state (it stops being shared with other users), the

list of comments will still be shown to the owner, but the actions of inserting and

deleting them will be disabled.

The change of state is reversible, so if the file is shared again, options for

inserting and deleting comments will automatically be enabled again.

Step 7:

A call is made using the DELETE method to the Sync API to delete the comment

made previously by the user stacksync2:

URL parameters: { “id”: “1950”, “user”: “stacksync2”, “cloud”: “Stacksync”,

”time_created”: “201509071827” }

URL: http://api.stacksync.com:8080/v1/comment/:id/:user/:cloud/:time_created

Step 8:

It returns metadata with the data of the deleted comment.

{ “id”: “1950”, “user”:“stacksync2”, “cloud”:“Stacksync”, “text”: “Test

comment”, “time_created”: “201509071827”, “status”: “DELETED” }

For more detailed information of the functions regarding comments implemented

by the Sync API, refer to annexes 4 and 5.

3.5.3 Calendar

Another function which has been affected by the new Sync API is the

management of calendars and events. Previously the U1DB database was used in

the same way as for comments. This is no longer available, to allow the user a

comprehensive management of all of their calendars and events by associating

them to a cloud.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 95 of 220

With this API the user can carry out the different actions (create/update/delete),

both with their calendars and with their events, regardless of the platform used.

When opening the calendar, a list of options is displayed:

1. Names of the different clouds able to manage calendars and registered

with an access_token from the current user

2. Local calendar of the eyeOS platform.

To identify a cloud with calendar and event management privileges in the eyeOS

platform, the settings file needs to be accessed (see annex 1), where the

“calendar” key can be set at true (active) and false (not active).

When selecting a specific cloud, the user can manage their calendars and events,

and see the changes applied in real time through other platforms.

The synchronization of calendars is detailed in the following diagram:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 96 of 220

Step 1:

The user stacksync (User A), logged into eyeOS, makes a request to the cloud to

obtain a list with all their calendars.

A GET call is made to the Sync API using a valid StackSync token:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 97 of 220

URL parameters: { “user”: “stacksync”, “cloud”: “Stacksync”}

URL: http://api.stacksync.com:8080/v1/calendar/:user/:cloud

Step 2:

It returns metadata with the list of calendars:

[{"status": "NEW", "description": "Test Calendar", "user": "stacksync",

"timezone": 0, "type": "calendar", "cloud": "Stacksync", "name": "Calendar 1"}]

The calendar application adds these calendars to the list on the left side of the

screen.

Every 20 seconds it checks whether the user has created a new calendar on

another platform. If the answer is affirmative, the new calendar is added to the

list.

Step 3:

The user stacksync (User A) creates a new calendar using the New calendar

button and specifying the name that they want it to have on the cloud:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 98 of 220

A POST call is made to the Sync API to create the calendar entered by the user

stacksync:

URL: http://api.stacksync.com:8080/v1/calendar

POST: {"user": "stacksync", "name" : ”Calendar 2, "cloud": "Stacksync",

"description": "Test Calendar2","timezone":0}

Step 4:

It returns metadata with the data of the new calendar.

{"status": "NEW", "description": "Test calendar2", "user": "stacksync",

"timezone": 0, "type": "calendar", "cloud": "Stacksync", "name": "Calendar 2"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 99 of 220

The list of calendars is updated with the data of the new calendar:

Step 5:

The user stacksync (User A), logged in on another platform, makes a request to

obtain the list of calendars. The calendar introduced previously on eyeOS is

included on this list.

Step 6:

The platform will update the calendars of the user, with the data obtained in the

response to the request

Step 7:

The user stacksync (User A) creates a new calendar on this platform, identifying

with a name on the cloud.

Step 8:

The platform refreshes the list of calendars including the new calendar.

Step 9:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 100 of 220

The calendar application checks every 20 seconds to see if a change has been

made in the user’s calendar. When a request is made to obtain the list of

calendars, it checks if a new calendar has been created from another platform.

Step 10:

The list of calendars is updated, adding the calendar created from another

platform.

Step 11:

The user stacksync (User A) deletes a calendar form the context menu:

When using this option a DELETE call is made to the Sync API to delete the

calendar:

URL parameters: {“user”: “stacksync”, “name”: “Calendar 2”, “cloud”:

“Stacksync”}

URL: http://api.stacksync.com:8080/v1/calendar/:user/:name/:cloud

It returns metadata with the data of the deleted calendar.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 101 of 220

{"type":"calendar”,"user": "stacksync”, "name": "Calendar 2", "cloud":

"Stacksync", "description": "Test calendar 2, "timezone": 0,"status":

"DELETED"}

Step 12:

The list of calendars is updated, deleting the selected calendar.

Step 13:

The user stacksync (User A) makes a request on the other platform to obtain a list

of their calendars. They check whether any change has been made to the

calendars from another platform.

Step 14:

The platform deletes the calendar deleted with eyeOS from the list.

The user can synchronize their events with other platforms, selected the

calendars from the list. When a calendar is selected, events can be

created/updated/deleted in the cloud.

The synchronization of events is detailed in the following diagram:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 102 of 220

Step 1:

The user stacksync (User A), logged into eyeOS, selects the calendars they wish

to view and makes a request to obtain all of the events associated to the calendar

which are stored in the Personal Cloud.

A GET call is made to the Sync API using a valid StackSync token:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 103 of 220

URL parameter: {“user”: “stacksync”, “calendar”: “Calendar 1”, “cloud”:

“Stacksync”}

URL: http://api.stacksync.com:8080/v1/event/:user/:calendar/:cloud

Step 2:

It returns metadata with the events associated to Calendar 1:

[{"status": "NEW", "description": "Test", "location": "Barcelona", "finalvalue":

"0", "timeend": "20150828110000", "finaltype": "1", "timestart":

"20150828100000", "isallday": 0, "user": "eyeos", "repeattype": "n", "calendar":

"personal", "repetition": "None", "type": "event", "cloud": "Stacksync",

"subject": "Test"}]'

The calendar application shows the events according to the type of calendar

selected by the user. Events can be viewed by day, week, or month.

In this case, the user has selected the option to view events by week.

Step 3:

When clicking on a cell in the calendar, a dialog box is shown which allows

users to insert an event and associate it with a particular calendar:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 104 of 220

A POST call is made to the Sync API to introduce an event in Calendar 1:

URL: http://api.stacksync.com:8080/v1/event

POST: {"user": "stacksync", "calendar": "Calendar 1", "cloud": "Stacksync",

"isallday": 0, "timestart": "20150828120000", "timeend": "20150828130000",

"repetition": "None", "finaltype": "1", "finalvalue": "0", "subject" :"Test",

"location": "Barcelona", "description": "Test", "repeattype":"n"}

Step 4:

It returns metadata with the data of the event introduced in the calendar.

{"type": "event", "user": "stacksync", "calendar": "Calendar 1", "cloud":

"Stacksync", "isallday": 0, "timestart": "20150828120000", "timeend":

"20150828130000", "repetition": "None", "finaltype":"1", "finalvalue":"0",

"subject":"Test", "location": "Barcelona", "description":"Test",

"repeattype":"n","status":"NEW"}

Calendar introduces the details of the new events in the calendar cells.

It checks every 10 seconds if any change has been made in the events from

another platform. If they have, the calendar cells are refreshed with the updated

events.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 105 of 220

Step 5:

From a different platform, the user stacksync (User A) makes a query to obtain a

list of events associated to the selected calendar. This list includes the event

created previously from the eyeOS platform.

Step 6:

The platform updates its list of events and displays them on the screen.

Step 7:

The user stacksync (User A) can edit all the information related to the event. If

the platform used is eyeOS, they need to click on a previously entered event. The

following dialog box is displayed:

A PUT call is made to the Sync API to update the description of the event.

URL: http://api.stacksync.com:8080/v1/event

POST: {"user": "stacksync", "calendar": "Calendar 1", "cloud": "Stacksync",

"isallday": 0, "timestart": "20150828120000", "timeend": "20150828130000",

"repetition": "None", "finaltype": "1", "finalvalue": "0", "subject" :"Test",

"location": "Barcelona", "description": "Detail Test", "repeattype":"n"}

Step 8:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 106 of 220

It returns metadata with the data of the updated calendar.

{"type": "event", "user": "stacksync", "calendar": "Calendar 1", "cloud":

"Stacksync", "isallday": 0, "timestart": "20150828120000", "timeend":

"20150828130000", "repetition": "None", "finaltype":"1", "finalvalue":"0",

"subject":"Test", "location": "Barcelona", "description":"Detail Test",

"repeattype":"n","status":"NEW"}

The platform updates the event with the data received from the cloud.

Step 9:

The calendar application checks every 10 seconds whether changes have been

made to the events associated to the calendar. In this case, it finds that there are

updates to an event made from a different platform.

Step 10:

The event is updated locally with the data received from the cloud.

Step 11:

The user stacksync (User A) can delete an event by clicking on the event and

selecting delete from the dialog box to edit the event.

A DELETE call is made to the Sync API to delete the selected event:

URL parameter: { “user”: “stacksync”, “calendar”: “Calendar 1”, “timestart”:

“20150828120000”, “timeend”:” 20150828130000”, “isallday”: 0}

URL: http://api.stacksync.com:8080/v1/event/:user/:calendar/:cloud/:timestart/

:timeend/:isallday

Step 12:

The event is deleted from the calendar cell.

Step 13:

The platform makes a query to check if any of the events have been changed. In

this case it is seen that an event has been deleted.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 107 of 220

Step 14:

The platform deletes the event previously deleted from eyeOS from its calendar.

For more detailed information on the reference functions of the calendars and

events that the Sync API implements, refer to annexes 4 and 5.

The synchronization of comments and calendars are associated to a specific

cloud, with which the configuration of the Sync API is linked to the

configuration of that cloud (annex 1). In the event that synchronization in the

cloud is not implemented, an external Rest API can be used, following the same

defined contract in our Sync API, which can be configured in settings.php,

identifying the URL where our API should connect. The constant is API_SYNC.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 108 of 220

4.1 Validation and Feedback analysis from open Internet

trials

4.1.1 General description

We developed a monitoring system to infer in real-time the resource

consumption of StackSync users in a cloud infrastructure.

StackSync runs the management of the files, so the current production version

allows you to monitor a number of parameters, giving us a detail by user, due to

the type of structure used.

The version currently in pre-production, as it includes more advanced

functionalities like sharing, gives us different monitoring values, due to the

characteristics of the tool.

Despite the traces that we gathered so far capture only a small number of users,

they are a proof-of-concept of our monitoring system.

Because the production platform does not include the sharing functionality, the

platform is not yet of great use and interest to most users. In the coming months,

with the inclusion of the sharing system, it will give us much more realistic traces

of use of the platform.

4.1.2 Setting up a metering service for a storage system

It has been implemented system usage several traces for the analysis of the

platform, obtaining information using not only the OpenStack platform, but also

the StackSync APIs.

Among the objectives of the analysis, it is studied how the implementation of

encryption affects to the average load of the platform, or how it affects the folder

sharing to the average usage per user of the platform.

These early analysis of the platform help us to start dimensioning cloud

platforms, based on preliminary estimates lab, about the use of resources.

4. Tissat

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 109 of 220

We had two separate parts in our setup: the proxy-server and the ceilometer-

server.

In the proxy server we had to install the following packages:

root@swift-p1-dev:~# dpkg -l | grep ceilometer

ii ceilometer-api 2013.2.3-0ubuntu1~cloud0 ceilometer api

service

ii ceilometer-common 2013.2.3-0ubuntu1~cloud0 ceilometer

common files

ii python-ceilometer 2013.2.3-0ubuntu1~cloud0 ceilometer

python libraries

ii python-ceilometerclient 1.0.5-0ubuntu1~cloud0 Client library for

Openstack ceilometer server.

Then we had to add a filter to our proxy-server in order for the ceilometer agents

to grab service usage data.

[filter:ceilometer]

use = egg:ceilometer#swift

And configuring the /etc/ceilometer/ceilometer.conf with the same parameters as

the server.

And in the ceilometer-server we installed, these are the minimal tools to gather

info from swift:

root@stacksync-log1-dev:~# dpkg -l | grep ceilo

ii ceilometer-agent-central 2013.2.3-0ubuntu1 all

ceilometer central agent

ii ceilometer-api 2013.2.3-0ubuntu1 all ceilometer

api service

ii ceilometer-collector 2013.2.3-0ubuntu1 all ceilometer

collector service

ii ceilometer-common 2013.2.3-0ubuntu1 all

ceilometer common files

ii python-ceilometer 2013.2.3-0ubuntu1 all

ceilometer python libraries

ii python-ceilometerclient 1.0.5-0ubuntu1 all Client

library for Openstack ceilometer server.

 ceilometer-agent-central: polls for resource utilization, in this case queries

the swift proxy-server

 ceilometer-collector: monitor the message queues, publishes messages in a

queue. Notification messages are processed and turned into metering

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 110 of 220

messages and sent back out onto the message bus using the appropriate

topic. Telemetry messages are written to the data store without

modification.

 ceilometer-api: we use it as an entry point to retrieve our data

The MongoDB was chosen because of the nature of a lot of concurrent writes

when gathering usage statics.

