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Abstract—The Personal Cloud model is a mainstream service
that meets the growing demand of millions of users for reliable
off-site storage. However, despite their broad adoption, very little
is known about the quality of service (QoS) of Personal Clouds.

In this paper, we present a measurement study of three
major Personal Clouds: DropBox, Box and SugarSync. Actively
accessing to free accounts through their REST APIs, we analyzed
important aspects to characterize their QoS, such as transfer
speed, variability and failure rate. Our measurement, conducted
during two months, is the first to deeply analyze many facets of
these popular services and reveals new insights, such as impor-
tant performance differences among providers, the existence of
transfer speed daily patterns or sudden service breakdowns.

We believe that the present analysis of Personal Clouds is
of interest to researchers and developers with diverse concerns
about Cloud storage, since our observations can help them to
understand and characterize the nature of these services.

Index Terms—Cloud Storage; Personal Clouds; Quality of
Service (QoS); Measurement

I. INTRODUCTION

The Personal Cloud model defines a ubiquitous storage
facility enabling the unified and location-agnostic access to in-
formation flows from any device and application. Commercial
providers such as Dropbox, SugarSync or Google Drive are
offering very popular Personal Cloud solutions that maintain
in sync the information from different devices. The popularity
of these killer applications lies behind their easy-to-use SaaS
storage facade to ubiquitous IaaS Cloud storage resources
like Amazon S3 and others. In a recent report, Forrester
research [1] forecasts a market of $12 billion in the US in
paid subscriptions to Personal Clouds by 2016.

However, despite their broad adoption, very little is known
about the QoS of Personal Clouds. Furthermore, there is no
public information about the control policies that Personal
Clouds enforce, as well as the factors impacting on their
service performance. In our view, exploring these services
is specially interesting in the case of free accounts. Recent
reports show that most Personal Cloud users are freemium

users. For example, from the 50 million of DropBox users,

only the 4% pay for storage [2].
In this paper, we present a measurement study of various

Personal Clouds. Concretely, during two months, we have
actively measured the REST API service of DropBox, Box and
SugarSync free accounts. We gathered information from more
than 900, 000 storage operations, transferring around 70TB of
data. We analyzed important aspects to characterize their QoS,
such as in/out transfer speed, service variability and failure
rate. To our knowledge, this work is the first to deeply explore
many facets of these popular services and reveals new insights.

We contribute all of our research observations, including:

• The transfer performance of these services greatly varies

from one provider to another, which is a valuable piece
of information for designers and developers.

• The geographic location of a client importantly impacts
on the speed of transfers. For instance, North American
clients experience transfers several times faster than Eu-
ropean ones for the same Personal Cloud.

• In general, transfer speeds of files can be approximated

using well-known statistical distributions. This opens the
door to create Personal Cloud simulation environments.

• The variability of transfers depends on several factors,
such as the traffic type (in/out) or the hour of the day.
Actually, we found daily patterns in the DropBox service.

• These services are in general reliable and, in some cases,
service failures can be modeled as a Poisson process.

• We observed a radical change in the transfer speed of
SugarSync in late May 2012. This suggests that Personal
Clouds may change their freemium QoS unexpectedly,
due to internal policy changes or agreements.

After the analysis, we discuss the most important technical
findings of this work and their implications. Finally, we
contribute the collected data set and we make it publicly
available for the research community1.

The rest of the paper is organized as follows. We discuss
the related work in Section II. Our methodology is described
in Section III. The measurement data analysis appears in Sec-
tion IV. Section V summarizes the most important technical
findings of this work and we conclude in Section VI.

II. RELATED WORK

The performance evaluation of Cloud services is a current
hot topic with several papers appearing recently [3], [4]. A
large corpus of works have focused on measuring distinct
aspects of a Cloud service, such as computing performance [5],
service variability [3], and the nature of datacenter traffic [4],
among others issues.

Unfortunately, only few works have turned attention to
measure the performance of Cloud storage services. To wit,
the authors in [6] explore the performance of Microsoft Azure,
including storage. In this line, the authors in [7] execute
an extensive measurement against Amazon S3 to elucidate
whether Cloud storage is suitable for scientific Grids or not.
Similarly, [8] presents a performance analysis of the Amazon
Web Services, with no insights regarding Personal Clouds.

File hosting and file sharing Cloud services have been
analyzed in depth by several works [9], [10]. They provide an
interesting substrate to understand both the behavior of users
and the QoS of major providers (e.g. RapidShare).

