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a b s t r a c t

In the last few years, we have seen a rapid expansion of social networking. Digital relationships between
individuals are becoming capital for turning to one another for communication and collaboration. These
online relationships are creating new opportunities to define socially oriented computing models. In this
paper, we propose to leverage these relationships to form a dynamic ‘‘social cloud’’ for storage. While at
first glance, the concept of social cloud looks very appealing, a deeper analysis brings out many problems,
particularly in data availability. To overcome this issue, in addition to digital friends, we propose to the
members of the social cloud the use of online storage services like Amazon S3 to store data and improve
data availability. Through a real deployment in our campus, we study what aspects give form to the def-
inition of social cloud storage and determine the difficulty of realizing this concept in the real world. Our
analysis reveals interesting insights of how to reap the full potential of socially oriented storage.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Online social networks, such as Facebook, Google+ and
LinkedIn, are becoming a predominant service today. Catering
for people of all ages, gender and class, social networking ser-
vices have become the primary means of communication between
friends, family and colleagues. These digital relationships are cre-
ating new opportunities to spur the adoption of socially oriented
computing.

One representative example of this trend is the concept of ‘‘so-
cial cloud’’ as a means of facilitating resource sharing by utiliz-
ing the relationships established between members of a social
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network [1,2]. A social cloud leverages preexisting trust relation-
ships between users to enable mutually beneficial sharing. This
facilitates long term sharing with lower privacy and security re-
quirements than those that are present in traditional cloud envi-
ronments. For the time being, the cloud accrues massive amounts
of private information to provide for instance highly targeted ad-
vertisements. Not surprisingly, security breaches, poor judgment,
or even the lack of judicial oversight leaves users vulnerable. In this
sense, the ‘‘social cloud’’ represents a new form for the users to re-
take control of the cloud service, avoiding to be tracked or give per-
sonal information against their will, or in a way in which they feel
uncomfortable. In fact, as pointed out by S. Pearson [3], one of the
‘‘top six’’ recommended privacy practices for cloud systems is to
maximize user control, which is one of the outstanding feature of
the ‘‘social cloud’’.

Another distinguishing feature of the ‘‘social cloud’’ is that the
network comes first. It is not a cloud or middleware extended
with a social network; rather, it is a social network extended with
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cloud functionality. Users form the basic infrastructure and share
resources around their social graphs. Such an organization brings
out many benefits. For instance, one of those advantages is usabil-
ity, since the interface and tools for resource sharing are already
familiar to users. Another one is that it allows users to maximize
the control of the cloud service by letting users choose how their
resources will be used. Giving users the control over their personal
information and resources engenders trust, but this can be difficult
in a cloud computing scenario. This feature is very interesting for
the adoption of the ‘‘social cloud’’, as it permits users to define a se-
ries of preferences for the management of their personal data, and
take account for that, among other advantages.

1.1. Motivation

The social cloud also carries important deficiencies. The most
critical one is that, contrary to commercial clouds, it is not feasible
to establish a formal Service Level Agreement (SLA) within a social
cloud system. Its operational feasibility is based on the premise
that participants are sociallymotivated and subject to the personal
repercussions outside the functional scope of the social cloud. This
is primarily due to the existing level of trust that already exists
between members. In this context, SLAs or ‘‘contracts’’ should be
viewed as a best effort agreement between the social links. This
weaker form of agreement translates into a limited availability
of resources and capabilities. Although a social cloud system is
built upon social incentives, peer pressure, etc., the discontinuous
participation of social contacts, or even the abandon of the social
cloud, is intrinsic to the nature of social relationships.

In terms of storage, this means that the data stored within the
social cloud may be subject to recurrent periods of unavailability.
In a social cloud, the percentage of time that data is available is a
function of the number of friends contributing their storage space
over time. And such a dependence has deep implications for the
correct operation of a social cloud, mainly in terms of data avail-
ability, understood as the probability to access a data item when
needed.

First, while there may be a sizable number of individuals in a
social network, typically only an insignificant number can be uti-
lized as a destination for personal data. To inform this argument,
over 63% of Facebook users have less than 100 friends, and the
majority of social interactions occur only across a small subset of
them [4]. More specifically, it has recently been observed that only
20% of the social links capitalize 70% of all social interactions [4].
This means that in practice the number of users willing to con-
tribute their storage resources to sustain the social cloud will be
small. If in addition to thiswe add the problem of the temporal cor-
relation in the connection habits of users, the loss of data availabil-
ity is inevitable. Real measurements from online social networks
have detected the presence of strong daily and weekly interac-
tion patterns [5,6]. Very succinctly, this means that the probabil-
ity of finding simultaneously offline all the social links of a user is
high, particularly during night hours, which makes it impossible
to maintain data availability even under full replication where a
replica is allocated to every member of the social cloud.

Second, the topology of the social network graph plays a cen-
tral role. As such, it delineates the interaction events that may oc-
cur across social links and hence, the amount of resources to be
contributed by a member. Although users with many friends have
a greater opportunity to store their data with higher availability,
they may possibly have to donate more disk space to reciprocate
a larger number of friends. Real measurements of social networks
[7,4] show that while clustering is very high, the existence of a few
users with a large number of friends is characteristic of social in-
teraction. For these users with abnormally high degrees, usually
called hubs in the graph literature, the contribution of their storage
resources may be high for little or no personal gain. In this sense,
poor storage fairness may motivate the need for economic or non-
economic mechanisms to regulate sharing within a social cloud.
Determining the graph properties that have an important bearing
on a social cloud is critical to answer questions like: Is the cluster-
ing coefficient a valid indicator of resource contribution? If not, which
graph properties determine the obligation to trade storage resources?

Overall, understanding these factors is a necessary step in deter-
mining whether the vision of social cloud is realizable, and there-
fore, it can really emerge as an alternative to commercial cloud
providers. Compared with cloud storage, the information is made
only available to trustablemembers of the social network, thus sig-
nificantly reducing the risk that personal datamight be sold on, and
without raising suspicions about how commercial storage services
are monetized.