Service Meter Description

Swift_meters storage.api.request Number of API requests

against swift

Swift_meters storage.objects.containers Number of containers

Swift_meters storage.objects.incoming.bytes Number of incoming bytes

Swift_meters storage.objects Number of objects

Swift_meters storage.objects.outgoing.bytes Number of outgoing bytes

Swift_meters storage.objects.size Total size of stored objects

MongoDB is used as a storage backend for Ceilometer, all of our data collected

by ceilometer will be stored in this database. The metering service creates so

much data that MongoDB was their choice for production environments.

We have Openstack standard dashboard to print out a metering report per tenant:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 111 of 220

We can show the average number of files that a tenant has on any given day.

It will be used for general auditing, control of the use storage, and for billing

purposes.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 112 of 220

We can check the files average size that a tenant has.

Make a realistic assessment of the performance is difficult at this stage of the

project, because of multiple platforms that are analyzed, considering the different

released versions of software, and the implemented functionality at each one

(sharing, encryption, exclusive StackSync use, Openstack platform shared with

StackSync users...). However, these measures are useful at this stage, in order to

validate the correct operation of the platform and also for the dimensioning of the

new platforms.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 113 of 220

Amount of bytes that users have downloaded.

This metric is particularly interesting in order to know the bandwidth required to

operate the platform, and the required load balance, according to the number of

users and the size of the files.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 114 of 220

Amount of bytes that users have uploaded.

The File upload to the platform is a company goal, due that the company will

rent disk space to the user, so it is important to know this type of action of the

users and how affects to the used size of the platform, the encryption processes.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 115 of 220

The graph allows us to see the use load of the platform at a specific time slot:

In this diagram, we can appreciate the number of request that our users made

during a 9 month period, we are showing swift requests, which means that a for a

stacksync file request can spawn into multiple swift file requests, depending on

the number of chunks that a file has.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 116 of 220

We can see non activity during holiday period, we can see spikes every month

meaning that, every month our software is being used.

The identification of several users that represent the average use of the platform,

will provide a detailed analysis and values for the forecasting of the user

behavior, although massive data analysis would be periodically performed.

4.2 Service Platform reference prototype

These are the tasks performed by Tissat, which has resulted in improved safety

and efficiency as well as the increase of the functionality, and the number of

potential devices on which runs StackSync.

 Migrate Keystone v2.0 to Keystone v3

 Secure StackSync platform with SSL

 Development of group membership for StackSync users

 Development of a group-based storage quota system

 Migrate web interface back-end from PHP to Python

 Refactoring of StackSync web client

 Implemented a folder sharing functionality for StackSync users

 StackSync support for the ownCloud application

 Development of iOS App

4.2.1 Migrate Keystone v2.0 to Keystone v3

Given the fact that Tissat is a cloud provider we had to be able to grant

administrative privileges to our customers so that they could manage their own

resources (containers, tenants, user accounts).

Regretfully, under Keystone v2.0, the ‘admin’ role had a global scope which

allowed that a user admin with admin privileges on a specific tenant could erase

other tenants.

Since Tissat has active customers that need to have admin privileges to create

their own users, we had a situation where a customer could delete other

customer's data. Obviously this was a security issue.

Even though this issue was solved in later releases of StackSync Server through a

change in stacksync's user data mapping scheme. The change involved going

from a tuple 'tenant: user' to a ‘stacksync_tenant:user_container' scheme, where

all users have a container under the same tenant.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 117 of 220

Another challenge that we faced was the fact that system administrators didn't

want to grant a 'stacksync admin user' with a 'ResellerAdmin' role even though it

was necessary change quota or swift attributes on StackSync tenants because that

could lead to a situation where an 'stacksync admin user' could actually delete

data store in other users Swift system.

At that point in time, Tissat solved the problem, by adopting Keystone V3 for our

cloud infrastructure, and use a domain-based approach.

This way we could create separate entities where administrative users could not

interfere with other resources belonging to other users/customers, at least on the

keystone level.

So we are currently using keystone v3 coupled with StackSync Server v0.4.4 on

our main environment, allowing cloudspaces disk capacity could reach 100% of

the company's current platform.

Keystone:

[ssl]

enable = True

certfile = /etc/keystone/ssl/certs/signing_cert.pem

keyfile = /etc/keystone/ssl/private/signing_key.pem

ca_certs = /etc/keystone/ssl/certs/ca.pem

ca_key = /etc/keystone/ssl/certs/cakey.pem

key_size = 1024

valid_days = 3650

ca_password = None

cert_required = False

cert_subject = /C=US/ST=Unset/L=Unset/O=Unset/CN= XXXXXXXXXX

[signing]

token_format = PKI

certfile = /etc/keystone/ssl/certs/signing_cert.pem

keyfile = /etc/keystone/ssl/private/signing_key.pem

ca_certs = /etc/keystone/ssl/certs/ca.pem

ca_key = /etc/keystone/ssl/private/cakey.pem

key_size = 2048

valid_days = 3650

cert_subject = /C=US/ST=Unset/L=Unset/O=Unset/CN=XXXXXXXXXX

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 118 of 220

4.2.2 Secure our StackSync platform with SSL

Since we were developing a web interface, we had in mind from the get-go that

our web server would force all its connections over SSL, being implemented

secure communications between client and server.

But what happens with the rest of the clients?

Given the fact StackSync clients transfer potentially private data, we must ensure

that data is transmitted safely over an insecure network such as the Internet.

We can identify three phases on the StackSync workflow where data could be

sent in plaintext and therefore exposed to attack. These steps are the keystone

authentication process, the swift file transfer and the RabbitMQ metadata

transfer.

Our solution was to set up SSL on all services over the Internet, currently we

have operating Keystone and Swift.

We have currently setup RabbitMQ working with and without SSL, but have

now recognized the parts of the StackSync codebase that need to be changed.

It is necessary to create a rabbitmq.config in /etc/rabbitmq and restart the queue

service.

[

 {rabbit, [

 {ssl_listeners, [5671]},

 {ssl_options, [{cacertfile,"/path/to/testca/cacert.pem"},

 {certfile,"/path/to/server/cert.pem"},

 {keyfile,"/path/to/server/key.pem"},

 {verify,verify_peer},

 {fail_if_no_peer_cert,false}]}

]}

].

First, we studied the parts of the broker OMQ, since it's a wrapper form

RabbitMQ we were confident we could setup SSL easily. Now we noticed that

the StackSync-server didn't configure itself to be using a SSL connection.

4.2.3 Development of group-based membership for StackSync users

The ability to group users into groups or departments makes easy the quota

management allowing the existence of an administrators group, which can

manage users and their available space, using StackSync.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 119 of 220

A group like URV would manage a certain amount of storage space, and this

organization could have some administrative user that can create and delete

users, and assign quota to its users.

The following use case presents a situation where a 'Cloud admin' user creates

groups and grants 'Group admin' privileges to a user.

We understand the word manage to mean add/delete/edit capabilities.

We decided to create a new application named "group" in Django.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 120 of 220

Obviously since StackSync is an evolving platform we tried to decouple the

current user scheme as much as possible from our group development.

In the following diagram, we present the StackSync group application model.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 121 of 220

4.2.4 Development of a group-based quota web application

Segmentation of users into groups enables the creation and management of

companies with common storage needs.

With this premise in mind we have developed a group management tool, which

makes quotas easy to manage by a group administrator, making it easier for

entities the management of their own users and disk space.

User management and StackSync groups are managed through the admin panel.

Because generating admin sites for our ‘group managers’ to add, change and

delete users is a repetitive work, we want to provide an easy way to do it.

For that reason, we have chosen Django to automate the user creation using

StackSync, through admin interface.

The Django admin panel allows the management of users with a profile of 'group

manager', those users will have permissions on the entity that are assigned, in

order to manage the creation of its subgroups, users and quotas.

To each Django user can be assigned several permissions (read, edit, delete).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 122 of 220

Once the users are created in Django, the user can be logged with sufficient

permissions, allowing him to can create groups and users for StackSync.

Our work was mainly focused on restricting that each group could not interfere

with other group's users.

For each model class we have implemented the corresponding ModelAdmin

class, in order for the Django admin interface to work.

If we go back to our use case where "A group/company would use certain

amount of storage space. They could have some administrative user that can

create and delete users, and assign quota to its users.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 123 of 220

We need to follow these steps to complete this task.

1. Create a Group Admin with the StackSync permissions

2. Create StackSync Group with quota

3. Now the group/customer manager can access as an admin to create his

own users, memberships, and quotas.

At this use case, the manager creates a user, then creates a membership and at

last creates a quota.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 124 of 220

A Django user can be an administrator of one or more groups.

A group can have multiple administrators.

A group can be assigned a quota limit on MB, being an advantage for the entity

being able to manage more efficiently the way it allocates disk space. So we can

control that a user has not an excessive fee.

The quota limit is the maximum quota that can be assigned to the user of that

group (but to each user can be assigned a quota lower than the maximum quota

of the group to which it belongs)

For instance:

 Group: test1

 max quota = 1000 MB.

 User: user1

 quota: 512 MB.

 User: user2

 quota: 1000 MB.

Users in this group may have different quotas, but if you try to assign more than

the maximum allowable quota, the system will not let you assign it.

A user can belong to one or more groups.

 - Each user can have different quotas in each group.

 - The maximum user quota is the sum of its maximum quotas.

 For instance:

 If a user is assigned to 2 groups:

 Group 1: quota allocated 512 MB.

 Group 2: quota allocated 256 MB.

 __

 His total quota is the sum of 512 + 256 = 768 MB.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 125 of 220

4.2.5 Migrate web interface back-end from PHP to Python

Because OpenStack is programmed in Python, although the prototype initial web

interface was generated in PHP for training reasons, it was considered

appropriate to use a single programming language for all development

environments, making easy to the community, expanding and participating at the

project by limiting the number of programming languages.

During our development with PHP, we encountered the issue that we often had to

use 3rd party frameworks or develop our own classes to interact with the

Openstack platform, therefore we noticed that a change to Python could help gain

a more in-depth knowledge about the underlying Openstack platform, and in that

way apply the current good developing practices and in doing so improving the

quality of our code.

It made sense to make a change on the project before advancing more with new

applications.

Other point was the fact that there was a previous satisfactory experience using

the Django framework in the developer team, so that could ease the transition.

Also, since the previous user interface was being developed in bootstrap we were

confident that the end result, would the same.

The Django framework enables us to use a powerful scaffolding system that

could help us develop simple applications very easy and rapidly.

In order to interact with StackSync we developed a web client and an

administrative interface, using freely distributed components.

On the same train of thought, we recognized that if there was a moment of doubt,

we could take the Horizon dashboard as an example to follow.

Now we have an easier codebase with lesser dependencies and more tested since

we are using standard tools.

4.2.6 Refactoring of StackSync web client

Here we show the new user interface, where you can see the space of your

physical quota, in case it had been defined.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 126 of 220

Here we show a refactoring gone from an original file of 247 lines to 185 lines,

while adding new functionality such as folder sharing.

4.2.7 Implemented a folder sharing functionality for StackSync users

We developed a web functionality to add share folder functionality to the web

client.

 def share_folder(self, folder_id, allowed_user_emails=[],

access_token_key=None, access_token_secret=None):

 headeroauth, headers = self.get_oauth_headers(access_token_key,

access_token_secret)

 url = self.DEFAULT_FOLDER_URL + str(folder_id) + '/share'

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 127 of 220

 json_payload = json.dumps(allowed_user_emails)

 r = requests.post(url, data=json_payload, auth=headeroauth,

headers=headers)

 return r

def get_members_of_folder(self, folder_id, access_token_key=None,

access_token_secret=None):

 headeroauth, headers = self.get_oauth_headers(access_token_key,

access_token_secret)

 url = self.DEFAULT_FOLDER_URL + str(folder_id) + '/members'

 response = requests.get(url, auth=headeroauth, headers=headers)

 if response.status_code == 200:

 return response.json()

 else:

 response.reason = response.reason + ". "+response.content

 response.raise_for_status()

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 128 of 220

We can verify the correct behavior of the functionality with this functional test.

def test_get_folder_members(self):

 name_of_folder = self.create_folder()

 folder_td_element = self.find_folder(name_of_folder)[0]

 folder_members = self.get_folder_members(folder_td_element)

 self.assertEquals(0, len(folder_members))

 def test_share_a_folder(self):

 users = ['al@al.com', 'walter.smith@stacksync.com']

 name_of_folder = self.create_folder()

 folder_td_element = self.find_folder(name_of_folder)[0]

 self.show_context_menu(folder_td_element)

 menu_share_option =

self.browser.find_element_by_css_selector('#jqContextMenu > ul > li#share')

 menu_share_option.click()

 folder_members=self.browser.find_elements_by_css_selector('#folder-

members option')

 for user in users:

 self.input_members_email_in_folder(user)

 # Saves current members

 self.browser.find_element_by_id('save-member-button').click()

 # Closes modal window

 close_button = '#share-folder-modal > div.modal-dialog > div.modal-

content > div.modal-footer > button'

 self.browser.find_element_by_css_selector(close_button).click()

 folder_members = self.get_folder_members(folder_td_element)

 self.assertEquals(3, len(folder_members))

 self.browser.find_element_by_css_selector(close_button).click()

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 129 of 220

4.2.8 StackSync support for the ownCloud application

One goal of the project was to demonstrate the interoperability between different

networks, within the objectives of analyzing and promoting standardization in

communication of data, between different clouds. It was selected as mockup for

it, one of the best known free software cloud products: ownCloud.