The comparison of public Clouds have recently aroused
much interest. Concretely, the authors in [11] present Cloud-
Cmp, a systematic performance and cost comparator of Cloud
providers. The authors validate CloudCmp by measuring the

1Available at http://ast-deim.urv.cat/trac/pc measurement



elastic computing, storage, and networking services offered by
several public Clouds based on metrics reflecting the impact
on the performance delivered to customer applications.

In a similar fashion, the authors of [12] compare Dropbox,
Mozy, Carbonite and CrashPlan backup services. However,
their analysis of the performance, reliability and security levels
is rather lightweight, and more work is needed to characterize
these services with enough rigor.

Recently, the authors in [13] presented an extensive mea-
surement of DropBox in two scenarios: in a university campus
and in residential networks. They analyzed and characterized
the traffic transmitted by users, as well as the functioning and
architecture of the service. Instead of analyzing the behavior
of users using a specific Personal Cloud, we focused on
characterizing the service that many providers offer.

In contrast to previous works, we analyze in depth many as-
pects of Personal Clouds that remain unknown (e.g. variability,
failures). We believe that this analysis will help researchers
and developers to better understand these popular services.

III. MEASUREMENT METHODOLOGY

From May 10, 2012, to July 15, 2012, we installed several
vantage points in our university network (Universitat Rovira

i Virgili, Spain) and PlanetLab [14] to measure the perfor-
mance of three of the major Personal Cloud services in the
market: DropBox2, Box3 and SugarSync4. The measurement
methodology was based on the REST interfaces that these
three Personal Cloud storage services provide to developers.

Personal Clouds provide REST APIs, along with their
client implementations, to make it possible for developers to
create novel applications. These APIs incorporate authoriza-
tion mechanisms (OAuth [15]) to manage the credentials and
tokens that grant access to the files stored in user accounts. A
developer first registers an application in the Cloud provider
website and obtains several tokens. As a result of this process,
and once the user has authorized that application to access his
storage space, the Personal Cloud storage service gives to the
developer an access token. Including this access token in each
API call, the application can operate on the user data.

There are two types of API calls: meta-info and data

management calls. The former type refers to those calls that
retrieve information about the state of the account (i.e., storage
load, filenames), whereas the latter are those calls targeted at
managing the stored files in the account. We will analyze the
performance of the most important data management calls:
PUT and GET, which serve to store and retrieve files.

A. Measurement Platform

We employed two different platforms to execute our tests:
University laboratories and PlanetLab. The reason behind this
is that our labs contain homogeneous and dedicated machines

that are under our control, while PlanetLab allows the analysis
of each service from different geographic locations.

University laboratories. We gathered 30 machines belong-
ing to the same laboratory to perform the measurement. These
machines were Intel Core2 Duo equipped with 4GB DDR2

2http://www.dropbox.com
3http://www.box.net
4http://www.sugarsync.com

Location Op. Type Operations Transferred Data

University Labs
GET 168, 396 13.509 TB
PUT 247, 210 15.945 TB

PlanetLab
GET 354, 909 31.751 TB
PUT 129, 716 9.803 TB

TABLE I
SUMMARY OF MEASUREMENT DATA (MAY 10 − JULY 15)

RAM. The employed operating system was a Debian Linux
distribution. Machines were internally connected to the same
switch via a 100Mbps Ethernet links.

PlanetLab: We collected 40 PlanetLab nodes divided into
two geographic regions: Western Europe and North America.
This platform is constituted by heterogeneous (bandwidth,
CPU) machines from several universities and research in-
stitutes. Moreover, there were two points to consider when
analyzing data coming from PlanetLab nodes: i) Machines
might be concurrently used by other processes and users, and
ii) The quota system of these machines limited the amount of
in/out data transferred daily.

Specifically, we used the PlanetLab infrastructure for a high-
level assessment of Personal Clouds depending on the client’s
geographic location. However, the mechanisms to enforce
bandwidth quotas in PlanetLab nodes may induce the appear-
ance of artifacts in bandwidth traces. This made PlanetLab not
suitable for a fine-grained analysis in our context.

B. Workload Model

Usually, Personal Cloud services impose file size limitations
to their REST interfaces, for we used only files of four sizes
to facilitate comparison: 25MB, 50MB, 100MB and 150MB5.
This approach provides an appropriate substrate to compare all
providers with a large amount of samples of equal-size files.
Thanks to this, we could observe performance variations of a
single provider managing files of the same size.

We executed the following workloads:

Up/Down Workload. The objective of this workload was
twofold: Measuring the maximum up/down transfer speed
of operations and detecting correlations between the transfer
speed and the load of an account. Intuitively, the first objective
was achieved by alternating upload and download operations,
since the provider only needed to handle one operation per
account at a time. We achieved the second point by acquiring
information about the load of an account in each API call.