1.2. Contributions

However, to truly involve users, we believe that the promise of
always available storage is essential. In a recent paper, we demon-
strated that this promise cannot be fulfilled today using only so-
cial links as discussed above [8]. For this reason, we study in this
paper a realistic model for building highly available social clouds.
In this model, the storage resources contributed by each user are
augmented with an external cloud storage service like Amazon S3.
Each member of the social cloud brings out its online cloud stor-
age service to store parts of its data and mask the recurrent, un-
availability periods of ‘‘friends’’. Our objective is to improve the
resilience of the social cloud to correlated failures and departures.

Our key insight is the following: Since the central cloudmaintains
data availability during the time periods wheremost of the social links
are disconnected, we are taking the first step towards the realization
of storage as a service atop a social cloud, i.e., the illusion that users
can store their data to a socially motivated cloud and access them
anytime from anywhere.

At this point, a natural question that arises is:What can this stor-
age model offer that more established sites, like Facebook or a com-
bination of cloud storage plus social network like Google Drive
with Google+, don’t? The answer is that data is not in possession
of these sites and therefore, they cannot generate revenue, for in-
stance, by targeting ads to specific demographics (e.g., singlemales
up to 21 years of age). Specifically, in a social cloud, the control of
data, and who can access it, is entirely in the hands of users. The
role of the social network site is restricted to connecting and re-
cruiting members for the social cloud through a familiar interface.
But the data is out of the control of the social network site opera-
tors.

While that sounds good, the use of the cloud also poses a new
question: Does the use of a public cloud such as Amazon S3 carry
the danger of undermining the security achieved by the social cloud?
Fortunately, the answer is negative, because our model operates
by first encoding, and then distributing, the information between
the social contacts and the cloud in such a manner that the cloud
cannot recover the original data. In our particular case, we use
a non-systematic Reed–Solomon code [9] for that purpose. The
code was chosen to be non-systematic in order to make the en-
coded data not readable at once. Recall that threshold schemes like
Shamir’s scheme [10] for sharing a secret among multiple partici-
pants can be re-formulated in terms of Reed–Solomon codes [11].
As a result, we can blend ‘‘the best of both worlds’’ in a single ap-
proach: high data availability and security, the latter thanks to both
the maximization of user control and the minimization of the data
sent to and stored in the cloud.

To gain a better understanding, this paper contributes to the
state of the art by quantifying the influence of the above factors,
putting special emphasis on the topological effects, while outlining
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some of the challenges to make the concept of social cloud storage
a reality. To conduct this study, we have instantiated this model
into Friendbox [12], a social cloud storage application embedded
intoFacebook. Through a real deployment in our campus,we spot
evidence of the bearing of these factors on the definition of social
cloud storage. The fact that our results has been obtained through
experimentation gives the additional advantage of measuring the
real impact that these factors and design choices may have on per-
formance and cost. Our results provide interesting insights of how
to reap the full potential of socially oriented storage and confirm
the feasibility of this model.

The remainder of this paper is structured as follows: In Sec-
tion 2, we overview relatedworks. Section 3motivates and charac-
terizes the social cloud storage paradigm. In Section 4 we describe
FriendBox, our social storage application to conduct our experi-
mental assessment, which is included in Section 5. Finally, we pro-
vide some discussion about our empirical insights in Section 6 and
we conclude in Section 7.

2. Related work

Manyworks in the literature discuss about the use of social net-
works for building computing systems and incentivizing resource
sharing. One can find countless examples of applications that lever-
age existing social networks tomanage and authenticate users and
even recruit volunteers. For instance, both ASPEN [13] and Po-
larGrid [14] use social networks to manage users and facilitate re-
source sharing.

The social cloud model, first proposed in [1], takes a differ-
ent tack by extending cloud-like functionality to online social
networks instead of incorporating social networking to existing
computation platforms. Since its born, a plethora of works have
been examining the potential of this new social paradigm, partic-
ularly for underpinning computation [15,16].

In the case of storage, only the researchworks [1,2] partially ex-
plain some of the barriers to overcome towards the realization of
socially oriented cloud storage. More specifically, theseworks con-
centrate on how to support storage trading through various social
market metaphors but do not give any discussion on the opera-
tional requirements of the social cloud storage like data availabil-
ity and the amount of storage space to be contributed by friends.
Our work aims at filling this gap by spotting concrete evidence of
the existing operational hurdles in the social cloud storage model.

In addition, there is a great deal of synergy between the social
cloud and P2P networking paradigm in that services are provided
by a network of peers. The P2P literature is full of examples of stor-
age systems where the storage capacity is contributed by a pool of
distributed peers such as Samsara [17] and PAST [18]. However,
these systems lack of accountability, familiar interface, and the so-
cial incentives that minimize the administrative overhead, which
are precisely the costs that P2P systems are meant to avoid.

Much closer to our work are, however, peer-assisted storage
systems where the spare network bandwidth and storage space of
peers complement that of a cloud storage service such as Amazon
S3. The key feature of peer-assisted storage is that it is compara-
ble to the traditional client–server architecture but at a fraction of
its costs [19]. A representative example wasWuala,1 a commercial
storage service that now only stores files in data centers but that in
the past it stored (encoded) fragments of the data on peers to save
bandwidth at the server side [20]. Another example is Amazing-
Store [21], which augments centralized cloud-based storage ser-
vice with a P2P network to improve its resilience to correlated
failures.