We have started the integration studies for sharing between ownCloud and

StackSync platforms.

We have setup an ownCloud server 7.0.2 to use Openstack Swift storage, we

tested it in order to analyze if it worked properly with cloudspaces infrastructure,

and it was determined that in order for ownCloud's synchronization, to update its

database we had to use a development version (daily build).

When using ownCloud, we first uploaded a file to a web server running

ownCloud, and after that, the server uploaded our file to our swift container.

When you download a file from swift, you first download onto the webserver's

temporal folder and then you download it from the web server.

In order to create a StackSync implementation we can take notes of how

OwnCloud is interacting with Openstack Swift; we only need to replace the

native upload/download/delete /list file operations for the corresponding

StackSync calls.

We would have to create a \OC\Files\Storage\Stacksync.php service, its physical

location would be in "owncloud\apps\files_external\lib" which contained all three

basic function calls PUT, GET, GET METADATA, DELETE.

We've chosen to compare with Opencloud Swift, which is the current Openstack

library for OwnCloud, we have documented how to replace regular Swift calls

with their StackSync equivalents.

In the following diagram, we compare the current functionalities of Owncloud,

and how it would look when running a StackSync application.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 130 of 220

Then we would have to register our StackSync application with OwnCloud

kernel as shown in owncloud\apps\files_external\appinfo\app.php

OC::$CLASSPATH['OC\Files\Storage\Stacksync'] =

'files_external/lib/stacksync.php';

OC_Mount_Config::registerBackend('\OC\Files\Storage\Stacksync', array(

 'backend' => (string)$l->t('Stacksync Storage'),

 'priority' => 100,

 'configuration' => array(

 'user' => (string)$l->t('Username'),

 'bucket' => (string)$l->t('Bucket'),

 'region' => '&'.$l->t('Region (optional for OpenStack Object Storage)'),

 'tenant' => '&'.$l->t('Tenantname (required for OpenStack Object Storage)'),

 'password' => '&*'.$l->t('Password (required for OpenStack Object

Storage)'),

 'service_name' => '&'.$l->t('Service Name (required for OpenStack Object

Storage)'),

 'url' => '&'.$l->t('URL of identity endpoint (required for OpenStack Object

Storage)'),

 'timeout' => '&'.$l->t('Timeout of HTTP requests in seconds'),

),

 'has_dependencies' => true));

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 131 of 220

Now, we can start by showing differences of how ownCloud is using Opencloud

to operate with an Openstack system, and how it would be different when

working with a StackSync system.

For example:

Basically all file operations use the basicOperation functionality, inside

files/view.php, we notice that $storage->$operation, storage is an

OC\Files\Storage\Swift object, and $operation (file_exists) means that we have

to execute the 'file_exists' operation.

https://github.com/owncloud/core/blob/d15c3e4030d1ed6fad6e258b758a79c520

d6bd39/lib/private/files/view.php#L750

private function basicOperation($operation, $path, $hooks = array(),

$extraParam = null) {

 ***********omitted***************

 $run = $this->runHooks($hooks, $path);

 list($storage, $internalPath) = Filesystem::resolvePath($absolutePath .

$postFix);

 if ($run and $storage) {

 if (!is_null($extraParam)) {

 $result = $storage->$operation($internalPath, $extraParam);

 } else {

 $result = $storage->$operation($internalPath);

 }

 $result = \OC_FileProxy::runPostProxies($operation, $this-

>getAbsolutePath($path), $result);

 ***********omitted***************

}

 Upload a file

https://github.com/owncloud/core/blob/c88d517e8879c56755bc26f604d515d977

2b35b3/apps/files_external/lib/swift.php#L503

Inside the ownCloud's Swift library the software executes the writeBack function

when you need to upload a file.

 public function writeBack($tmpFile) {

 if (!isset(self::$tmpFiles[$tmpFile])) {

 return false;

 }

 $fileData = fopen($tmpFile, 'r');

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 132 of 220

 $this->container->uploadObject(self::$tmpFiles[$tmpFile], $fileData);

 unlink($tmpFile);

 }

This line $this->container->uploadObject does the heavy work of actually

uploading a file into a container.

So we can conclude that if we manage to create a service class Stacksync.php

that will require a writeBack function overridden like this.

public function writeBack($tmpFile) {

 if (!isset(self::$tmpFiles[$tmpFile])) {

 return false;

 }

 $fileData = fopen($tmpFile, 'r');

 $this-> uploadFileToSwiftAsChunks ($tmpFile, $tmpFile->name, $tmpFile-

>parent);

 unlink($tmpFile);

 }

(This example was based on stacksync-server 0.4.4)

public function uploadFileToSwiftAsChunks($localFilePath, $fileName,

$parent=null)

 {

 $fd = fopen($localFilePath, "r");

 $options = array(

 CURLOPT_URL => $this->url . '/' . $this->container . '/files?file_name=' .

$fileName .'&parent='.$parent,

 CURLOPT_RETURNTRANSFER => true,

 CURLOPT_CUSTOMREQUEST => "PUT",

 CURLOPT_VERBOSE => true,

 CURLOPT_INFILE => $fd,

 CURLOPT_INFILESIZE => filesize($localFilePath),

 CURLOPT_CAINFO => dirname(__FILE__) . '/certs/ca-swift.pem',

 CURLOPT_SSL_VERIFYHOST => false,

 CURLOPT_UPLOAD => true,

 CURLOPT_HTTPHEADER => array('stacksync-api:true',

 'X-Auth-Token:' . $this->tokenId),

);

 $message = $this->httpClient->exec($options);

 fclose($fd);

 return json_decode($message, false);

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 133 of 220

}

 Download a file:

Owncloud executes a function called fopen() when you need to download a file:

https://github.com/owncloud/core/blob/ebf7758d1027709e29038540d6dc267015

f45296/apps/files_external/lib/swift.php#L316

We would create the equivalent of fopen() and substitute the line $object =

$this->container->getObject($path); by a function similar to this:

public function downloadFileFromChunks($id) {

 $fd = fopen($id, "w+");

 $options = array(

 CURLOPT_URL => $this->url . '/' . $this->container . '/files?file_id=' .

$id,

 CURLOPT_FILE => $fd,

 CURLOPT_CAINFO => dirname(__FILE__) . '/certs/ca-swift.pem',

 CURLOPT_SSL_VERIFYHOST => false,

 CURLOPT_HTTPHEADER => array('stacksync-api:true',

 'X-Auth-Token:' . $this->tokenId),

);

 $contents = $this->httpClient->exec($options);

 fclose($fd);

 return $contents;

}

 Delete a file:

Owncloud executes the following unlink function when you need to delete a file:

https://github.com/owncloud/core/blob/ebf7758d1027709e29038540d6dc267015

f45296/apps/files_external/lib/swift.php#L299

public function deleteFile($id) {

 $options = array(

 CURLOPT_URL => $this->url . '/' . $this->container . '/files?file_id=' .

$id,

 CURLOPT_RETURNTRANSFER => true,

 CURLOPT_CUSTOMREQUEST => "DELETE",

 CURLOPT_VERBOSE => true,

 CURLOPT_CAINFO => dirname(__FILE__) . '/certs/ca-swift.pem',

 CURLOPT_SSL_VERIFYHOST => false,

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 134 of 220

 CURLOPT_HTTPHEADER => array('stacksync-api:true',

 'X-Auth-Token:' . $this->tokenId),

);

 $message = $this->httpClient->exec($options);

 return json_decode($message, false);

}

 List folder:

As we can see in view.php:965, here we get the data from SQL, inside the

function of public function getFileInfo. We want to stress this part because

Owncloud reads its folder information from SQL.

 if ($cache->getStatus($internalPath) < Cache\Cache::COMPLETE) {

 $scanner = $storage->getScanner($internalPath);

 $scanner->scan($internalPath, Cache\Scanner::SCAN_SHALLOW);

 } else {

 $watcher = $storage->getWatcher($internalPath);

 $watcher->checkUpdate($internalPath);

}

And if you need to check for updates, must be used scanner.php:255,

OC\Files\Cache\Scanner->scanChildren(), then we can start reading files from

our resource(Swift in our case).

An interesting functionality is the way that a regular swift folder is listed:

https://github.com/owncloud/core/blob/ebf7758d1027709e29038540d6dc267015

f45296/apps/files_external/lib/swift.php#L210

public function opendir($path) {

*****************************ommitted***************

 try {

 $files = array();

 /** @var OpenCloud\Common\Collection $objects */

 $objects = $this->container->objectList(array(

 'prefix' => $path,

 'delimiter' => '/'

));

 /** @var OpenCloud\ObjectStore\Resource\DataObject $object */

 foreach ($objects as $object) {

 $file = basename($object->getName());

 if ($file !== basename($path)) {

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 135 of 220

 $files[] = $file;

 }

 }

 \OC\Files\Stream\Dir::register('swift' . $path, $files);

 return opendir('fakedir://swift' . $path);

 } catch (\Exception $e) {

 \OCP\Util::writeLog('files_external', $e->getMessage(),

\OCP\Util::ERROR);

 return false;

 }

}

As we can see in the container calls object list which makes the proper HTTP call

to the proxy server. Now we could replace the container object list with our own

StackSync call.

Here's a prototype for a getter metadata function in StackSync.

public function getMetadata($fileId=null){

 $options = array(

 CURLOPT_URL => $this->url . "/" . $this->container .

"/metadata?file_id=". $fileId .'&list=true',

 CURLOPT_RETURNTRANSFER => true,

 CURLOPT_HTTPHEADER => array('stacksync-api:true',

 'X-Auth-Token:' . $this->tokenId),

 CURLOPT_CAINFO => dirname(__FILE__) . '/certs/ca-swift.pem',

 CURLOPT_SSL_VERIFYHOST => false,

);

 $contents = $this->httpClient->exec($options);

 if (defined('JSON_BIGINT_AS_STRING')){

 $contents = json_decode($contents, false, 512,

JSON_BIGINT_AS_STRING);

 } else {

 $contents = json_decode($contents, false, 512);

 }

 usort($contents->contents, array($this,

"compareSortOrderByFoldersFirst"));

 return $contents;

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 136 of 220

4.2.9 Development of IOS App

We have developed and published in App Store, a native application to manage

files and folders in a secure way, through StackSync.

The development of this application provides mobile access to the platform,

increasing the number of operating systems supported by StackSync.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 137 of 220

This prototype application extends the growth potential of the solution, in

addition to serve as a basis for developing more advanced versions incorporating

file sharing and also new functionalities and advanced services on the platform.

4.3 Adding Security Features to StackSync Components

The cloud encryption process requires encryption of the existing communications

between the components of the platform. On one hand, some of them are public

and encryption is essential, as is the case of communication of the storage

components, StackSync servers and web servers. On the other hand, within the

subnet management platform, the transmission of information is also encrypted

for greater security, in the event of an unlikely access to information, from within

the internal subnet of the platform.

Finally, a further aspect that can be implemented, is full encryption of the

information within the storage spaces. This has been approached from the

standpoint of unique key (a private key for all users of the platform, for

encrypting users data on the disks), which allows the regeneration of the users

password if they forget it, but guarantees the encryption of data on the server.

The alternative is to encrypt the data on disk using the user's password. This

would be the highest level of security, but has been considered as an option for

private networks that require high security, because of the risk of loss of user

information, in case the password is lost.

In order to understand better the needs for encryption between the components of

the platform, we will describe the architecture of the platform:

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 138 of 220

Metadata DB: Database (PostgreSQL) where are saved the metadata files that

the storage backend can not store. Example: file size, file name, user, creation

date, file version, modified date...

Sync service: An entity that is responsible for processing the metadata.

Responsible for interacting with the database server and StackSync.

Middleware (ObjetcMW): A software responsible for the exchange of

information between applications. Is in charge interact with the desktop client

and the REST API and the SackSync server.

We use RabbitMQ Middleware that is an open source software, used for message

negotiations, and falls within the category of messaging middleware.

Desktop client: It is the application that interacts with the user, the application is

able to interact with the backend storage to store the files and with the StackSync

server to store the metadata.