The execution of this workload was continuously performed
at each node as follows: First, a node created synthetic files of
a size chosen at random from the aforementioned set of sizes.
That node uploaded files until the capacity of the account was
full. At this point, that node downloaded all the files also in
random order. After each download, the file was deleted.

Service Variability Workload. This workload maintained in
every node a nearly continuous upload and download transfer
flow to analyze the performance variability of the service
over time. This workload provides an appropriate substrate
to elaborate a time-series analysis of these services.

The procedure was as follows: The upload process first
created files corresponding to each defined file size which

5Although the official limitation in some cases is fixed to 300MB per
file, we empirically proved that uploading files larger than 200MB is highly
difficult. In case of Box this limitation is 100MB.



were labeled as “reserved”, since they were not deleted from
the account. By doing this we assured that the download
process was never interrupted, since at least the reserved files
were always ready for being downloaded. Then, the upload
process started uploading synthetic random files until the
account was full. When the account was full, this process
deleted all files with the exception of the reserved ones to
continue uploading files. In parallel, the download process was
continuously downloading random files stored in the account.

Finally, we executed the experiments in different ways
depending on the chosen platform. In the case of PlanetLab,
we employed the same machines in each test, and therefore, we
needed to sequentially execute all the combinations of work-
loads and providers. This minimized the impact of hardware
and network heterogeneity, since all the experiments were
executed in the same conditions. On the contrary, in our labs
we executed in parallel a certain workload for all providers
(i.e. assigning 10 machines per provider). This provided two
main advantages: The measurement process was substantially
faster, and fair comparison of the three services was possible
for the same period of time.

We depict in Table I the total number of storage operations
performed during the measurement period.

C. Setup, Software and Data Collection

Prior to the start of our experiments, we created around
150 new user free accounts from the targeted Personal Clouds.
That is 120 new accounts for PlanetLab experiments (40 nodes
× 3 Personal Clouds), and 30 accounts for the experiments
in our labs (10 accounts per Personal Cloud deployed in 30
machines). We also registered as developers 35 applications
to access the storage space of user accounts via REST APIs,
obtaining the necessary tokens to authenticate requests. We
assigned to every node a single new free account with access
permission to the corresponding application. The information
of these accounts was stored in a database hosted in our
research servers. Thus, nodes executing the measurement
process were able to access the account information remotely.

Measurement processes were implemented as Unix and
Python scripts that ran in every node. These scripts em-
ployed third party tools during their execution. For instance,
to synchronize tasks, such as logging and starting/finishing
experiments, we used the cron time-based job scheduler. To
gather bandwidth information we used vnstat, a tool that
keeps a log of network traffic for a selected interface. Nodes
performed storage operations against Personal Clouds thanks
to the API implementations released in their websites.

The measurement information collected in each storage
operation was sent periodically from every node to a database
hosted in our research servers. This automatic process fa-
cilitated the posterior data processing and exploration. The
measurement information that nodes sent to the database
describes several aspects of the service performance: operation
type, bandwidth trace, file size, start/end time instants, time
zone, capacity and load of the account, and failure information.

IV. MEASURING PERSONAL CLOUD REST APIS

A. Transfer Capacity of Personal Clouds

In this section, the transfer capacity of Box, DropBox and
SugarSync is characterized using the following indicators:

• File Mean Transfer Speed (MTS). This metric is defined
as the ratio of the size of a file, S, to the time, T , that

was spent to transfer it: MTS = S/T (KBytes/sec).
• Bandwidth Distributions. We define as a bandwidth trace

the set of values that reflects the transfer speed of a file
at regular intervals of 2 secs. To obtain a single empirical
distribution, we aggregated the bandwidth traces of all the
transfers separated by uploads and downloads. We refer
to the resulting empirical distribution as the aggregated

bandwidth distribution.

Transfer speeds. Fig. 1 reports these metrics for both work-
loads (up/down and service variability) executed in our univer-
sity labs during 10 days. First, Fig. 1 evidences an interesting
fact: Personal Clouds are heterogeneous in terms of transfer

speed. For instance, Fig. 1b shows that Box and DropBox
present an upload MTS several times faster than SugarSync.
The same observation holds for downloads. Moreover, the
heterogeneity of these services also depends on the traffic type

(in/out). This can be appreciated by comparing Fig. 1a with
Fig. 1b: DropBox exhibits the best download MTS while Box

presents the fastest uploads.

This proves that the transfer performance of these services

greatly varies among providers, and consequently, developers
should be aware of this in order to select an adequate provider.

Among the examined Personal Clouds, DropBox and Sug-
arSync are resellers of major Cloud storage providers (Ama-
zon S3 and Carpathia Hosting, respectively). On the other
hand, Box claims to be owner of several datacenters. In our
view, it is interesting to analyze this Cloud ecosystem and the
possible implications to the service delivered to end-users.