1 http://www.wuala.com/.
Unlike peer-assisted systems, a social cloud exists within the
context of social network and is governed by existing social ties.
Users retain the control of the service and benefit from social in-
centives and peer pressure to minimize the administrative over-
head needed to ensure that peers contribute their storage space.
Because the system benefits users individually, but the costs are
shared, users have little or no incentive to contribute to the sys-
tem. This is expected to happen in a significant less degree in a
social cloud since participants are not anonymous and very often
know each other’s real identities. Hence, negative actions such as
promising to store data and then immediately discard it can have
repercussions far beyond the social cloud. Themajor threats are as-
sociatedwith the fact that the data is stored in a remote data center
operated by a third party. However, data can be easily protected us-
ing obfuscation techniques and encryption. In our specific case, we
encode data using Reed–Solomon codes to protect data and dis-
tribute the encoded pieces between the social ties and the cloud.

Perhaps the closest vein of related work is our prior research
on friend-to-friend storage systems [8,12,22], where we inadver-
tently instantiate the definition of ‘‘social cloud’’ for our study of
data availability [8] and data transfer scheduling [22]. Actually,
FriendBox as originally published in [12] matches the definition
of social cloud given by [2] except for the presence of a social mar-
ketplace as a means of regulating sharing: it extends Facebook
with cloud storage functionality such that people and their social
contacts form the basic infrastructure, obeying the principle that a
social cloud must be controlled and managed by its users.

Compared with our previous work, this article goes a step fur-
ther by asking questions like: ‘‘What is the role of social graph in the
obligation to trade storage space? Is there any significant asymmetry
in the level of contribution by users such that an altruistic model is in-
feasible? Is the availability of a user indicative of its real contribution
level to the social cloud?’’ Questions that have not been raised in the
existing literature.Webelieve that answering these questions is vi-
tal to appraise to what extent the social cloud can emerge as true
alternative to existing commercial and non-profit storage systems.

3. Social cloud storage

Online social networks are becoming the primary means of
communication between friends, family, and colleagues, which is
evidenced by their rapid and ongoing growth. Only Facebook has
over 1.11 billion active users of which half log on every day.2 The
potential of this large user base and the inherent trust in digital
relationships is huge but has been relatively unexplored for socially
oriented computing, although the first applications are starting to
appear around the concept of ‘‘social cloud’’. Concretely, a ‘‘social
cloud’’ is defined in [2] as:

‘‘A social cloud is a resource and service sharing framework utiliz-
ing relationships established between members of a social network’’.

The ‘‘social cloud’’ is built upon the principle that the trust
carried by social links can be applied in any scenariowhere sharing
and collaboration takes place, e.g., to reach out to non technical
users who otherwise would rarely donate their computational
resources for scientific projects [15,16]. The outstanding feature
of the social cloud is that the social network comes first. It is not
a middleware, P2P infrastructure or cloud system extended with
social networking. Rather, it is a social network extended with
cloud-like functionality. Users form the basic infrastructure and
share resources around their unique social graph. Such a structure
presents a number of advantages, such as usability and intrinsic
motivation: usability, because the interface and tools for resource

2 Facebook Reports 1st Quarter 2013 Results, http://investor.fb.com/
releasedetail.cfm?ReleaseID=761090, last accessed June 2013.
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sharing are already familiar to users; intrinsic motivation, because
the resources shared have been invested by the users themselves
and are subject to the socially corrective mechanisms inherent in
social networks. But perhaps themost interesting advantage is that
users retain the control of the service, which is very difficult if not
impossible in a cloud computing scenario.

Storage is perhaps the most intuitive resource to share in a
social cloud. Online cloud storage is becoming mainstream today.
A rush of online cloud storage services are entering the market,
ranging from services with basic functionality like Amazon S3 to
services like Dropbox with a full suite of features. Social cloud
storage can be viewed as an alternative approachwhere individual
users of a social network contribute their surplus storage capacity
to the members of the social cloud, and utilize the trust exhibited
in social networks as a guarantee for good behavior.

While prior research has focused on economicalmodels (posted
price, auction, . . .) to control and regulate sharing [1,2], the
nature of interaction in social networks poses numerous technical
challenges associated with the level of service that members hope
to receive. Unlike commercial storage service, it is not feasible to
establish a formal SLA within a social cloud: its correct operation
is based on the principle that individuals are socially motivated
and subject to the personal repercussions outside the functional
scope of the social cloud. Rather, SLAs or ‘‘contracts’’ should be re-
interpreted as a best effort agreement between themembers of the
social cloud. This weaker form of agreement has implications at
various levels, starting from data availability, which is the general
quality that any user hopes to receive from a storage service.

3.1. Data availability

Although the concept of ‘‘social cloud’’ is built upon social in-
centives, peer pressure, etc., the discontinuous participation of so-
cial links is intrinsic to the nature of interaction in online social
networks (OSNs). In terms of storage, intermittent participation
means that data may be subject to recurrent periods of unavail-
ability, which may be long depending on the activity pattern be-
tween pairs of users. Unlike commercial cloud storage systems like
Amazon S3 and Windows Azure that offer several nines of data
availability, the availability of any particular file cannot be guaran-
teed in a social cloud. At any given time, data availability depends
on the number and availability of the social links with whom content
is shared.

While there may be a sizable number of users in a social net-
work, only an insignificant numbermay be sufficiently trustable to
be recruited to store personal information about oneself. Although
100 friends per user can seem a big number at first sight, the re-
ality is that the majority of social interactions occur only across a
small subset of the social links. For instance, it has been recently
observed in Facebook that only 20% of the social links capitalize
70% of all social interactions [4]. In practice, this means that the
total available storage for a user is contributed by tens of friends.
Given that friendship in a social graph can refer to a number of pos-
sible relationships in real life, going from family or close friends to
mere acquaintances, the total available storage can be even smaller
if a user only considers ‘‘strong tie’’ relations such as family.

This problem can be aggravated by the existence of availability
correlations in connection habits. Indeed, real measurements from
online social networks have found the presence of strong daily and
weekly patterns [5,6]. In practice, this means that the probability of
finding logged off all the social links storing some specific content is
high, particularly during night hours.