REST API: This module allows us to create services and applications that can be

used by any device or client that uses HTTP.

The REST API is stored in the Storage backend, in this project it is a plugin that

is installed on OpenStack.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 139 of 220

Mobile / Web client: Mobile applications (Android, IOS) and web clients

capable of interacting with the REST API in order to communicate with

StackSync.

Storage backend: It is responsible of the storage of files, in this use case we use

OpenStack as a platform for data storage.

4.3.1 Encryption. Android version

The communication of the mobile application Android is done through API

StackSync. To ensure encryption of data sent, it has implemented a system of

encryption "AES / CBC / PKCS5Padding".

The block encryption algorithms such as AES spread the message in fixed-size

blocks for processing. The way in which these blocks are managed is called

"encryption mode", in our case we used the CBC.

CBC mode encryption (Cipher Block Chaining Mode) is an ECB extension that

adds safety (using an initialization vector IV). It is the encryption mode by

blocks more used.

The simplest ECB is the electronic codebook (ECB) mode, in which messages

are divided into blocks and each is coded separately using the same key K.

Both the mobile application and the web client has an option to encrypt / decrypt

files.

Each application must keep the same key, to decrypt what has been encrypted

with another application.

Therefore storage of the keys is performed on each application, both mobile and

desktop applications must have the same key K to encrypt and decrypt, the files

uploaded or downloaded.

In the webclient we have included also an icon (lock icon) to allow the user to

enter the password with which he wants to encrypt / decrypt.

In the mobile client there is an option to enter the encryption key and stored in

the mobile application itself.

This additional encryption, gives a user the chance to be sure not only that the

communication is encrypted (using https), but also that the encryption of the file

itself is done.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 140 of 220

In the cipher-block chaining mode (CBC), to each block of plaintext is applied

XOR operation with the previous encrypted block before being encrypted.

In this way, each ciphertext block depends on all the plaintext processed up to

this point. In order to make unique each single message, it is also used an

initialization vector.

PKCS5Padding is a filler mechanism to define 8 bytes chains

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 141 of 220

4.3.2 Encryption. StackSync Mobile App for IOS

The communication of the mobile application iOS is done through API

StackSync. To ensure encryption of data sent, it has implemented a system of

encryption by using the library RNCryptor/RNCryptor.

Encryption can be used in almost all applications but is especially important in

network applications for ensure the security of the information transmitted

between two devices. In the IOS version we include RNCryptor library that

allows to exchange information securely.

RNCrypto is a library used for development in Objective-C (IOS) that is also

available in other platforms such as C ++, JAVA, etc.

RNCrypto includes:

- AES-256 encryption

- CBC mode

- Password stretching with PBKDF2

- Password salting

- Random IV

- Encrypt-then-hash HMAC

RNCryptor suports asynchronous use, specifically designed to work with

NSURLConnection. This is also useful for cases where the encrypted or

decrypted data will not comfortably fit in memory. If the data will comfortably

fit in memory, asynchronous operation is best acheived using dispatch_async().

4.3.3 Implementation of encryption. Web Client (Python)

The implementation of encryption for the StackSync Web client, is based on

digital content encryption using HTTPS certificate, ensuring the secure transfer

of files using AES in CBC mode, by using the python cryptography tools

"pycrypto".

Pycrypto is a collection of cryptographic modules that implements various

algorithms and protocols for Python programming language. The encryption

toolkit Python aims to provide a reliable and stable base to write Python

programs that require cryptographic functions.

A central aim has been to provide a simple interface consisting of similar classes

of algorithms. For example, all block objects have the same encryption methods

and return values, and support the same functions of information.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 142 of 220

Hash functions have a different interface, but is also constant in all hash

functions available.

Some of these interfaces are encoded as documents of proposals for improving

Python, PEP 247, "API for cryptographic hash functions" and PEP 272, "API

block encryption algorithms."

The aim is to make it easy the replacement of old algorithms with the new ones,

which are safest.

4.3.4 Encryption. Admin Web Client (Python)

The implementation of encryption for the StackSync Admin Web client, is based

on digital content encryption using HTTPS certificate, ensuring the secure

transfer of files using AES in CBC mode, by using the python cryptography tools

"pycrypto".

Pycrypto is a collection of cryptographic modules that implements various

algorithms and protocols for Python programming language. The encryption

toolkit Python aims to provide a reliable and stable base to write Python

programs that require cryptographic functions.

A central aim has been to provide a simple interface consisting of similar classes

of algorithms. For example, all block objects have the same encryption methods

and return values, and support the same functions of information.

Hash functions have a different interface, but is also constant in all hash

functions available.

Some of these interfaces are encoded as documents of proposals for improving

Python, PEP 247, "API for cryptographic hash functions" and PEP 272, "API

block encryption algorithms."

The aim is to make it easy the replacement of old algorithms with the new ones,

which are safest.

4.3.5 Encryption. StackSync Desktop Client

The implementation encryption of desktop applications was performed using

HTTPS. The encription of the applications, written in Java, has been

implemented for the latest versions of Windows and Linux.

In order to grant the security of the information at the desktop client, it is

required encryption between the client and two different components, since it is

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 143 of 220

necessary to encrypt the connection between the client and the storage

environment (OpenStack Swift) for the transmission of information, and between

the client and metadata manager (StackSync).

To encrypt the connection between the StackSync server and the client desktop,

RabbitMQ server configuration is required to accept secure SSL connections.

SSL (Secure Sockets Layer) are cryptographic protocols that provide secure

communications over a network.

In the SSL X.509 certificates are used and therefore is used asymmetric

cryptography to authenticate the partner with whom you are communicating, and

to exchange a symmetric key. This session is then used to encrypt the data stream

between both parts.

This ensures confidentiality for data and message, and the control via message

authentication code, for integrity and message authentication.

4.4 Interoperability between clouds. Integration with

ownCloud

In July 2015, Google announced its support for OpenStack Foundation as a

corporate sponsor, which gives an important impulse to the cloud platform

project, and expands opportunities for interoperability.

While the ways of integration with the Google platform are defined, and in order

to demonstrate the ability to integrate with other platforms, ownCloud was

selected as a target for integration, for its open source nature.

A user from the web interface can be interconnected with an ownCloud platform,

the StackSync web interface includes a new icon for interconnection, which

allows the user to input its credentials, to allow interoperability between clouds.

By clicking on the icon, a window requesting the identification for owncloud is

shown, where the user can define the user name, password and address of the

ownCloud platform.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 144 of 220

The following figure shows the interface of a user, and his data, created on an

ownCloud platform.

The StackSync user, through its web platform, and after entering the data

connection information to the owncloud network, allows to grant access not only

to their information at StackSync, but also to the files and folders inside the

ownCloud network, as if he was on a single platform.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 145 of 220

The application has the restriction of not allowing upload files with the same

name in the same directory, but it is allowed with different directories.

Technically, the connection with owncloud is performed by an external library

by using the WebDAV protocol implemented in ownCloud: easywebdav.

This library allows to freely move the user navigation through WebDAV file

structure (ownCloud) from the StackSync platform.

4.5 Traces Analysis

Several platforms have been deployed, each one containing different test users, in

order to properly test the peculiarities of each configuration.

Although the number of users per platform, and therefore the number of traces

obtained, are small, the significance of this separation justifies a separate analysis

of the platforms.

One of the platforms of the project incorporates the recent updates of StackSync,

including sharing. The analysis of this information allows us to draw

conclusions, for example, that users with the highest number of shared folders

tend to store more files, and to use the platform more frequently.

Another platform incorporates encryption systems in communications between

the storage platform and the mobile applications, desktop and web. The analysis

of use of this platform serves to analyze the file load times, and to get indicators

for different file sizes. It has been useful for the debug of the software, by

improving the average load times and capacity of the platform.

It has been also used a more powerful platform for load testing of concurrent

users, by forcing from different users and applications, a heavy use of upload and

download of files, which has helped us to improve the functioning of the

platform and start the study of its scalability.

Currently there is a test version platform used by actual customers of the legal

environment, Which requires compliance with the law in the most demanding

level of data protection, in a demo environment. If the test results are

satisfactory, the tool will be sold through a licensing system, with cost

proportional to the number of users and disk space.

Next, we draft some examples of the indicators of measurement taken.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 146 of 220

First of the indicators shows the mean number of objects, that a user is storing at

a certain time.

Another indicator shows for a concrete user the size of the files that are stored in

a given time. This is shown in bytes. At this example the user is using

approximately 263MB of storage space.

A third indicator shows the mean number of containers of the user at a given

time. The graph show that the user had an average of four containers created.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 147 of 220

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 148 of 220

Annexes

Annex 1. Configuration file

The cloud configuration file is found at the address

“/var/www/eyeos/eyeos/extern/u1db/” and is called “settings.py”.

Below is a list of components that make up the configuration of a specific cloud,

in our case “Stacksync” or “NEC”:

version Version of the Oauth API (v2)

controlVersion Activates or deactivates the option to recover file

versions

comments Activates or deactivates the option to share

comments between the users of a file

calendar Activates or deactivates the option to synchronize

calendars.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 149 of 220

Urls

REQUEST_TOKEN_URL Oauth API where the request token is requested.

ACCES_TOKEN_URL Oauth API to request the Access token

CALLBACK_URL Redirection to eyeOS once the user authorizes

access to their private area

RESOURCE_URL Oauth API to access the user’s protected resources

OAUTH_URL Oauth API to request user verification

Consumer

key Provided by the cloud to identify eyeOS

secret Provided by the cloud to identify eyeOS

Annex 2. Oauth Manager

getRequestToken(cloud)

Request the request token from a specific cloud for the eyeOS consumer.

Parameters: cloud – Contains the name of the cloud

Script call: Example:

{

 “config”:

 {

 “cloud”: “Stacksync”

 }

}

Return: Token object or null in case of error.

Example:

{

 “key” : “token1234”,

 “secret”: “secret1234”

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 150 of 220

getAccessToken(cloud, token, verifier)

Request the Access token from a specific cloud for the eyeOS consumer from a

request token.

Parameters: cloud – Contains the name of the cloud

 token – Contains the request token and user

authorization

 verifier – Contains the authorization given by the user

for the eyeOS consumer

Script call: Example:

{

 “token” : {

 “key”: “token1234”,

 “secret”: “secret1234”

},

 “verifier”: “userVerified”

}

Return: Token object or null in case of error.

Example:

{

 “key” : “access1234”,

 “secret”: “access1234”

}

Annex 3. Oauth API

The configuration file of the Oauth API is detailed in Annex 1.

getRequestToken(oauth)

Request the request token of the eyeOS consumer.

Url: Use REQUEST_TOKEN_URL of the configuration file

Method: GET

Signature: Plaintext

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key, consumer secret, and CALLBACK_url of the

configuration file.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 151 of 220

Return: Key and secret of the request token or in case of an error it

returns an error structure:

 -error: Error number

 -description: Error description.

Example:

{

 “oauth_token” : “token1234”,

 “oauth_token_secret” : “secret1234”

}

- {

- “error” : “401”,

- “description” : “Authorization required”

- }

getAccessToken(oauth)

Request the Access token of the eyeOS consumer from the saved request token.

Url: Use ACCESS_TOKEN_URL of the configuration file

Method: GET

Signature: Plaintext

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key and consumer secret of the configuration file.

In addition to the request token and verifier received from

StackSync.

Return: Key and secret of the access token or in case of an error it

returns an error structure:

 - error: Error number

 - description: Error description.

Example:

{

 “oauth_token” : “token1234”,

 “oauth_token_secret” : “secret1234”

}

{

 “error” : “401”,

 “description” : “Authorization required”

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 152 of 220

Annex 4. Storage Manager

getMetadata(cloud, token, id, path, user, resourceUrl)

Obtain the metadata of the current element. Generate its structure from files

and/or directories in eyeOS.

Parameters: cloud – Contains the name of the cloud

 token – Contains the key and secret of the access token

 id – Identifying number of the element in the specific

cloud

 path – eyeOS route

 user – Identifier of the eyeOS user

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

Script call: Example:

{

 “config”: { “cloud”: “Stacksync”,

 ”resource_url”:”http://ast3-deim.urv.cat/v1/” },

 “token”: {

“key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “get”,

 “file”: false,

 “id”: “1653”,

 “contents”: true

 }

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 153 of 220

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Example:

{

 “status”: “NEW”,

 “mimetype”: “index/directory”,

 “checknum”: 0,

 “modified_at”: “2015-04-07 16:08:52.449”

 "filename": "Test_B1"

 “is_root”: false,

 “parent_id”: “null”,

 “version”: 1,

 “is_folder”: true,

 "id": 1653,

 “size”: 0,

 "contents":[{

 "status": "NEW",

 “mimetype”: “inode/directory”,

 “checksum”: 0,

 “modified_at”: “2015-04-07 16:08:53.397”

 “filename”: “AAA”,

 “is_root”: false,

 "parent_id": 1653,

 "version": 1,

 "is_folder": true,

 "id": 1654,

 "size":0

 }]

}

{“error”: 401}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 154 of 220

getSkel(cloud, token, file, id, metadatas, path, pathAbsolute, pathEyeos,

resourceUrl)

Recursively obtain the metadata that depends on the current element. Used in the

action of copying and moving in eyeOS.