In this sense, in Fig. 1 we observe that Personal Clouds ap-
ply distinct internal control policies to the inbound/outbound
bandwidth provided to users. To wit, both DropBox and Box
exhibit an upload transfer capacity remarkably better than the

download capacity. This means that the datacenter outgoing
traffic is more controlled and restricted than the incoming traf-
fic. This agrees well with the current pricing policies of major
Cloud providers (Amazon S3, Google Storage) which do not
charge inbound traffic whereas the outbound traffic is subject
to specific rates (see http://aws.amazon.com/en/s3/pricing/).

In SugarSync, both the upload and download transfer speeds
are constant and low. Interestingly, SugarSync presents slightly
faster downloads than uploads, though only a small fraction
of downloads (less than 1%) exhibits a much higher transfer
speed than the rest. These observations are also supported by
Fig. 1c and Fig. 1d: the captured download bandwidth values
fall into a small range [200, 1300] KB/sec. Also, the shape of
these distributions are not steep, which reflects that there is
a strong control in the download bandwidth. On the contrary,
upload bandwidth distributions present more irregular shapes
and they cover a wider range of values, specially for Box. As
a possible explanation to this behavior, the experiments of Fig.
1 were executed from our university labs (Spain) to exclude
the impact of geographic heterogeneity. Considering the fact
that the majority of Personal Cloud datacenters are located in
USA [13], this may have implications in the cost of the traffic
sent to Europe. This could motivate the enforcement of more
restrictive bandwidth control policies to the outbound traffic.
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(b) Upload file MTS distributions.
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(d) Upload bandwidth distributions.

Fig. 1. Transfer capacity of Box, DropBox and SugarSync free account REST API services. The data represented in these figures corresponds to the
aggregation of the up/down and service variability workloads during 10 days (June/July 2012) in our university laboratories.
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Fig. 2. Distribution fittings of upload/download file mean transfer speeds (MTS) of the examined Personal Clouds (up/down workload, university labs).

Characterization of transfers. To characterize the transfer
performance of both DropBox and Box (the constant behavior
of SugarSync deserved no further analysis), three checks were
made to determine the shape of the transfer distributions with
sufficient confidence. We used the same methodology of [16].

First, visual inspection of per-file MTS distributions against
the most similar standard distributions was performed. Second,
we performed a linear regression analysis on the best-fit lines
of the quantile-quantile plots from the fitted distributions and
empirical data. From this analasys, we obtained the coefficient
of determination, R2 ∈ [0, 1]. A value of R2 close to 1 signals
that the candidate distribution fits the data. Finally, we used the
Kolmogorov-Smirnov (KS) test to assess the statistical validity
of the fittings. Essentially, this test is used to check whether a
fitted distribution matches the empirical distribution by finding
the maximum differences between both distributions6.

As seen in Fig. 2a and 2c, both DropBox and Box download
file MTS can be approximated using log-logistic or logistic

distributions, respectively. This argument is supported by the
coefficient of determination, R2, which in the case of Box is
R2 = 0.9972, and for DropBox is R2 = 0.9957. However, we
observe that these fittings differ from the empirical data in the
tails of highest transfer speed values. Further, we performed
fittings depending on the file size, obtaining closer fittings as
the file size grew. The heavier tails found in empirical data but
not captured well in the fittings led the KS test to reject the
null hypothesis at significance level α = 0.05, although in the
case of DropBox, this rejection is borderline (KS-test=0.0269,
critical value=0.0240, p-value=0.197).

Regarding uploads, we find that DropBox file MTS can

be modeled by a Weibull distribution with shape parameter

6Chi-square test was not used since it works well only when the number of
items that falls into any particular bin is approximately the same. However,
it is relatively difficult to determine the correct bin widths in advance for
different measured data sets, and thus the results of the this test can vary
depending on how the data samples are divided [16].

µ = 1339.827 and scale parameter σ = 14.379 (Fig. 2b). In
addition to the high R2 = 0.9896, the KS test accepted the null

hypothesis at significance level α = 0.05 (KS-test=0.0351,
critical value=0.0367, p-value=0.0025).

Due to the high variability, we found that Box uploads do
not follow any standard distribution. The implications of these
observations are relevant. With this knowledge, researchers can
model the transfer speed of Personal Cloud services employing
specific statistical distributions.

Transfers & geographic location. Next, we analyze transfer
speeds depending on the geographic location of vantage points.