More formally, let us observe a social cloud for a period of τ dis-
crete time units (minutes, hours, or other quanta) s.t. the observa-
tion period can be described by the totally ordered set T = {t1, t2,
Fig. 1. Example of data unavailability due to availability correlation.

t3, . . . , tτ }. By using this simple formulation, the uptime of amem-
ber v of the social cloud can be describedwith a time trace Tv where
time unit ti will be in the trace if and only if v was online at time ti.
In general, every user v will be online for a subset of time Tv ⊆ T
and its availability will be |Tv |

|T |
.

Let us now denote by Fv =

fv1 , fv2 , . . . , fvn


the set of social

links for amember v of the social cloud. Clearly, the periods of data
unavailability Uv where v will not be able to access the data stored
in its friends even in the case that one replica is allocated to each
friend will be:

Uv = T −

|Fv |
i=1

Tfvi .

The fraction of time that a data item shared with friends will
be unavailable is thus |Uv |

|T |
. An example of data unavailability due

to availability correlation is shown in Fig. 1. As can be seen in the
figure, the three friends are simultaneously offline during the time
range between t3 and t5, which results in a data availability of
1−

|Uv |

|T |
= 1−

3
8 = 62.5%, very far from the 99.9% data availability

offered by cloud storage services like Amazon S3. This example
shows that highly available storage cannot be provided within a
social cloud, even replicating a data object to all friends, due to
the small friend graphs and the correlated availability patterns.
This clearly makes it infeasible to define formal SLAs to specify
the requirements and obligations of a storage trade, as they will
be frequently violated, contrarily to what was promoted in [2].

The poor data availability is one of the reasons that moti-
vates the addition of a cloud storage provider like Amazon and
RackSpace into the social cloud. The idea is that the cloud storage
service helps covering data availability during the periods of data
unavailability.

3.2. Contributory storage

Another important issue not discussed in the incipient social
cloud literature is the contribution a user shouldmake in return for
the storage service provided by its social ties. Despite the fact that
hard disks are usually half empty [23], users are often reluctant to
relinquish their free storage space, because they consider storage
space as a limited resource. Even when users are given the
opportunity to restrict the amount of contribution, this option
requires users to decide a priori what is a reasonable contribution.

Given the need to introduce redundancy to improve data avail-
ability, social ties will generally need to donate much more storage
space than the amount they consume. Such asymmetry might make
it hard to sustain a social cloud based purely on socially corrective
mechanisms (incentives, peer pressure, . . . ) and altruism. Clearly,
this emphasizes the need for understanding to what extent the
asymmetry in contributory levels requires control and regulation.
If the level of asymmetry is high, then an economic market like a
posted price or an auctionmarket can be set up to regulate sharing
as in [2].

It is important to note here that a social cloud is not crowdsourc-
ing as the relationships in the social cloud are generally symmetric.
In other words, members are more or less seen as equals who pro-
vision resources to benefit from sharing, whereas crowdsourcing
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operates in themaster–worker model where work flows in one di-
rection, which does not in itself constitute sharing.

In the absence of any marketplace, users contribute resources
for little or no personal gain, which enables the study of contri-
bution asymmetry free of any bias introduced by the underlying
market protocol.

In this idealistic sharing model, the topology of the underlying
friendship graph plays a central role in the operational require-
ments of a social cloud. The social graph governs the interaction
between pairs of users and determines the storage space to be con-
tributed by them. Although users with many friends have more
chances of storing their data with higher availability, they may
possibly have to donate more disk space to socially reciprocate a
larger number of friends. This is especially visible for those users
with higher degrees, usually called hubs, whose level of contribu-
tion may be very high for comparatively little benefit.

From a global perspective, it is not hard to imagine that the
degree distribution of the friendship graph is one of the main
factors impacting the system operation. To better understand this,
pretend that two users, say a and b, want to store 3 data blocks
each. Also, assume that they have a friend in common, say c.
Depending on the number of friends, then a and b will store more
or less data blocks in c . If a and b had two additional friends, then
c would need to store only 2 data blocks, one from a and one from
b. However, if c was the only friend of a and b in the social cloud,
3 ·2 = 6 blockswould be allocated to c. This shows the importance
of social connectivity on contributed storage, specially for hubs.

In addition to the graph degree, we make use of the clustering
coefficient (CC) to measure to what extent the social links in the
friendship graph tend to cluster together. The local CC of a user v
is defined as:

CCv =
2 · Ev

Dv(Dv − 1)
, (1)

where Ev is the number of edges between neighbors of v and Dv

the degree of user v. Loosely speaking, the CCv quantities to what
extent the neighbors of v are linked to one another. In our tests, we
will mainly use this metric to study the contribution level of hubs.

Real measurements of social networks [7,4] show that while
clustering is very high, the presence of hubs is characteristic of so-
cial interaction. Understanding the influence that graph properties
have on the extent of storage contribution is crucial to decide the
suitable market metaphor to regulate sharing, mainly for hubs.

4. Social storage with FriendBox

To give form to the definition of ‘‘social cloud storage’’ and de-
termine what aspects should be integrated into its definition, we
have employed our social cloud storage application, called Friend-
Box [12], which has been developed and deployed as a Facebook
application. We chose Facebook for its popularity, development
environment and API, and very importantly, because Facebook
identification allows users to define policies regarding who can
store and access their personal data. For example, a user could limit
the sharing of their data with close friends only, or users in the
same group. This gives individuals high control over their data, en-
gendering trust and some level of accountability, properties that
are hard to find in a cloud environment. From a privacy stand-
point, while Facebook learns the interactions between the mem-
bers of the social cloud, personal information is never revealed to
this online service, as it is stored and shared through peer-to-peer
exchanges.

A distinctive feature of FriendBox is that lets a user add an ex-
ternal cloud storage service like Amazon S3 to its social cloud in
order to improve the availability of its data. By no means this sig-
nifies that all data will be stored to the cloud. Following the spirit
of the social cloud approximation, FriendBox lets the user decide
the amount of data to be stored in the cloud, which can be zero if
the user wishes so. This feature is particularly useful, as it allows
to trade data availability for monetary costs and adapt the storage
service to the user needs.