Parameter

s:
 cloud – Contains the name of the cloud.

 token – Contains the key and secret of the access token.

 file – True if it is a file, or False if it is a directory.

 id – Identifying number of the element in the specific cloud.

 metadatas – Metadata accumulating vector.

 path – Path of the current element.

 pathAbsolute – eyeOS path

 pathEyeos – eyeOS path, only used when the destination of

the action is outside the Personal Cloud

 resourceUrl: API to access the user’s protected resources

from the external cloud (Optional)

Script

call:

Example:

{

 “config”: { “cloud”: “Stacksync” ,

 ”resource_url”:”http://ast3-deim.urv.cat/v1/” },

 “token”: {

“key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

“type”: “get”,

 “file”: false,

 “id”: 1653,

 “contents”: true

}

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 155 of 220

Return: Metadata vector or in case of an error it returns an error structure.

- error. Error number.

Example:

[{ "status": "NEW",

 “mimetype”: “inode/pdf”,

 “checksum”: 2230714779,

 “modified_at”: “2015-03-27 16:46:33.243”

 “filename”: “chicken.pdf”,

 "parent_id": 1653,

 "version": 1,

 "is_folder": false,

 “chunks”: [],

 "id": 1654,

 "size": 51500,

 “pathAbsolute”:

“/var/www/eyeos/eyeos/users/a/Cloudspaces/Stacksync/Test_B1/chic

ken.pdf”,

 “path”: “/Test_B1/”,

 “pathEyeos”:

“home://~/Cloudspaces/Stacksync/Test_B1/chicken.pdf”},

{ “status”: “NEW”,

 “mimetype”: “index/directory”,

 “checknum”: 0,

 “modified_at”: “2015-04-07 16:08:52.449”

 "filename": "Test_B1"

 “is_root”: false,

 “parent_id”: “null”,

 “version”: 1,

 “is_folder”: true,

 "id": 1653,

 “size”: 0,

“pathAbsolute”:

“/var/www/eyeos/eyeos/users/a/Cloudspaces/Stacksync/Test_B1”,

 “path”: “/”,

 “pathEyeos”: “home://~/Cloudspaces/Stacksync/Test_B1”

}]

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 156 of 220

createMetadata(cloud, token, user, file, name, parent_id, path, pathAbsolute,

resourceUrl)

Create a new file or directory.

Parameters:

 cloud – Contains the name of the cloud.

 token – Contains the key and secret of the access token.

 user – Identifier of the eyeOS user.

 file – True if it is a file, or False if it is a directory.

 name – Name of the element.

 parent_id – Id of the destination directory.

 path – Path of the current element.

 pathAbsolute – Absolute path. Mandatory if the element

is a file.

 resourceUrl: API to access the user’s protected resources

from the external cloud (Optional)

Script call:

Example:

{

 “config”: { “cloud”: “Stacksync”,

 “resource_url”:”http://ast3-deim.urv.cat/v1/” },

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: { “type”: “create”,

 “file”: true,

 “filename”: “File_1.txt”,

 “parent_id”: “1653”,

 “path”:

”/var/www/eyeos/…/Cloudspaces/Stacksync/Test_B1/File_1.txt”}

}

Return:

Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

- error: Error number. Only exists in case of an

error.

Example:

{"status": "OK" }

{ “status”: “KO”, “error”: 401}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 157 of 220

downloadMetadata(token, id, path, user, isTmp, cloud, resourceUrl)

Download the content of a file.

Parameters:

 token – Contains the key and secret of the access

token.

 id – Identifying number of the element in the specific

cloud.

 path – Absolute path.

 user – Identifier of the eyeOS user.

 isTmp – False, updates the version table of the files.

True, no update is carried out.

 cloud– Name of the cloud

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

Script call: Example:

{

“config”: { “cloud”: “Stacksync”,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: { “type”: “download”,

 “id”: 32565632111,

 “path”:

“/home/eyeos/Documents/Client.pdf”

 }

}

Return: Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

- error: Error number. Only exists in case of an

error.

Example:

{ “status”: “OK”}

{ “status”: “KO”, “error”: -1}

deleteMetadata(cloud, token, file, id, user, path, resourceUrl)

Delete an existing file or directory.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 158 of 220

Parameters: cloud – Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 file – True if it is a file, or False if it is a directory.

 id – Identifying number of the element in the specific

cloud.

 user – Identifier of the eyeOS user.

 path – Absolute path.

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

Script call: Example:

{

 “config”: { “cloud”: “Stacksync”,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {

“key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

“type”: “delete”,

 “file”: true,

 “id”: 32565632111

 }

}

Return: Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

- error: Error number. Only exists in case of an

error.

Example:

{ “status”: “OK”}

{ “status”: “KO”, “error”: -1}

renameMetadata(cloud, token, file, id, name, path, user, parent, resourceUrl)

Rename a file or directory.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 159 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 file – True if it is a file, or False if it is a directory.

 id – Identifying number of the element in the specific

cloud.

 name – New name of the element.

 path – Path of the current element.

 user – Identifier of the eyeOS user.

 parent – Id of the destination directory. (Optional)

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {

“key”: “token1234”,

“secret”: “secret1234”

 },

 “metadata”: {

“type”: “update”,

 “file”: true,

 “id”: 32565632156

 “filename”: “Client2.pdf”

 “parent_id”: 155241412

 }

}

Return: Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

- error: Error number. Only exists in case of an

error.

Example:

{ “status”: “OK”}{ “status”: “KO”, “error”: -1}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 160 of 220

moveMetadata(cloud, token, file, id, pathOrig, pathDest, user, parent,

filenameOld, filenameNew, resourceUrl)

Move a file or directory.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 file – True if it is a file, or False if it is a directory.

 id – Identifying number of the element in the specific

cloud.

 pathOrig – eyeOS path at origin.

 pathDest – eyeOS path at destination.

 user – Identifier of the eyeOS user.

 parent – Id of the destination directory.

 filenameOld – Name of the element in the origin path.

 filenameNew – Name of the element in the destination

path if different from the origin. (Optional).

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {“key”: “token1234”,

 “secret”: “secret1234”},

 “metadata”: {

 “type”: “update”,

 “file”: true,

 “id”: 32565632156

 “filename”: “Client2.pdf”

 “parent_id”: “null”

 }

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 161 of 220

Return: Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

- error: Error number. Only exists in case of an error.

Example:

{ “status”: “OK”}

{ “status”: “KO”, “error”: -1}

listVersions(cloud, token, id, user, resourceUrl)

Obtain the list of versions of a specific file.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id – Identifying number of the element in the specific

cloud.

 user – Identifier of the eyeOS user.

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “listVersions”,

 “id”: 32565632156

 }

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 162 of 220

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Example:

{"status": "CHANGED", "mimetype": "text/plain", "versions":

[{"status": "CHANGED", "mimetype": "text/plain",

"checksum": 2499810342, "modified_at": "2014-06-20

10:11:11.031", "filename": "welcome.txt", "parent_id": null,

"version": 4, "is_folder": false, "chunks": [], "id": 155, "size":

61}, {"status": "RENAMED", "mimetype": "text/plain",

"checksum": 1825838054, "modified_at": "2014-06-20

10:11:11.031", "filename": "welcome.txt", "parent_id": null,

"version": 3, "is_folder": false, "chunks": [], "id": 155, "size":

59}, {"status": "RENAMED", "mimetype": "text/plain",

"checksum": 1825838054, "modified_at": "2014-06-20

10:11:11.031", "filename": "welcome.txt", "parent_id": null,

"version": 2, "is_folder": false, "chunks": [], "id": 155, "size":

59}, {"status": "NEW", "mimetype": "text/plain", "checksum":

1825838054, "modified_at": "2014-06-20 10:11:11.031",

"filename": "welcome.txt", "parent_id": null, "version": 1,

"is_folder": false, "chunks": [], "id": 155, "size": 59}],

"checksum": 2499810342, "modified_at": "2014-06-20

10:11:11.031", "filename": "welcome.txt", "parent_id": "null",

"version": 4, "is_folder": false, "chunks": [], "id": 155, "size":

61}

{“error”: 401}

getFileVersionData(cloud, token, id, version, path, user, resourceUrl)

Download the content of a specific version of an existing file.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id – Identifying number of the element in the specific

cloud.

 version – Version pending download.

 path – Absolute path.

 user – Identifier of the eyeOS user.

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 163 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “getFileVersion”,

 “id”: 32565632156,

 “version”: 2,

 “path”: “/home/eyeos/welcome.pdf”

 }

}

Return: Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

- error: Error number. Only exists in case of an error.

Example:

{ “status”: “OK”}

{ “status”: “KO”, “error”: -1}

getListUsersShare(cloud, token, id, resourceUrl)

Obtain the list of users who share the directory.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id – Identifying number of the directory in the specific

cloud.

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 164 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {“key”: “token1234”,

 “secret”: “secret1234”},

 “metadata”: { “type”: “listUsersShare”,

 “id”: 32565632156}

}

Return: Metadata vector or in case of an error it returns an error

structure.

- error. Error number.

Example:

[{"joined_at": "2014-05-27", "is_owner": true, "name":

"tester1", "email": "tester1@test.com"}]

{“error”: 401}

shareFolder(cloud, token, id, list,shared, resourceUrl)

Share or stop sharing a directory with a list of users.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id – Identifying number of the directory in the specific

cloud.

 list – List of users.

 shared – (true- unshare, false - share)

 resourceUrl: API to access the user’s protected

resources from the external cloud (Optional)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 165 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://ast3-deim.urv.cat/v1/”},

 “token”: {“key”: “token1234”,

 “secret”: “secret1234”},

 “metadata”: {"type":"shareFolder",

 “id”: 32565632156,

 "list":["a@a.com","b@b.com"],

 "shared":false}

}

Return: Structure of the result.

- status. ‘OK’ if correct ‘KO’ in case of an error.

error: Error number. Only exists in case of an error.

Example:

{ “status”: “OK”}

{ “status”: “KO”, “error”: -1}

insertComment(cloud, token, id, user, text, resourceUrl)

Create a new comment associated to a file shared on the cloud

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id – Identifying number of the file in the specific cloud.

 user - eyeOS user.

 text – Text of the comment.

 resourceUrl: API to access resources that allow for

comments to be managed (optional).

mailto:a@a.com

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 166 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234”},

 “metadata”: { “type”: “insertComment”,

 “id”: “2401”,

 “user”: “tester1”,

 “text”: “Test coments”}

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“id”: “2401”,“user”: “tester1”,”text”:”Test comments”,

”cloud”:”Stacksync,

”status”:”NEW”,”time_created”:”201506101548”}

{ “status”: “KO”, “error”:400}

deleteComment(cloud, token, id, user, timeCreated, resourceUrl)

Eliminar un comentario asociado a un fichero compartido en el cloud.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 Id – Identifying number of the file in the specific cloud.

 user - eyeOS user.

 timeCreated – Time and date of creation.

 resourceUrl: API to access resources that allow for

comments to be managed (optional).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 167 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “deleteComment”,

 “id”: “2401”,

 “user”: “tester1”,

 “time_created”: “201506101548”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“id”: “2401”, “user”: “tester1”, ”text”: ”Test comments”,

”cloud”: ”NEC”, ”status”: ”DELETED”, ”time_created”:

”201506101548”}

{ “status”: “KO”, “error”: 400}

getComments(cloud, token, id, resourceUrl)

Obtain a list of comments associated to a file shared on the cloud

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 Id – Identifying number of the file in the specific cloud.

 resourceUrl: API to access resources that allow for

comments to be managed (optional).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 168 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “getComments”,

 “id”: “2401”

 }

}

Return: Metadata vector or in case of an error it returns an error

structure.

- error. Error number.