In Fig. 3, we illustrate the file MTS obtained from executing
the up/down workload during 3 weeks in PlanetLab. As can
be seen in the figure, Personal Clouds provide a much greater

QoS in North American countries than in European countries.
Intuitively, the location of the datacenter plays a critical role in
the performance of the service delivered to users. Observe that
this phenomenon is orthogonal to all the examined vendors.

Finally, we quantify the relative download/upload transfer
performance delivered by each service as a function of the
geographic location of users. To this end, we used a simple
metric, what we call the download/upload ratio (D/U ), which
is the result of dividing the download and upload transfer
speeds of a certain vendor. In Table II, we calculated this

ratio over the mean (Ū , D̄) and median (Ũ , D̃) values of
the file MTS distributions of each provider depending on the
geographic location of nodes.

In line with results obtained in our university labs, European

nodes receive a much higher transfer speed when uploading

than when downloading (D/U < 1). However, contrary to
conventional wisdom, North American nodes exhibit just the

opposite behavior. This is clearly visible in DropBox and Box.
However, this ratio is constant in SugarSync, irrespective of
the geographic location.
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Fig. 3. File MTS distributions of PlanetLab nodes from June 22 to July 15

2012 depending on their geographic location (up/down workload). Clearly,
USA and Canada nodes exhibit faster transfers than European nodes.

Geo. Location Metric Box DropBox SugarSync

USA & CA
D̄MTS/ŪMTS 3.198 2.482 2.522
D̃MTS/ŨMTS 2.550 2.722 2.500

WEST EU
D̄MTS/ŪMTS 0.255 0.681 2.589
D̃MTS/ŨMTS 0.190 0.682 2.387

TABLE II
DOWNLOAD/UPLOAD TRANSFER SPEED RATIO OF PERSONAL CLOUDS

DEPENDING ON THE CLIENT’S GEOGRAPHIC LOCATION.

B. Variability of Transfer Performance

In this section, we analyze which factors can contribute to
the variance in transfer speed observed in Personal Clouds. We
study three potential factors, which are the size of file transfers;
the load of accounts; and time-of-day effects.

Variability over file size. We first investigate the role that file
size plays on transfer times and transfer speeds. Fig. 4 and
Table III report the results for both metrics as function of file
size, respectively. Unless otherwise stated, results reported in
this subsection are based on executing the up/down workload
in our university labs during 5 days.

Fig. 4 plots the transfer time distribution for all the evaluated
Personal Clouds. As shown in the figure, for the same provider,
all the distributions present a similar shape, which suggests
that the size of file transfers is not a source of variability.
As expected, the only difference is that the distributions for
large file sizes are shifted to the right towards longer time
values. Significant or abnormal differences were not observed
when transferring large files compared to small data files. This
observation is applicable to all evaluated Personal Clouds. This
leads us to the conclusion that these Personal Clouds do not

perform aggressive bandwidth throttling policies to large files.

An interesting fact appreciable in Table III is that managing

larger files report better transfer speeds than in case of small

files. Usually, these improvements are slight or moderate (0.5%
to 25% higher MTS); however, uploading 100MB files to Box
exhibits a MTS 48% higher than uploading 25MB files to this
service. In our view, this phenomena is due to the variability in
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Fig. 4. Transfer times distributions by file size.

the incoming bandwidth supplied by Box, and the TCP slow
start mechanism, which makes difficult for small file transfers
to attain high performance [17].

Further, we found that all the measured Cloud vendors tend
to perform a more restrictive bandwidth control to outgoing
traffic. This can be easily confirmed by inspecting the obtained
standard deviations σ of file MTS listed in Table III. Clearly,
the inbound traffic in Dropbox and Box is much more variable

than the outbound traffic. On the contrary, despite its limited
capacity, the source of highest transfer variability in SugarSync
is in the outbound traffic, which a clear proof of the existing
heterogeneity in Personal Clouds.

Variability over load account. Next we explore if Personal
Clouds perform any control to the transfer speed supplied to
users based on the amount of data that users have in their
accounts. To reveal any existing correlation, dispersion graphs
were utilized to plot the relationship between the MTS and
the load of an account at the instant of the storage operation.

As shown in Fig. 6, we were unable to find any correlation

between the file MTS and the load of an account in any of
the measured Personal Clouds. This suggests that the transfer
speed delivered to users remains the same irrespective of the
current amount of data stored in an account. This conclusion is
important to characterize which types of control mechanisms
are actually applied to these storage services.