Further, the use of the cloud requires another layer of prepro-
cessing the data in order to protect it from unauthorized access,
disclosure and theft. This could be accomplished in many ways.
A simplistic approach could be to encrypt each sensitive piece of
data and share the key with the authorized users. Instead of this
simple encryption scheme, we use Reed–Solomon codes [9] for
that purpose, blending storage efficiency [24] and privacy in a sin-
gle scheme. Other approaches would be equally possible with no
significant changes in the proposed method. However, we do not
want to involve ourselves in this question here, since our focus is
on analyzing the feasibility of this new storage model.

Inwhat follows,wewill describe the components of FriendBox,
whose general architecture is illustrated in Fig. 2. We will give the
essential details to make our results understandable and refer the
reader to [12] for full details.3

4.1. Social front-end: Facebook application

In our social cloud, the storage overlay is bootstrapped by the
underlying social structure. Accordingly, every node in the friend-
ship graph acts as a storage service to their adjacent neighbors. In
practice, the friendship graph can include members of the family,
close friends only, or even friends of friends, which can be viewed
as directly connected to each user that selects them as storage
servers.

As social substrate, FriendBox uses Facebook for user man-
agement, because Facebook exposes access to their social graph
through a simple API, called the Graph API.4 This API exposed
through a REST service gives access to many objects, including
friends, profile information, groups andphotos. To control access to
the Graph API, Facebook utilizes the OAuth protocol [25] to au-
thenticate both users and applications. This authorization model
allowed FriendBox to delegate access control to Facebook, sim-
plifying considerably user management and accountability.

The integration of FriendBoxwith the Facebook look and feel
was by means of the Facebook Markup Language (FBML). FBML
includes a subset of HTMLwith proprietary extensions that enables
the creation of applications that follow the Facebook style. Code
written in FBML is retrieved by the Facebook server, parsed, and
then inserted into their surrounding code. This facilitated the cre-
ation of a familiar and intuitive GUI for FriendBox. Through this
GUI, the user can keep track of its monthly storage consumption
in the cloud provider of its choice and the distribution of its data
within the social cloud, among other operations. Such state infor-
mation is maintained in a separate component called Application
State, which we discuss in the following section.

4.2. Application state

Essentially, the Application State maintains up to date the data
management information about any file stored in the system. This
information includes the specific set of friends that store each data
object along with the network address of each one. Without this
information, the clients would be unable to perform the necessary
peer-to-peer storage operations to store and retrieve any data file
from the social cloud. The logic of keeping the Application State

3 FriendBox webpage: http://ast-deim.urv.cat/friendbox/.
4 http://developers.facebook.com/docs/reference/api/.

http://ast-deim.urv.cat/friendbox/
http://developers.facebook.com/docs/reference/api/
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Fig. 2. A user maintains storage links with some of his friends in Facebook. Moreover, this user is able to store a fraction of his data in a cloud storage service. The state
information of a user’s data is stored in the FriendBox Application State. Finally, users manage their storage relationships and check the state of their storage service in the
FriendBox Social Front-end.
current lies on the desktop clients themselves. The clients update
the Application State via a REST API.

The role of the Application State is depicted in Fig. 2. In this
figure, we show how a user communicates with the Application
State to transfer state information. In this example, a user sends a
message informing that a new file has been stored in the system.
As shown in the figure, Application State stores this information
using mappings that relate data blocks with the friends who are
responsible for them.

The Facebook application code for FriendBox along with the
Application State is nowadays hosted in Google App Engine.5 The
reason for this choice was that this PaaS for developing web ap-
plications offers elasticity in the service. Note that if we wanted to
protect the metadata from possible threats such as theft, unautho-
rized access, and copying, an additional layer of protection would
be indeed necessary. One simple way of doing this would be to en-
crypt the metadata before storing it in Google App Engine. This is-
sue is, however, beyond the scope of this paper.

4.3. Desktop client

In addition to the integration with Facebook, a social cloud
storage application necessitates a desktop client to store and access
remote data. To efficiently achieve the desired level of data avail-
ability, FriendBox lets users select the set of friends to store each
content and decidewhich part of the data should go to the cloud. In
the current version of FriendBox, the desktop client only permits
to store data in Amazon S3, though other cloud storage services like
Windows Azure and Google Drive can be easily supported.

To achieve high availability, the best strategy would be to store
all data in the cloud to guarantee 24/7/365 access availability. How-
ever, at $0.120 per GB of data transferred out of the cloud, these
costs might quickly add up. To decrease monetary costs, Friend-
Box uses the friends in the social cloud to store data but at the
expense of a lower data availability. The fundamental idea behind
FriendBox is to provide data availability during the hours of the
day where friends are mostly logged in to benefit from availability
correlations. We introduced this new notion of data availability,
termed daily data availability, in our recent work [8], for we refer
the reader to [8] for further details. Going back to our formulation
in Section 3.1, a user may want to achieve a daily data availability
of δ time units for its data. By viewing daily data availability D as a
subset of Tday, i.e., the set including all the time units of one day ac-
cording to a particular quanta, D contains those time units of Tday
being covered by at least one friend, and preferably those with a
greater number of friends. The reason is that a greater number of
friends supply more flexibility to allocate data for load balancing.

5 http://code.google.com/intl/en/appengine/.
4.4. Data redundancy and privacy

To maintain the desired level of data availability, it must be
carefully decided the degree of redundancy. While replication
is suitable for storage of small objects that are accessed fre-
quently, we use Reed–Solomon codes (RS) [9] for storage space
efficiency [24]. Given a data object of size B, a RS(n, k) code par-
titions the data object into k equal-sized fragments, each of size
B/k bits. These k fragments are then encoded to a set of n = k + h
redundant blocks. Since this code is a maximum distance separa-
ble (MDS) code, the stored object can be reconstructed from any
k-subset of redundant fragments. The consequence of this prop-
erty is that a RS(n, k) code can tolerate the loss of any h = n − k
blocks with a redundancy ratio of only n/k. For instance, if we split
a file into n = 14 blocks so that any k = 10 blocks suffice to re-
construct the original file, we can tolerate 4 failureswith a storage-
space overhead of only 40%. If we had used instead replication, we
would have needed 5 replicas to achieve the same level of fault tol-
erance, yielding a storage-space overhead of 400%. The use of cod-
ing is thus highly desirable in this environment where the social
ties storing the data will not be available at all times.