Examples:

[{“id”: “2401”, “user”:“tester1”, ”text”:”Test comments”,

”cloud”:”Stacksync”, ”status”: ”NEW”, ”time_created”:

”201506101548”}]

{ “status”: “KO”, “error”: 400}

insertEvent(cloud, token, user, calendar, isallday, timestart, timeend, repetition,

finaltype, finalvalue, subject, location, description, repeattype, resourceUrl)

Create a new event in the calendar.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 169 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 calendar – Calendar identifier.

 isallday – Specifies if the event takes up the whole day.

 timestart - Start date and time of the event.

 timeend – End date and time of the event.

 repetition – Specifies if the event is repeated on

different days.

 finaltype – Final type of event.

 finalvalue – End date and time of the event if it goes on

for several days.

 subject - Identifier of the event.

 location - Location of the event.

 description - Complementary information of the event.

 repeattype – How the event is repeated.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 170 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: { “type”: “insertEvent”,

 “user”: “eyeos”,

 “calendar”: “personal”,

 “isallday”: 0,

 “timestart”: “201419160000”,

 “timeend: “201419170000”,

 “repetition”: “null”,

 “finaltype”: “1”,

 “finalvalue”: “0”,

 “subject”: “test”,

 “location”: “Barcelona”,

 “description”: “detail”,

 “repeattype”: “n”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“user”:”eyeos”, ”calendar”:”personal”, ”isallday”:0,

”timestart”:“201419160000”, ”timeend”: “201419170000”,

”repetition”:”null”, ”finaltype”:”1”, ”finalvalue”:”0”,

”subject”:”test”, ”location”:”Barcelona”,

”description”:”detail”, ”repeattype”:”n”,

”cloud”:”Stacksync”, ”status”:”NEW”, ”type”:”event”}

{ “status”: “KO”, “error”: 400}

deleteEvent(cloud, token, user, calendar, timestart, timeend, isallday,

resourceUrl)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 171 of 220

Delete an event from the calendar.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 calendar – Calendar identifier.

 timestart - Start date and time of the event.

 timeend – End date and time of the event.

 isallday – Specifies if the event takes up the whole day.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “deleteEvent”,

 “user”: “eyeos”,

 “calendar”: “personal”,

 “timestart”: “201419160000”,

 “timeend: “201419170000”,

 “isallday”: 0,

 }

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 172 of 220

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“user”:”eyeos”, ”calendar”:”personal”, ”isallday”:0,

”timestart”:“201419160000”, ”timeend”:“201419170000”,

”repetition”:”null”, ”finaltype”:”1”, ”finalvalue”:”0”,

”subject”:”test”, ”location”:”Barcelona”,

”description”:”detail”, ”repeattype”:”n”,

”cloud”:”Stacksync”, ”status”:”DELETED”,

“type”:”event”}

{ “status”: “KO”, “error”: 400}

updateEvent(cloud, token, user, calendar, isallday, timestart, timeend, repetition,

finaltype, finalvalue, subject, location, description, repeattype, resourceUrl)

Update the event data in the calendar.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 calendar – Calendar identifier.

 isallday – Specifies if the event takes up the whole day.

 timestart - Start date and time of the event.

 timeend – End date and time of the event.

 repetition – Specifies if the event is repeated on

different days.

 finaltype – Final type of event.

 finalvalue – End date and time of the event if it goes on

for several days.

 subject - Identifier of the event.

 location - Location of the event.

 description - Complementary information of the event.

 repeattype – How the event is repeated.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 173 of 220

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: { “type”: “updateEvent”,

 “user”: “eyeos”,

 “calendar”: “personal”,

 “isallday”: 0,

 “timestart”: “201419160000”,

 “timeend: “201419170000”,

 “repetition”: “null”,

 “finaltype”: “1”,

 “finalvalue”: “0”,

 “subject”: “test”,

 “location”: “Barcelona”,

 “description”: “detail”,

 “repeattype”: “n” }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“user”:”eyeos”, ”calendar”:”personal”, ”isallday”:0,

”timestart”:“201419160000”, ”timeend”:“201419170000”,

”repetition”:”null”, ”finaltype”:”1”, ”finalvalue”:”0”,

”subject”:”test”, ”location”:”Barcelona”,

”description”:”detail”, ”repeattype”:”n”,

”cloud”:””Stacksync”, ”status”:”CHANGED”,

”type”:”event”}

{ “status”: “KO”, “error”: 400}

getEvents(cloud, token, user, calendar, resourceUrl)

Obtain all the events from a calendar.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 174 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 calendar – Calendar identifier.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “getEvents”,

 “user”: “eyeos”,

 “calendar”: “personal”

 }

}

Return: Metadata vector or in case of an error it returns an error

structure.

- error. Error number.

Examples:

[{“user”:”eyeos”, ”calendar”:”personal”, ”isallday”:0,

”timestart”:“201419160000”, ”timeend”:“201419170000”,

”repetition”:”null”, ”finaltype”:”1”, ”finalvalue”:”0”,

”subject”:”test”, ”location”:”Barcelona”,

”description”:”detail”, ”repeattype”:”n”,

”cloud”:”Stacksync”,

”status”:”NEW”, ”type”:”event”}

{ “status”: “KO”, “error”: 400}]

insertCalendar(cloud, token, user, name, description, timezone, resourceUrl)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 175 of 220

Create a new calendar.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 name – Calendar identifier.

 description - Complementary information of the

calendar.

 timezone – Timezone of the calendar.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “insertCalendar”,

 “user”: “eyeos”,

 “name”: “personal”,

 “description”:”detail”,

 “timezone”:”0”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“user”:”eyeos”, ”name”:”personal”, ”description”:”detail”,

”timezone”:”0”,

“cloud”:”Stacksync”, “status”:”NEW”, ”type”:”calendar”}

{ “status”: “KO”, “error”: 400}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 176 of 220

deleteCalendar(cloud, token, user, name, resourceUrl)

Delete a calendar.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 name – Calendar identifier.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: {

 “type”: “deleteCalendar”,

 “user”: “eyeos”,

 “name”: “personal”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“user”:”eyeos”, ”name”:”personal”, ”description”:”detail”,

”timezone”:”0”,

“cloud”:”Stacksync”, “status”:”DELETED”,

”type”:”calendar”}

{ “status”: “KO”, “error”: 400}

updateCalendar(cloud, token, user, name, description, timezone, resourceUrl)

Update calendar data.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 177 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 name – Calendar identifier.

 description - Complementary information of the

calendar.

 timezone – Timezone of the calendar.

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “updateCalendar”,

 “user”: “eyeos”,

 “name”: “personal”,

 “description”:”detail”,

 “timezone”:”0”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“user”:”eyeos”, ”name”:”personal”, ”description”:”detail”,

”timezone”:”0”,

“cloud”:”Stacksync”, “status”:”CHANGED”,

”type”:”calendar”}

{ “status”: “KO”, “error”: 400}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 178 of 220

getCalendars(cloud, token, user, resourceUrl)

Obtain a list with all of the user’s calendars.

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “getCalendars”,

 “user”: “eyeos”,

 }

}

Return: Metadata vector or in case of an error it returns an error

structure.

- error. Error number.

Examples:

[{“user”:”eyeos”, ”name”:”personal”, ”description”:”detail”,

”timezone”:”0”,

“cloud”:”Stacksync”, “status”:”NEW”, ”type”:”calendar”}]

{ “status”: “KO”, “error”: 400}

getCalendarsAndEvents(cloud, token, user, resourceUrl)

Obtain a list with all of the user’s calendars and events.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 179 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: {

“type”: “getCalendarsAndEvents”,

 “user”: “eyeos”,

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

 [{“user”:”eyeos”, ”name”:”personal”, ”description”:”detail”,

”timezone”:”0”,

“cloud”:”Stacksync”, “status”:”NEW”, ”type”:”calendar”},

{“user”:”eyeos”, ”calendar”:”personal”, ”isallday”:0,

”timestart”:“201419160000”, ”timeend”:“201419170000”,

”repetition”:”null”, ”finaltype”:”1”, ”finalvalue”:”0”,

”subject”:”test”, ”location”:”Barcelona”,

”description”:”detail”, ”repeattype”:”n”,

”cloud”:”Stacksync”, ”status”:”NEW”, ”type”:”event”}]

{ “status”: “KO”, “error”: 400}

deleteCalendarsUser(cloud, token, user, resourceUrl)

Delete all the calendars and events of the user.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 180 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 user - eyeOS user

 resourceUrl: API to access resources that allow for

calendars to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: {

 “type”: “deleteCalendarsUser”,

 “user”: “eyeos”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“delete”:”true”}

{ “status”: “KO”, “error”: 400}

unLockedFile(cloud, token, id, user, ipserver, timeLimit, dt_now, resourceUrl)

Check if the file is blocked by another user.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 181 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id - Identifying number of the element in the specific

cloud.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 timeLimit – Maximum time in minutes to block a file.

 dt_now – Current date and time

 resourceUrl: API to access resources that allow for

documents to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: {

“type”: “getMetadataFile”,

 “id”: “2150

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“id”:”2150”, ”cloud”:”Stacksync”, ”user”:”eyeos”,

”ipserver”:”192.168.56.101”, “datetime”:”2015-05-12

11:50:00”, ”status”:”close”}

{ “status”: “KO”, “error”: 400}

lockFile(cloud, token, id, user, ipserver, timeLimit, dt_now, resourceUrl)

Unblock an eyeDocs file.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 182 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id - Identifying number of the element in the specific

cloud.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 timeLimit – Maximum time in minutes to block a file.

 dt_now – Current date and time

 resourceUrl: API to access resources that allow for

documents to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: { “key”: “token1234”,

 “secret”: “secret1234” },

 “metadata”: { “type”: “lockFile”,

 “id”: “2150,

 “user”: “eyeos,

 “ipserver”: “192.168.56.101”,

 “datetime”: “2015-05-12 11:50:00”,

 “timelimit”: 10 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“lockFile”: true}

{ “status”: “KO”, “error”: 400}]

updateDateTime(cloud, token, id, user, ipserver, dt_now, resourceUrl)

Update the metadata with the date and time of the latest change.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 183 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id - Identifying number of the element in the specific

cloud.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 dt_now – Current date and time

 resourceUrl: API to access resources that allow for

documents to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “updateDateTime”,

 “id”: “2150,

 “user”: “eyeos,

 “ipserver”: “192.168.56.101”,

 “datetime”: “2015-05-12 11:50:00”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“updateFile”: true}

{ “status”: “KO”, “error”: 400}

unLockFile(cloud, token, id, user, ipserver, dt_now, resourceUrl)

Unblock an eyeDocs file.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 184 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id - Identifying number of the element in the specific

cloud.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 dt_now – Current date and time

 resourceUrl: API to access resources that allow for

documents to be managed (optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “unLockFile”,

 “id”: “2150,

 “user”: “eyeos,

 “ipserver”: “192.168.56.101”,

 “datetime”: “2015-05-12 11:50:00”

 }

}

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{“unLockFile”: true}

{ “status”: “KO”, “error”: 400}

getMetadataFolder(cloud, token, id, resourceUrl)

Obtain the file structure of a file in the cloud.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 185 of 220

Parameters: cloud –Contains the name of the cloud

 token – Contains the key and secret of the access

token.

 id - Identifying number of the element in the specific

cloud.

 resourceUrl: API to access the user’s protected

resources from the user in the cloud (Optional).

Script call: Example:

{

 “config”: { “cloud”: “Stacksync” ,

 “resource_url”:”http://192.168.56.101:9000/”},

 “token”: {

 “key”: “token1234”,

 “secret”: “secret1234”

 },

 “metadata”: {

 “type”: “get”,

 “file”: false,

 “id”: “1653”,

 “contents”: true

 }

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 186 of 220

Return: Metadata or in case of an error it returns an error structure.

- error. Error number.

Examples:

{

 “status”: “NEW”,

 “mimetype”: “index/directory”,

 “checknum”: 0,

 “modified_at”: “2015-04-07 16:08:52.449”

 "filename": "Test_B1"

 “is_root”: false,

 “parent_id”: “null”,

 “version”: 1,

 “is_folder”: true,

 "id": 1653,

 “size”: 0,

 "contents":[{

 "status": "NEW",

 “mimetype”: “inode/directory”,

 “checksum”: 0,

 “modified_at”: “2015-04-07 16:08:53.397”

 “filename”: “AAA”,

 “is_root”: false,

 "parent_id": 1653,

 "version": 1,

 "is_folder": true,

 "id": 2150,

 "size":0

 }]

}

{ “status”: “KO”, “error”: 400}

Annex 5. Storage API

The configuration file of the Storage API is detailed in Annex 1.

getMetadata(oauth, file, id, contents)

Obtain the metadata of a directory and/or files.

Url: Use RESOURCE _URL of the configuration file

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 187 of 220

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the accesstoken.

 file – True if it is a file, or False if it is a directory.

 id - Identifying number of the element (directory or

file).

 contents – True, list the metadata that depend on the

element identified with “Id”, or None, does not activate

the list. Used when “Id” is a directory. (Optional)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 188 of 220

Return: Metadata of the element(s) or in case of error returns an error

structure:

- error: Error number

- description: Error description.

- Examples:

{

"filename":"clients",

 "id":9873615,

 “mimetype”: “inode/directory”,

 “checknum”: 0,

 "status":"NEW",

 "version":1,

 "parent_id":”null”,

"modified_at":"2013-03-08 10:36:41.997",

 “is_root”: false,

 "is_folder":true,

 "contents":[{

 "filename":"Client1.pdf",

 "id":32565632156,

 "size":775412,

 "mimetype":"application/pdf",

 “checksum”: 714671479,

 "status":"NEW",

 "version":1,

 "parent_id":-348534824681,

 "modified_at":"2013-03-08 10:36:41.997",

 "is_folder":false,

 “chunks”: []

 }]

}

- {"error":403, "description": "Forbidden"}

updateMetadata(oauth, file, id, name, parent)

Update the metadata of the element when renaming and moving.