Variability over time. We now analyze how the transfer speed
varies over time. To better capture these variations, we used the
data from the service variability workload, which was aimed
to maintain a constant transfer flow and was executed at our
university labs. The results are shown in Fig. 5 where the mean

aggregated bandwidth of all nodes as a whole is plotted in
time intervals of 600 seconds. As expected, we found that the
transfer speed of these services behave differently depending
on the provider. To wit, while SugarSync exhibits a stable

service for both uploads and downloads, at the price of a
modest transfer capacity (Fig. 5a), the upload transfer speed
varies significantly over time for Dropbox and Box.



Upload File MTS Distribution (KBps) Download File MTS Distribution (KBps)

Size Provider Min. Q1 Median Q3 Max. Mean (µ) Std. Dev. (σ) CV (σ/µ) Min. Q1 Median Q3 Max. Mean (µ) Std. Dev. (σ) CV (σ/µ)

25MB
DropBox 13.54 819.20 903.94 1008.24 1456.36 896.28 151.56 0.1691 24.89 582.54 624.152 672.16 970.90 626.94 71.23 0.1136

Box 14.70 1379.71 2383.13 3276.80 3744.91 2271, 29 973.06 0.3963 163.84 397.19 459.90 534.99 794.38 463.72 87.76 0.0837
SugarSync 41.87 78.25 78.96 80.17 86.23 79.26 2.82 0.0356 136.53 198.59 200.11 201.65 1048.57 201.35 37.89 0.1882

50MB
DropBox 213.99 970.90 1092.27 1191.56 1497.97 1069.12 152.23 0.1424 210.56 624.15 663.66 699.05 888.62 661.55 58.02 0.0877

Box 5.26 2496.61 4369.07 4766.25 5825.42 3721.12 1357.18 0.3647 14.15 623.16 647.26 672.16 887.42 646.22 44.33 0.0686
SugarSync 40.27 78.72 79.44 80.41 86.95 79.59 3.08 0.0387 144.43 200.88 202.43 204.00 2496.61 216.57 149.28 0.6893

100MB
DropBox 250.26 1127.50 1219.27 1310.72 1519.66 1205.69 143.05 0.1186 25.09 647.27 676.50 708.49 1497.97 680.32 50.94 0.0749

Box 4.71 2912.71 3883.61 6168.09 7489.83 4350.37 1797.32 0.3252 14.43 436.91 487.71 579.32 1233.62 507.82 89.36 0.0539
SugarSync 42.23 78.96 79.62 80.66 87.31 79.64 3.74 0.0470 145.64 202.03 204.00 205.20 3744.91 223.49 219.50 0.9822

TABLE III
SUMMARY OF FILE MTS DISTRIBUTIONS BY FILE SIZE.
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(a) SugarSync does not present important changes
in both in/out traffic speed over time.
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(b) We observe daily patterns in the DropBox upload
transfer speed. Download transfer speed remains stable.
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(c) Box upload transfers are highly variable and
probably affected by daily patterns.

Fig. 5. Evolution of Personal Clouds upload/download transfer speed during 5 days. We plotted in a time-series fashion the mean aggregated bandwidth of
all nodes (600 secs. time-slots) executing the service variability workload in our university laboratories (3rd−8th July 2012).
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Fig. 6. Relationship between file MTS and the storage load of an account.

Appreciably, DropBox exhibits appreciable daily upload

speed patterns (Fig. 5b). Data represented in Fig. 5 was
gathered between July 3, 6:00p.m. and July 8, 3:00p.m.
Clearly, during night hours (1 a.m.−10 a.m.), transfer speed
was between 15% to 35% higher than during diurnal hours.
This phenomenon has been also detected in the experiments
performed in PlanetLab, thereby discarding any artificial usage
pattern induced by our university network. Moreover, consid-
ering that DropBox uses Amazon S3 as storage backend, our
results are consistent with other recent works [3] that observed
similar patterns in other Amazon services.

Further, we found that Box upload service may be subjected
to high variability over time. Indeed, we observed differences

in upload transfer speed by a factor of 5 along the same

day. This observation is consistent with the analysis of the file
MTS distribution where significant heterogeneity was present.
More interestingly, Box uploads appear to be also affected by
daily patterns. Concretely, the periods of highest upload speed
occurred during the nights, whereas the lowest upload speeds
were observed during the afternoons (3 p.m. −10 p.m.). Due to
the huge variability of this service, a long-term measurement
is needed to provide a solid proof of this phenomenon, though.

With respect to downloads, we observed no important speed
changes over time in any system. This suggests that downloads

are more reliable and predictable, probably due to a more

intense control of this type of traffic by the datacenter.

To specifically compare the variability among services over
time, we made use of the Coefficient of Variation (CV), which
is a dimensionless and normalized measure of dispersion of a
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Fig. 7. Evolution of transfer speed variability over time (service variability
workload, university labs).

probability distribution, specifically designed to compare data
sets with different scales or different means. The CV is defined
as:

CV =
1

x̄

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)
2
,

where N is the number of measurements; x1, .., xN are the
measured results; and x̄ is the mean of those measurements.