Another important advantage of Reed–Solomon codes is that
the generator matrix of the code can be chosen to be non-
systematic. If a code is non-systematic, then the original data frag-
ments will not appear in the code, preserving data confidentiality.
Note that this statement is valid provided that no subset of blocks
of cardinality greater than k−1 is in the hands of a non-authorized
party, which in our case is basically the cloud provider. We must
note, however, that while a non-systematic RS code is a (k, n)
threshold scheme, and can be interpreted in terms of Shamir’s se-
cret sharing [11], its security guarantees are less than Shamir. The
reason is the lack of randomness in the generator matrix of RS
codes. So, attackers looking for known or patterned data can find
it more easily without reconstructing the original data [26]. For
FriendBox, this level of protection is sufficient. A higher protection
level can be simply achieved by first encrypting the data and then
encoding it, or by usingmore elaborated dispersal schemes such as
AONT-RS [26]. Since all of these variants also transform a file into
n distinct blocks, our analysis is equally valid for all of them.

Once explained the advantages of Reed–Solomon codes, we are
now ready to discuss how we distribute the encoded data objects
across the social ties and the cloud service. Concretely, after apply-
ing the RS coding scheme, a fraction FC of the encoded k fragments
is allocated to the cloud. The remaining ⌈(1 − FC ) · k⌉+h blocks are
allocated to the social friends in a round robin fashion to achieve
an even use of their disk capacity. Compared with replication, one
of the most valuable assets of RS codes is that the amount of data
assigned to a friend is typically only a fraction of the original file
size, saving significant storage space.

http://code.google.com/intl/en/appengine/
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Fig. 3. Implicit trade-offs between data availability, redundancy and cloud costs in
FriendBox.

It is important to mention here that the exact value for FC de-
pends on the parameter δ and the connection pattern of the friends
in the social cloud. For instance, let us consider we want to cover δ
time units of data availability. Depending on the number of online
friends at each of these time units, the storage requirements and
the appropriate value for FC will vary. To illustrate this, we con-
sider two extreme cases. At one extreme lies the case where one of
the δ time units is covered by a single friend. In this case, in order
to ensure the reconstruction of the object, this single friend will be
forced to store at least k − ⌊FC · k⌋ out of the n blocks. And here
the chosen value for FC makes a big difference. The reason is that
the value of FC determines the storage requirements for this friend,
whichwill bemaximal and lead to the storage of a complete replica
of the data file for FC = 0. At the other extreme is the case that all
δ time units are covered by at least k−1 friends, requiring to store
only one block in the cloud. In this case, however, a small value
of FC will be not so problematic, because the storage capacity con-
tributed by each friendwill be significantly smaller: just one block.
Hence, a high level of correlation in availability patterns can help
to reduce the fraction FC for a fixed δ.

For completenesses, Fig. 3 illustrates the relationship between
data availability δ, the redundancy ratio n/k, and the fraction of
data allocated to the cloud FC , which are the three parameters of
our storage model. Let us first consider that the redundancy ratio
n/k is kept fixed. In that case, the result of increasing FC by push-
ingmore blocks to the cloud is that data availability increases. This
suggests that by choosing the right FC , one can achieve the same
data availability with less redundancy. Consequently, a user will
experience shorter transfer times and hewill require less resources
from his friends. However, increasing FC may present some draw-
backs, specially related with a higher cost of the storage service
and the amount of data control relinquished to the cloud operator.
Furthermore, even in the case of storing k − 1 blocks in the cloud,
100% availability cannot be guaranteed: If all storage friends are si-
multaneously unavailable, the missing block will not be reachable [8].
FriendBox gives to the user the opportunity to decide themost ad-
equate storage service depending on his needs.

4.5. Maintaining data redundancy

In FriendBox, data blocks may be lost in the event of a user
permanent departure/crash or when the friendship between two
users comes to its end. Therefore, to maintain an adequate level of
data availability over time, we should repair lost redundant data
blocks.

In our context, a data repair consists of generating a new redun-
dant block to replace a lost one,6 storing the generated block again

6 Reed–Solomon codes require to gather a subset of k blocks to generate a
new redundant one. This may induce high bandwidth overhead in scenarios
where failures are frequent. Making use of more sophisticated codes in FriendBox
(e.g. regenerating codes) and analyze the overhead data repairs is object of future
work.
in the system [27]. There are three main approaches used to recre-
ate redundancy when nodes fail:

• Eager repairs: Lost redundancy is repaired on demand immedi-
ately after a node failure is detected.

• Lazy repairs: The system waits until a certain number of nodes
had failed and repairs them all at once.

• Proactive repairs: The system schedules the insertion of new re-
dundancy at a constant rate, which is set according to the aver-
age node failure rate.

FriendBox advocates for an eager repair strategy. In other
words, when the friendship between two users ends, the Friend-
Box Application State requests both users to start a repair process,
i.e., a graceful repair. Moreover, if a friend of a user has been dis-
connected from the system for a certain time period, e.g., 1 week,
it can be assumed that this disconnection is a permanent departure
and trigger a repair.

Compared to lazy repairs, the number of a user’s trusted
friends is normally too small to wait for several nodes to fail until
triggering a repair. Actually, this conditionmight be never reached,
leaving the system in a low-redundancy state for a long period of
time and thus vulnerable to data loss. Also, proactive repairs are not
directly applicable because users fear to store their data in arbitrary
nodes in the system. Further, to put proactive repairs in place, it is
necessary to compute summary statistics like the average failure
rate in a per-user friendset basis. Due to the small sample of nodes,
these statistics cannot be considered reliable enough to give a
correct inference for proactive repairs to work as expected.