Url: Use RESOURCE _URL of the configuration file

Method: PUT

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 189 of 220

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 file – True if it is a file, or False if it is a directory.

 id - Identifying number of the element (directory or

file).

 name – Name of the element

 parent – Id of the destination directory. (Optional)

Return: Metadata of the element or in case of an error it returns an

error structure:

- error: Error number

- description: Error description.

- Examples:

{

 "status": "RENAMED",

 “parent_file_version”: “”,

 “parent_file_id”: “”,

 “checksum”: 151519872,

 "is_folder": false,

 "modified_at": "Wed Apr 15 09:51:41 CEST 2015",

 "id": 1705,

 "size": 6,

 "mimetype": "text/plain",

 "filename": "File_A.txt",

 "parent_id": “null”,

"version": 2

 “chunks”:

[“711383A59FDA05336FD2C70C8059D1523EB41A”]

}

- {"error":403, "description": "Forbidden"}

createMetadata(oauth, file, name, parent, path)

Create a new element (file or directory).

Url: Use RESOURCE _URL of the configuration file

Method: POST

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 190 of 220

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the accesstoken.

 file – True if it is a file, or False if it is a directory.

 name – Name of the element

 parent – Id of the destination directory. (Optional)

 path – Absolute path of the file. (Optional)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 191 of 220

Return: Metadata of the element or in case of an error it returns an

error structure:

- error: Error number

- description: Error description.

- Examples:

- Metadata new directory

{"status": "NEW",

“parent_file_version”: 2,

“parent_file_id”: 1636,

“checksum”: 0,

“is_folder": true,

"modified_at": "Wed Apr 15 10:00:54 CEST 2015",

"id": 1706,

"size": 0,

"mimetype": "inode/directory",

"filename": "New Folder",

"parent_id": 1636,

"version": 1

- }

- Metadata new file

{"status": "NEW",

“parent_file_version”: 2,

“parent_file_id”: 1636,

“checksum”: 2159423794,

"is_folder": false,

"modified_at": "Wed Apr 15 10:04:34 CEST 2015",

"id": 1706,

"size": 0,

"mimetype": "application/zip",

"filename": "New Document.edoc",

"parent_id": 1636,

- "version": 1,

“chunks”:

[“1C2D8F868958D654484980A347C9E417B”]

- }

- {"error":403, "description": "Forbidden"}

uploadFile(oauth, id, path)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 192 of 220

Upload the content of an existing file.

Url: Use RESOURCE _URL of the configuration file

Method: PUT

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id – Identifying number of the file.

 path – Absolute path of the file. (Optional)

Return: True, false, or in case of 403 error it returns the error number

- Examples:

- true

- false

- {"error":403, "description": "Forbidden"}

downloadFile(oauth, id, path)

Download the content of an existing file.

Url: Use RESOURCE _URL of the configuration file

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id – Identifying number of the file.

 path – Absolute path of the file. (Optional)

Return: True, false, or in case of 403 error it returns the error number

- Examples:

- true

- false

- {"error":403, "description": "Forbidden"}

deleteMetadata(oauth, file, id)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 193 of 220

Delete an element (file or directory).

Url: Use RESOURCE _URL of the configuration file

Method: DELETE

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 file – True if it is a file, or False if it is a directory.

 id - Identifying number of the element (directory or

file).

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 194 of 220

Return: Metadata of the element or in case of an error it returns an

error structure:

- error: Error number

- description: Error description.

Examples:

- Delete a directory

{"status": "DELETED",

“parent_file_version”: 2,

“parent_file_id”: 1636,

“checksum”: 0,

"is_folder": true,

"modified_at": "Wed Apr 15 10:37:51 CEST 2015”,

"id": 1706,

"size": 0,

"mimetype": "inode/directory",

"filename": "New Folder",

"parent_id": 1636,

"version": 2

}

- Delete a file

{"status": "DELETED",

“parent_file_version”: 2,

“parent_file_id”: 1636,

“checksum”: 111038472,

"is_folder": false,

"modified_at": "Wed Apr 15 10:40:46 CEST 2015”,

"id": 1707,

“size": 493,

"mimetype": "application/zip",

"filename": "New Document.edoc",

"parent_id": 1636,

"version": 4,

“chunks”: []

}

- {"error":403, "description": "Forbidden"}

getFileVersions(oauth, id)

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 195 of 220

Obtain the list of versions of a specific file.

Url: Use RESOURCE _URL of the configuration file

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id – Identifying number of the file.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 196 of 220

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

- Examples:

{ "status": "CHANGED",

 "is_folder": false,

 "chunks": [],

 "id": "155",

 "size": 61,

 "mimetype": "text/plain",

 "versions": [

 {"status": "CHANGED",

 "is_folder": false,

 "chunks": [],

 "id": "155",

 "size": 61,

 "mimetype": "text/plain",

 "checksum": 2499810342,

 "modified_at": "2014-06-20 10:11:11.031",

 "filename": "welcome.txt",

 "parent_id": "null",

 "version": 2},

 {"status": "RENAMED",

 "is_folder": false,

 "chunks": [],

 "id": "155",

 "size": 59,

 "mimetype": "text/plain",

 "checksum": 1825838054,

 "modified_at": "2014-06-20 10:11:11.031",

 "filename": "welcome.txt",

 "parent_id": "null",

 "version": 1}

],

 "checksum": 2499810342,

 "modified_at": "2014-06-20 10:11:11.031",

 "filename": "welcome.txt",

 "parent_id": "null",

- "version": 2

- }

- {"error":403, "description": "Forbidden"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 197 of 220

getFileVersionData(oauth, id, version, path)

Download the content of a specific version of an existing file.

Url: Use RESOURCE _URL of the configuration file

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id – Identifying number of the file.

 version – Version pending download.

 path – Absolute path of the file.

Return: True or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

- Example:

- {"error":403, "description": "Forbidden"}

getListUsersShare(oauth, id)

Obtain the list of users who share the directory.

Url: Use RESOURCE _URL of the configuration file

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id – Identifying number of the directory.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 198 of 220

Return: List of users or in case of an error it returns an error

structure:

- error: Error number

- description: Error description.

- Example:

[{"joined_at": "2014-05-27", "is_owner": true, "name":

"tester1", "email": "tester1@test.com"}]

- {"error":403, "description": "Forbidden"}

shareFolder(oauth, id, list, isShared)

Share or stop sharing a directory with a list of users.

Url: Use RESOURCE _URL of the configuration file

Method: POST

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id – Identifying number of the directory.

 list – List of users

 isShared – (true - unshare, False - share)

Return: True or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

- Example:

- {"error":403, "description": "Forbidden"}

insertComment(oauth, id, user, text, cloud)

Create a new comment associated to a file shared on the cloud

Url: RESOURCE _URL of the configuration file.

Method: POST

Signature: HMAC-SHA1

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 199 of 220

Parameters

:

 oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In addition

to the access token.

 id – Identifying number of the file

 user – Name of user

 text –Text of the comment.

 cloud – Identifier of the cloud

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“id”: “2401”, “user”: “tester1”, ”text”:”Test comments”,

”cloud”:”Stacksync,”status”:”NEW”,”time_created”:”20150610154

8”}

{"error":404, "description": "Incorrect params"}

Create new comment in the cloud through the use of the Sync API

Url: RESOURCE _URL + comments

Example:

http://demo.eyeos.com/comments

Method: POST

Body: {

“id”: “2401” ,

 “user”: “tester1”,

”text”:”Test comments”,

”cloud”:”Stacksync”

}

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“id”: “2401”,“user”: “tester1”,”text”:”Test comments”,

”cloud”:”Stacksync,”status”:”NEW”,”time_created”:”201506101548”

}

- {"error":404, "description": "Incorrect params"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 200 of 220

deleteComment(oauth, id, user, cloud, time_created)

Delete a comment associated to a file shared on the cloud.

Url: RESOURCE _URL of the configuration file.

Method: DELETE

Signature: HMAC-SHA1

Parameter

s:

 oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In addition

to the access token.

 id – Identifying number of the file

 user – Name of user

 cloud – Identifier of the cloud

 time_created – Date and time the comment was created

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“id”: “2401”,“user”: “tester1”,”text”:”Test comments”,

”cloud”:”Stacksync,”status”:”DELETED”,”time_created”:”2015061

01548”}

- {"error":404, "description": "Incorrect params"}

Delete a comment in the cloud through the use of the Sync API

Url: RESOURCE _URL + comment/{id}/{user}/{cloud}/{time_created}

Example:

http://demo.eyeos.com/comment/11/tester1/Stacksync/201506101548

Method: DELETE

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“id”: “2401”,“user”: “tester1”,”text”:”Test comments”,

”cloud”:”Stacksync, ”status”:”DELETED”,

”time_created”:”201506101548”}

- {"error":404, "description": "Incorrect params"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 201 of 220

getComments(oauth, id, cloud)

Obtain the list of comments of a file shared on the cloud.

Url: RESOURCE _URL of the configuration file.

Method: GET

Signature: HMAC-SHA1

Parameters

:

 oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In addition

to the access token.

 id – Identifying number of the file.

 cloud – Identifier of the cloud

Return: Metadata vector or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

[{“id”: “2401”,“user”: “tester1”,”text”:”Test comments”,

”cloud”:”Stacksync,”status”:”NEW”,”time_created”:”20150610154

8”}]

- {"error":404, "description": "Incorrect params"}

Obtain the list of comments of the file in the cloud through the use of the Sync

API

Url: RESOURCE _URL + comment/{id}/{cloud}

Example:

http://demo.eyeos.com/comment/2401/Stacksync

 GET

Method

:

Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

[{“id”: “2401”,“user”: “tester1”,”text”:”Test comments”,

”cloud”:”Stacksync,”status”:”NEW”,”time_created”:”201506101548”}

]

 {"error":404, "description": "Incorrect params"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 202 of 220

insertEvent(oauth, user, calendar, cloud, isallday, timestart, timeend, repetition,

finaltype, finalvalue, subject, location, description, repeattype)

Create a new event in the calendar.

Url: RESOURCE _URL of the configuration file.

Method: POST

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 calendar – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is

saved.

 isallday – Specifies if the event takes up the whole day.

 timestart – Start date and time of the event.

 timeend – End date and time of the event

 repetition – Specifies if the event is repeated on

different days.

 finaltype – Final type of event.

 finalvalue – End date and time of the event if it goes on

for several days.

 subject - Identifier of the event.

 location - Location of the event.

 description - Complementary information of the event.

 repeattype – How the event is repeated.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 203 of 220

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”, ”calendar”:”personal”, ”isallday”:0,

 ”timestart”:“201419160000”, ”timeend”:“201419170000”,

 ”repetition”:”null”, ”finaltype”:”1”, ”finalvalue”:”0”,

”subject”:”test”,

 ”location”:”Barcelona”, ”description”:”detail”,

”repeattype”:”n”,

 ”cloud”:”Stacksync”, ”status”:”NEW”, ”type”:”event”}

- {"error":404, "description": "Incorrect params"}

Create new event in the cloud calendar through the use of the Sync API

Url:

RESOURCE _URL + event

Example:

http://demo.eyeos.com/event

Method: POST

Body: {

 "user":”eyeos”,

 "calendar":”personal”,

 "cloud":”Stacksync”,

 "isallday":0,

 "timestart":“201419160000”,

 "timeend":”201419170000”,

 "repetition":”null”,

 "finaltype":”1”,

 "finalvalue":”0”,

 "subject":”test”,

 "location":”Barcelona”,

 "description":”detail”,

 "repeattype":”n

}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 204 of 220

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”, ”repeattype”:

”n”,

 ”cloud”: ”Stacksync”, ”status”: ”NEW”, ”type”: ”event”}

{"error":404, "description": "Incorrect params"}

deleteEvent(oauth, user, calendar, cloud, timestart, timeend, isallday)

Delete an event in the calendar.

Url: RESOURCE _URL of the configuration file.

Method: DELETE

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 calendar – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is

saved.

 timestart – Start date and time of the event.

 timeend – End date and time of the event

 isallday – Specifies if the event takes up the whole day.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 205 of 220

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”:”test”,

”location”: ”Barcelona”, ”description”: ”detail”,

”repeattype”: ”n”,

”cloud”: ”Stacksync”, ”status”: ”DELETED”, ”type”:

”event”}

- {"error":404, "description": "Incorrect params"}

Delete an event in the calendar in the cloud through the use of the Sync API

Url:

RESOURCE _URL + event/{user}/{calendar}/{cloud}/

{timestart}/{timeend}/{isallday}

Example: http://demo.eyeos.com/event/eyeos/personal/Stacksync/

201419160000/201419170000/0

Method: DELETE

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”, ”repeattype”:

”n”,

”cloud”: ”Stacksync”, ”status”: ”DELETED”, ”type”: ”event”}

- {"error":404, "description": "Incorrect params"}

updateEvent(oauth, user, calendar, cloud, isallday, timestart, timeend, repetition,

finaltype, finalvalue, subject, location, description, repeattype)

Update the event data in the calendar.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 206 of 220

Url: RESOURCE _URL of the configuration file.