Fig. 7 depicts the CV in 1-hour time slots of the aggregated

bandwidth provided by each Cloud vendor. Clearly, it can be
observed important differences across the vendors. Concretely,
SugarSync experiences low variability with a CV of only 10%.
DropBox with a CV around 50%, however, exhibits a much
higher variability than SugarSync, including isolated spikes in
the upload bandwidth that reach a CV of 90%. In this sense,
the Box download bandwidth capacity exhibits a similar trend.
Finally, the highest observed variability was for Box uploads.
In the first 3 days of the experiment, Box exhibited a mean CV
of 125% approx. However, in the last part of the experiment
some spikes reached a CV of 300%, suggesting that it is really
hard to predict the behavior of this service.

C. Service Failures and Breakdowns

Another important aspect of any Cloud storage service is at

what rate users experience failures, and whether the pattern of

failures can be characterized by a simple failure process like a

Poisson process, which allows researchers to develop tractable
analytical models for Cloud storage.



Downloads DropBox Box SugarSync

25MB 0.047%( 5

10,503 ) 0.572%( 68

11,878 ) 0.115%( 2

1,740 )

50MB 0.082%( 8

9,745 ) 0.698%( 80

11,445 ) 0.057%( 1

1,727 )

100MB 0.044%( 4

9,026 ) 0.716%( 80

11,169 ) 0.059%( 1

1,691 )

150MB 0.042%( 3

7,136 ) − 0.076%( 1

1,359 )

Uploads DropBox Box SugarSync

25MB 0.384%( 41

10,689 ) 0.566%( 227

40,043 ) 0.889%( 8

899
)

50MB 0.450%( 48

10,663 ) 1.019%( 405

39,719 ) 1.079%( 10

926
)

100MB 0.502%( 54

10,740 ) 2.097%( 836

39,875 ) 1.988%( 18

905
)

150MB 1.459%( 58

3,974 ) − 3.712%( 33

889
)

TABLE IV
SERVER-SIDE FAILURES OF API OPERATIONS (3rd − 8th JULY 2012).
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Fig. 8. Failure interarrival times autocorrelation (upper graphics) and
exponential fitting of failure interarrival times (lower graphics) for Box.

For this analysis, any event server-side notification signaling
that a storage operation did not finish successfully was counted
as a failure, thereby excluding any failure, where abnormal
or degraded service was observed7. Table IV summarizes
the server-side failures observed during a 5-day measurement
based on the variability workload run at our labs.

Failure rates. Table IV illustrates a clear trend: in general,

uploads are less reliable than downloads. This phenomenon is
present in all the Personal Clouds measured and becomes more

important for larger files. As can be observed, downloads are
up to 20X more reliable than uploads (DropBox, SugarSync),
which is an important characteristic of the service delivered
to users. In this sense, although failures among uploads and
downloads are not so high, Box seems to provide the least
reliable service. Anyway, failure rates are generally below 1%,
which suggests that these free storage services are reliable.

Poissonity of failures. Now we study whether service failures
appear Poisson or not, because Poisson failures allow for easy
mathematical tractability. Poisson failures are characterized by
interarrival times which are independent of one another and
are distributed exponentially [18], and for which the failure
rate is constant. In this case, we focused only on Box, since
it was the only service for which enough observations were
available for the statistical analysis to be significant.

To verify whether failures are independent, we calculated
the autocorrelation function (ACF) for consecutive failures in

7We filtered the logged error messages depending on their causes as detailed
in the API specifications. We considered as errors most of the responses with
5XX HTTP status codes as well as other specific errors related with timed
out or closed connections in the server side.
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On May 21th we reported a
sudden and generalized change
in the SugarSync transfer speed.

Fig. 9. We observe a radical change in the upload transfer speed of
SugarSync from May 21 onwards. After May 21 all the tests performed
against SugarSync reported very low transfer speeds. This reflects a change
in the QoS provisioned to the REST APIs of free accounts.
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Fig. 10. PlantLab experiments against SugarSync before and after the service
breakdown reported in May 21. We observe an important service degradation
for uploads, whereas the download service remains unaltered.

the time series and depicted it in Fig. 88. When the failures
are completely uncorrelated, the sample ACF is approximately
normally distributed with mean 0 and variance 1/N , where N
is the number of samples. The 95% confidence limits for ACF
can then be approximated to 0± 2√

N
. As shown in Fig. 8, in the

case of download failures, autocorrelation coefficients for most
lags lie within 95% confidence interval, which demonstrates
that failure interarrival times are independent of one another.
However, uploads failures are not independent, since the first
lags exhibit high ACF values, which indicates short-term
correlation, with alternating positive and negative ACF trends.