A final concern is that introducing more redundancy to the
remaining friends is no guarantee to improve data availability in
the presence of availability correlations [8]. Therefore, since repairs
are expected to be rare, we advocate for placing the data block
generated from the repair process in the cloud. The objective is to
provide the same level of data availability the system enjoyed prior
to the failure.

4.6. Data transfer

Once a file has been encoded, it is necessary to transfer the
encoded blocks to the corresponding social ties. To minimize
transfer time and fully utilize the upstream bandwidth, FriendBox
uses the rented cloud storage service as a temporary repository to
store the blocks for those social links that were offline when the
transfer of their blocks was scheduled. In any case, the extra blocks
pushed to the cloud are downloaded afterwards by the friends to
whom they were initially allocated.

For downloading a file, FriendBox prioritizes the download
of the corresponding blocks from friends to incur the minimal
monetary costs due to the data transfers out of the cloud. Only in
the case that there are less than k blocks, the remaining up to k are
downloaded from the cloud storage service.

5. Empirical analysis of social cloud storage

In this section, we empirically study the fundamental problems
and challenges involved in the social cloud storage paradigm. Indeed,
what the incipient social cloud literature misses is a deep analysis
of the implications that environmental factors such as user avail-
ability and topology have on the storage service. As a central contri-
bution of this work, we identify and quantify the main underlying
factors that influence the storage service provided by a social cloud.

5.1. Evaluation objectives and metrics

Through experimentation, we aim to shed some light on the fol-
lowing aspects that we believe capital to provide an adequate stor-
age service in a social cloud:
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Fig. 4. Input social graphs for our experiments. The graph on the left exhibits a low average clustering coefficient of CC = 0.3, whereas the CC of the graph on the right is
0.7. Node labels correspond to their degree.
• Daily data availability: The probability to access a data ob-
ject during the day, which depends on parameters such as the
amount of redundancy n

k and the fraction of the data allocated
to Amazon S3. Of course, correlation in availabilities plays a key
role on the achievable daily data availability.

• Load balancing: Load balancing is critical to the feasibility of a
distributed storage system [8]. For this reason, we analyze the
interplay of the social graph topology and user availability on
the resulting storage load supported by users.

We quantify load balancing in two ways. At the user level,
we account for the number of storage operations processed by
each user, i.e., data block PUTs and GETs. At the global level,
we utilize the Gini coefficient and the Lorentz curve to exam-
ine the distribution of served storage operations in the social
graph. Specifically, the Lorenz curve depicts the proportion of
the total income of the population (y axis) that is cumulatively
earned by the bottom x% of the population.7 The diagonal line
represents perfect equality of incomes. The Gini coefficient, de-
noted by G, is the ratio of the area that lies between the line of
equality and the Lorenz curve (A) over the total area under the
line of equality (A + B):

G = A/(A + B). (2)
• Transfer time: An important performancemetric for social cloud

storage is data transfer speed. In particular, we study two as-
pects: the congestion caused by the topology of the social net-
work and the impact of correlated user availabilities on the time
to download a file from the system.

• Fairness: Typically, a social cloud adds regulatory protocols to
enforce resource fairness. However, there is no analysis on the
extent of the potential asymmetry that may arise in a social
cloud along with what elements may originate it. As a simple
measure of fairness, we utilize the ratio between the amount of
resources contributed to the social cloud and those consumed
by a user:

FR =
Rp

Rc
, (3)

7 For a technical description of Gini coefficient and Lorentz curve see
http://en.wikipedia.org/wiki/Gini_coefficient.
where Rp represents the amount of resources a user provides
to the system, and Rc the amount of resources that a user con-
sumes from his social ties. A value of FR equals to 1 represents
perfect equilibrium between resource consumption and contri-
bution. FR > 1, however,means that a user is contributingmore
resources to the system than what is actually consuming. Fi-
nally, FR < 1 signals that a user may be abusing its social ties,
because it consumes more than it donates.

• Cloud contribution: As we use cloud storage, i.e. Amazon S3, as a
pivotal element to the feasibility of a storage service in a social
cloud [12], its role in the system deserves special attention. In-
deed, we measure the consumption of cloud resources that the
members of the social cloud incur in their PUT and GET storage
operations, depending on their availability and position in the
social graph. We use the number of data blocks transferred in
and out of the cloud because this simple metric can be immedi-
ately turned into monetary metrics like the ‘‘dollars per storage
operation’’.

5.2. Scenario and setup

Once elaborated on the objectives of our evaluation, we are
ready to describe the setup of our experiments.

Topology. We deployed a group of 20 FriendBox desktop clients
in our university laboratories. The 20 FriendBox clients were or-
ganized according to two real graphs from Friendster [28] in or-
der to assess the influence of the friendship topology. One topology
shows a high clustering or local transitivity, i.e., if user a knows b
and c , then b and c are likely to know each other, while the other is
weakly clustered. To identify each topology, we will use the value
of the clustering coefficient at the hub. Both topologies are illus-
trated in Fig. 4. Accordingly, their degree distributions are shown
in Fig. 5 (right).

Availability. To incorporate availability correlations into our
experiments, we instrumented the alternating ON–OFF behavior
of users by means of an availability trace from Skype [29], which
exhibits strong diurnal patterns and high heterogeneity in user
availabilities. Both properties are clearly visible in Fig. 5 (left). The
CDF of user availabilities ranges from 0.18 to 0.75, which evidences
high heterogeneity. Furthermore, the time-series representation in

http://en.wikipedia.org/wiki/Gini_coefficient
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Fig. 5. Nodes present high availability heterogeneity and diurnal patterns (left). The node degree distribution varies significantly depending on the CC (right).
Fig. 6. Time series plot of the available blocks for the hub and the least connected node to achieve δ = 7.2 hrs./day (left). Impact of increasing n/k on δ depending on the
node degree (right).
Table 1
Parameter configuration in our experimental scenario.