Method: PUT

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 calendar – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is

saved.

 isallday – Specifies if the event takes up the whole day.

 timestart – Start date and time of the event.

 timeend – End date and time of the event

 repetition – Specifies if the event is repeated on

different days.

 finaltype – Final type of event.

 finalvalue – End date and time of the event if it goes on

for several days.

 subject - Identifier of the event.

 location - Location of the event.

 description - Complementary information of the event.

 repeattype – How the event is repeated.

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”,

”repeattype”: ”n”,

”cloud”: ”Stacksync”, ”status”: ”CHANGED”, ”type”:

”event”}

- {"error": 404, "description": "Incorrect params"}

Update an event in the calendar in the cloud through the use of the Sync API

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 207 of 220

Url:

RESOURCE _URL + event

Example:

http://demo.eyeos.com/event

Method: PUT

Body: {

 "user":”eyeos”,

 "calendar":”personal”,

 "cloud":”Stacksync”,

 "isallday":0,

 "timestart":“201419160000”,

 "timeend":”201419170000”,

 "repetition":”null”,

 "finaltype":”1”,

 "finalvalue":”0”,

 "subject":”test”,

 "location":”Barcelona”,

 "description":”detail”,

 "repeattype":”n”

}

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”, ”repeattype”:

”n”,

”cloud”: ”Stacksync”, ”status”: ”CHANGED”, ”type”:

”event”}

- {"error":404, "description": "Incorrect params"}

getEvents(oauth, user, calendar, cloud)

Obtain a list with all the events in the calendar.

Url: RESOURCE _URL of the configuration file.

Method: GET

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 208 of 220

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 calendar – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is

saved.

Return: Metadata vector or in case of an error it returns an error

structure:

- error: Error number

- description: Error description.

Examples:

[{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”,

”repeattype”: ”n”,

”cloud”: ”Stacksync”, ”status”: ”NEW”, ”type”: ”event”}]

- {"error":404, "description": "Incorrect params"}

Obtain the list with the events in the calendar in the cloud through the use of the

Sync API

Url: RESOURCE _URL + event/{user}/{calendar}/{cloud}

Example:

http://demo.eyeos.com/event/eyeos/personal/Stacksync

Method: GET

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 209 of 220

Return: Metadata vector or in case of an error it returns an error

structure:

- error: Error number

- description: Error description.

Examples:

[{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”, ”repeattype”:

”n”,

”cloud”:”Stacksync”, ”status”: ”NEW”, ”type”: ”event”}]

- {"error":404, "description": "Incorrect params"}

insertCalendar(oauth, user, name, cloud, description, timezone)

Create a new calendar.

Url: RESOURCE _URL of the configuration file

Method: POST

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 name – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is saved.

 description - Complementary information of the calendar.

 timezone - Timezone of the calendar.

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezo

ne”:”0”,

“cloud”: ”Stacksync”, “status”: ”NEW”, ”type”: ”calendar”}

- {"error": 404, "description": "Incorrect params"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 210 of 220

Create a new calendar in the cloud through the use of the Sync API

Url: RESOURCE _URL + calendar

Example:

http://demo.eyeos.com/calendar

Method: POST

Body: {

 "user":”eyeos”,

 "name":”personal”,

 "cloud":”Stacksync”,

 "description":”detail”,

 "timezone":”0”

}

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezone”

:”0”,

“cloud”: ”Stacksync”, “status”: ”NEW”, ”type”: ”calendar”}

- {"error":404, "description": "Incorrect params"}

deleteCalendar(oauth, user, name, cloud)

Delete a calendar.

Url: RESOURCE _URL of the configuration file

Method: DELETE

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 name – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is saved.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 211 of 220

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezo

ne”:”0”,

“cloud”: ”Stacksync”, “status”: ”DELETED”, ”type”: ”calendar”}

- {"error":404, "description": "Incorrect params"}

Delete a calendar in the cloud through the use of the Sync API

Url: RESOURCE _URL + calendar/{user}/{name}/{cloud}

Example:

http://demo.eyeos.com/calendar/eyeos/personal/Stacksync

Method: DELETE

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezo

ne”:”0”,

“cloud”: ”Stacksync”, “status”: ”DELETED”, ”type”: ”calendar”}

- {"error":404, "description": "Incorrect params"}

updateCalendar(oauth, user, name, cloud, description, timezone)

Update calendar data.

Url: RESOURCE _URL of the configuration file

Method: PUT

Signature: HMAC-SHA1

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 212 of 220

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 name – Calendar identifier.

 cloud – Identifier of the cloud where the calendar is saved.

 description - Complementary information of the calendar.

 timezone - Timezone of the calendar.

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezo

ne”:”0”,

“cloud”: ”Stacksync”, “status”: ”CHANGED”, ”type”: ”calendar”}

- {"error": 404, "description": "Incorrect params"}

Update a calendar in the cloud through the Sync API

Url: RESOURCE _URL + calendar

Example:

http://demo.eyeos.com/calendar

Method: PUT

Body: {

 "user":”eyeos”,

 "name":”personal”,

 "cloud":”Stacksync”,

 "description":”detail”,

 "timezone":”0”

}

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezone”

:”0”,

“cloud”: ”Stacksync”, “status”: ”CHANGED”, ”type”: ”calendar”}

- {"error": 404, "description": "Incorrect params"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 213 of 220

getCalendars(oauth, user, cloud)

Obtain the list with all the user’s calendars

Url: RESOURCE _URL of the configuration file

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 cloud – Identifier of the cloud where the calendar is saved.

Return: Metadata vector or in case of an error it returns an error

structure:

- error: Error number

- description: Error description.

Examples:

[{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezo

ne”:”0”,

“cloud”: ”Stacksync”, “status”: ”CHANGED”, ”type”:

”calendar”}]

- {"error": 404, "description": "Incorrect params"}

Obtain the list with all the user’s calendars

Url: RESOURCE _URL + calendar/{user}/{cloud}

Example:

http://demo.eyeos.com/calendar/eyeos/Stacksync

Method: GET

Return: Metadata vector or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

[{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezone

”:”0”,

“cloud”: ”Stacksync”, “status”: ”CHANGED”, ”type”: ”calendar”}]

- {"error":404, "description": "Incorrect params"}

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 214 of 220

getCalendarsAndEvents(oauth, user, cloud)

Obtain a list with all the user’s calendars and events.

Url: RESOURCE _URL of the configuration file.

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of the

consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 cloud – Identifier of the cloud where the calendar is saved.

Return: Metadata vector or in case of an error it returns an error

structure:

- error: Error number

- description: Error description.

Examples:

[{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezo

ne”:”0”,

“cloud”: ”Stacksync”, “status”: ”NEW”, ”type”: ”calendar”},

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”,

”subject”: ”test”,

”location”: ”Barcelona”, ”description”: ”detail”, ”repeattype”:

”n”,

”cloud”: ”Stacksync”, ”status”: “NEW”, ”type”: ”event”}]

- {"error": 404, "description": "Incorrect params"}

Obtain a list of all the calendars and events in the cloud through the use of the

Sync API

Url: RESOURCE _URL + calEvents/{user}/{cloud}

Example:

http://demo.eyeos.com/calEvents/eyeos/Stacksync

Method: GET

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 215 of 220

Return: Metadata vector or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

[{“user”:”eyeos”,”name”:”personal”,”description”:”detail”,”timezone

”:”0”,

“cloud”: ”Stacksync”, “status”: ”NEW”, ”type”: ”calendar”},

{“user”: ”eyeos”, ”calendar”: ”personal”, ”isallday”: 0,

”timestart”: “201419160000”, ”timeend”: “201419170000”,

”repetition”: ”null”, ”finaltype”: ”1”, ”finalvalue”: ”0”, ”subject”:

”test”,

”location”: ”Barcelona”, ”description”: ”detail”, ”repeattype”:

”n”,

”cloud”: ”Stacksync”, ”status”: “NEW”, ”type”: ”event”}]

- {"error": 404, "description": "Incorrect params"}

deleteCalendarsUser(oauth, user, cloud)

Delete all the calendars and events of the user.

Url: RESOURCE _URL of the configuration file

Method: DELETE

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 user - eyeOS user.

 cloud – Identifier of the cloud where the calendar is

saved.

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“delete”: “true”}

{"error": 404, "description": "Incorrect params"}

Delete all the calendars and events in the cloud with the Sync API

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 216 of 220

Url: RESOURCE _URL + calUser/{user}/{cloud}

Example:

http://demo.eyeos.com/calUser/eyeos/Stacksync

Method: DELETE

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“delete”: “true”}

{"error": 404, "description": "Incorrect params"}

lockFile(oauth, id, cloud, user, ipserver, datetime, timelimit)

Unblock an eyeDocs file.

Url: RESOURCE _URL of the configuration file

Method: POST

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id - Identifying number of the element in the specific

cloud.

 cloud – Identifier of the cloud where the file is saved.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 timelimit – Maximum time in minutes to block a file

 datetime – Current date and time

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“lockFile”: “true”}

{"error": 404, "description": "Incorrect params"}

Block the eyeDocs file in the cloud through the use of the Sync API

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 217 of 220

Url: RESOURCE _URL + lockFile

Example:

http://demo.eyeos.com/lockFile

Method: POST

Body: {

 "id":”2401”,

 "cloud":”Stacksync”,

 "user":”eyeos”,

 "ipserver":”demo.eyeos.com”,

 "datetime":”201419170000”,

 "timelimit":10

}

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“lockFile”: “true”}

{"error": 404, "description": "Incorrect params"}

updateDateTime(oauth, id, cloud, user, ipserver, datetime)

Update the metadata with the date and time of the latest change.

Url: RESOURCE _URL of the configuration file

Method: PUT

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id - Identifying number of the element in the specific

cloud.

 cloud – Identifier of the cloud where the file is saved.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 datetime – Current date and time

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 218 of 220

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“updateFile”: “true”}

{"error":404, "description": "Incorrect params"}

Update date and time of last change in the eyeDocs file in the cloud with the

Sync API

Url: RESOURCE _URL + updateTime

Example:

http://demo.eyeos.com/updateTime

Method: PUT

Body: {

 "id":”2401”,

 "cloud":”Stacksync”,

 "user":”eyeos”,

 "ipserver":”demo.eyeos.com”,

 "datetime":”201419170000”

}

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“updateFile”: “true”}

{"error": 404, "description": "Incorrect params"}

unLockFile(oauth, id, cloud, user, ipserver, datetime)

Unblock an eyeDocs file.

Url: RESOURCE _URL of the configuration file.

Method: PUT

Signature: HMAC-SHA1

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 219 of 220

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id - Identifying number of the element in the specific

cloud.

 cloud – Identifier of the cloud where the file is saved.

 user - eyeOS user.

 ipserver – IP address of the eyeOS server.

 datetime – Current date and time

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“unLockFile”: true}

{"error": 404, "description": "Incorrect params"}

Unblock the eyeDocs file in the cloud through the use of the Sync API

Url: RESOURCE _URL + unLockFile

Example:

http://demo.eyeos.com/unLockFile

Method: PUT

Body: {

 "id":”2401”,

 "cloud":”Stacksync”,

 "user":”eyeos”,

 "ipserver":”demo.eyeos.com”,

 "datetime":”201419170000”

}

Retorno: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“unLockFile”: true}

- {"error":404, "description": "Incorrect params"}

getMetadataFile(oauth, id, cloud)

Obtain the metadata of the file.

FP7-ICT-2011-8 STREP

06-10-2015 CloudSpaces

Page 220 of 220

Url: RESOURCE _URL of the configuration file.

Method: GET

Signature: HMAC-SHA1

Parameters: oauth – OauthRequest object. Contains the values of

the consumer key and secret of the configuration file. In

addition to the access token.

 id - Identifying number of the element in the specific

cloud.

 cloud – Identifier of the cloud where the file is saved.

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“id”: ”2150”, ”user”: ”eyeos”, ”cloud”: ”Stacksync”,

”ipserver”: ”192.168.56.101”, “datetime”:”2012-05-12

11:50:00”, ”status”: ”open”}

- {"error": 404, "description": "Incorrect params"}

Obtain the metadata of the eyeDocs file in the cloud with the Sync API

Url: RESOURCE _URL + lockFile/{id}/{cloud}

Example:

http://demo.eyeos.com/lockFile/2401/Stacksync

Method: GET

Return: Metadata or in case of an error it returns an error structure:

- error: Error number

- description: Error description.

Examples:

{“id”: ”2150”, ”user”: ”eyeos”, ”cloud”: ”Stacksync”,

”ipserver”: ”192.168.56.101”, “datetime”: ”2012-05-12 11:50:00”,

”status”: ”open”}

- {"error": 404, "description": "Incorrect params"}