To conclude Poissonity for failures, failure interarrival times
must be exponentially distributed, for we report the coefficient

of determination, R2, after performing linear regression on
the distribution log10(1− {Pr{X < x}), where Pr{X < x}
is the empirical failure interarrival time distribution obtained
for Box. In the case of downloads R2 = 0.9788 whereas
for uploads R2 = 0.9735. This means that failure interarrival
times approximately follow an exponential distribution, which
is evidenced in Fig. 8, where most of the samples match the
exponential fitting, with the exception of those at the end of the
tail. Hence, Box download failures can be safely considered as

being Poisson. Although upload interarrival times can be well
fitted by the exponential distribution, they are not independent
and further analysis is needed to their characterization.

Service breakdowns. Apart from the “hard” failures, there are
other types of “soft” failures related with the deterioration of
the QoS. And indeed, we captured a strong evidence of this
in late May 2012 (Fig. 9). In Fig. 9 we present a time-series
plot of the aggregated upload MTS of PlanetLab nodes against

8Due to lack of space, we refer the reader to [18] for a technical description
in depth of this methodology to assess Poissonity.



SugarSync. This information is divided for those nodes located
in West Europe and USA & Canada9.

Clearly, the behavior of the upload speed of SugarSync
changed radically from May 21 onwards (Fig. 9). Before
that date, SugarSync provided high transfer upload speed,
comparable to current performance of Box. However, in May
21 SugarSync bandwidth provisioning policies changed dra-
matically; the upload MTS was reduced from 1, 200KBps to
80KBps in Western Europe — a similar trend can be observed
in USA and Canada. Note that we accessed to the SugarSync
service from a variety of nodes and accounts, discarding thus
the possibility of IP filtering and account banning.

In this sense, Fig. 10 shows the upload/download MTS
distributions for measurements performed before and after the
service breakdown —executing the same workload (up/down
workload) over the same nodes. Clearly, the change in the
transfer speed of SugarSync was focused on uploads, that
previously exhibited a good performance. On the other hand,
we see that the download service was almost unaltered after
May 21. These observations apply to both geographic regions.
This means that Personal Clouds may change their freemium

QoS unexpectedly, due to internal policy changes.

V. LESSONS LEARNED

Here we summarize the most relevant technical observations
obtained from this measurement:

Characterization of transfers. In some cases, we observed
that transfer time distributions can be characterized by known
statistical distributions like the log-logistic and the logistic for
downloads in Dropbox and Box, respectively. We also found
that upload transfer times are Weibull distributed in Dropbox.
In SugarSync, we observed a constant and very limited transfer
performance. This characterization opens the door to create
Personal Cloud modeling and simulation environments.

High service variability. The variability of Personal Cloud
services is significant and induced by many factors. To wit, we
discovered that uploading to DropBox is substantially faster at
nights (15%−35%), which proves the presence of daily usage
patterns. We also found that the magnitude of the variation is
not constant over time. An example of this is Box. While Box
uploads exhibited a mean variability of 125% at the beginning
of our experiment, the CoV reached 300% at the end. Further,
we found that uploads are more variable than downloads.

Reliability and Poissonity of failures. In general, we found
that Personal Clouds are reliable, exhibiting failure rates below
1%. We also found that for Box, failure interarrival times
approximately follow an exponential distribution. Moreover,
Box download failures can be modeled as a Poisson process,
which is analytically simple.

QoS changes and data lock-in. We found that SugarSync
changed its freemium QoS unexpectedly. Concretely, the mean
upload speed delivered by SugarSync suddenly dropped from
1, 200 KBps to 80 KBps in EU. This emphasizes the relevance
of the data lock-in problem, where a customer gets trapped in
a provider whose service is unsatisfactory but cannot move to
a new one because of the amount of data stored in it.

9Spikes present in Fig. 9 are due to the PlanetLab quota system, which
limits the amount of data that users can transfer daily.

VI. CONCLUSIONS

In this work, we have examined central aspects of Personal
Cloud storage services to characterize their performance, with
emphasis put on the data transfers. We have found interesting
insights such as the high variability in transfer performance de-
pending on the geographic location, the type of traffic, namely
inbound or outbound, the file size, and the hour of the day.
We have examined their failure patterns and found that these
services are reliable, but susceptible to unpredictable changes
in their quality of service as that witnessed in SugarSync.

This work is the first step to the characterization of Personal
Clouds and will help researchers and developers to understand
the behavior of these popular storage services.
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