Parameter description and values

Nodes in the system 20
Experiment duration 24 h
Node storage capacity 40 GB
Parallel upload/download connections 2, 2
Erasure codes original file fragments (k) 40
Cloud file fraction (FC ) 0.5
Object size (β) 400 MB
Data redundancy (n/k) 2.0
Cloud back-end Amazon S3

the inner plot illustrates that friends are mostly connected during
the central part of the day and disconnected during night hours.

To study the impact of availability in the social hub,we assigned
two different availabilities to the highest degree user in the social
graph: a high availability of 0.594 and a low availability of 0.278.

We also conducted simulationswhere userswere always online
as baseline to understand the effect of availability correlations. We
will refer to this scenario as ‘‘no churn’’ throughout the evaluation.

Workload. The workload model of our experiments is homoge-
neous. All nodes alternatively perform file downloads and uploads
while being logged in. Hence, file transfers are concurrently exe-
cuted throughout the experiment to capture the effects of network
congestion. File transfers are randomly performed every period of
[600–1200] seconds over synthetic files of size β = 400 MB. Un-
less otherwise stated, we fixed FC = 0.5 and the redundancy ratio
to n

k = 2.
Hardware. FriendBox clientswere hosted in desktop computers

(Intel Core2 Duo and AMD Athlon X2 processors) equipped with
4GB DDR2 RAM. The OS was Debian Linux.8 The clients were con-
nected via a 100Mbps switched Ethernet links. For the collection of
physical network information, we utilized vnstat, a tool that keeps
a log of network traffic for a selected interface. The rest of informa-
tion presented in this section was gathered by the FriendBox log
system.

8 FriendBoxworks for other platforms such as Windows and Linux Ubuntu.
Other important parameters in this experimental scenario are
depicted in Table 1.

5.3. Experimental results

Herewepresent the experimental results anddescribe themain
insights that follow from our analysis of the social cloud storage.

5.3.1. Data availability
In this section, we study the factors that influence the daily data

availability. For this reason, we fix the target daily data availabil-
ity δ to 7.2 h and vary the fraction FC of data to be allocated to the
cloud. For clarity, we only report the results for the topology with
small clustering. Also, we only consider the case where the social
hub is highly available.

The effect that availability correlation induces on daily data
availability can be clearly seen in Fig. 6, left. Surprisingly, the least
connected user achieves the target 7.2 h of data availability by
making use of less redundancy than the social hub. This can be eas-
ily inferred by tracking over time the number of data blocks avail-
able for each user. The cause of this counterintuitive behavior is
availability correlation: the two friends of the least connected user
are simultaneously online for≈8.5 h. Because they cover by far the
target 7.2 h of daily data availability, no extra redundancy is neces-
sary. In general, however, it is difficult to have a sufficient number
of online friends for δ hours, which requires the introduction of ex-
tra redundancy to meet the target level of data availability.

Further, Fig. 6, left, gives an interesting result: the allocation of a
larger proportion of data to the cloud makes it possible to achieve
the target 7.2 h of data availability with less redundancy. This is
because a larger FC reduces the number of data blocks to be given to
friends. Since altogether friends exhibit poor availability compared
with Amazon S3, the necessary redundancy tomeet a certain δ may
become smaller. This occurs to the social hub whose redundancy
ratio n

k decreases by a 14% when increasing FC from 0.25 to 0.75.
These savings become more significant for higher δs.

The dispersion graph in Fig. 6, right, relates the number of social
links (x axis) with the achievable δ (y axis) for different amounts
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Fig. 7. Relationship between a node’s degree and the storage load caused by its friends. We illustrate a churn scenario (high available hub) and a stable scenario.
of redundancy n
k . As expected, the higher the redundancy is, the

higher the data availability is. However, the increase in data avail-
ability is not linear and may be abrupt or even zero for a higher n

k .
Concretely, the final data availability depends more on the avail-
ability pattern of users than on the number of friendship links a
user has. This is evidenced by the lack of correlation between the
node degree and the achievable δ. In fact, someuserswith a smaller
number of friends present a higher δ than those users with a larger
friendset.

We can summarize the main findings of this section as follows:
Observation 1: A larger number of friends help but do not neces-

sarily improve daily data availability.
Observation 2: The degree of coincidence in the online periods

of friends is crucial to understand the relationship between data
availability and redundancy.

Observation 3: Storing a fraction of data in the cloud may reduce
the overall redundancy of a social cloud system.

5.3.2. Load as function of social graph topology
Here we examine the influence of the graph topology on the

load experienced by users. In Fig. 7, we report the number of data
blocks that a user stored (PUT) and served (GET) as a function of
its degree. The figure contains four subplots, each of which cor-
responds to a distinct combination of topology and availability
model. Interestingly, all four dispersion graphs show that the load
of users varies significantly depending on the clustering of the so-
cial graph topology. For high clustering, load is more evenly spread
across all users, irrespective of the availability model.

For low clustering topologies, however, the degree strongly de-
termines the load of a user. This conclusion comes from the visible
linear growth on the number of storage operations with increas-
ing user degree. Such a behavior may compromise the scalability
of a social cloud. Social hubs, which interact with most of their so-
cial links [4], may become eventually saturated, and socially-based
incentives may be even insufficient to enforce cooperation in the
social cloud. Thismay pose the need formore sophisticated trading
and sharing strategies like auctions and formal SLAs.
To examine load balancing from a global view, we calculate the
Gini coefficient to measure the inequality in serving GET opera-
tions. The corresponding Lorentz curves are shown in Fig. 8. As
shown in this figure, the Gini coefficient is much smaller and the
Lorenz curvemuch closer to the diagonal in the topologywith high
clustering,which indicates that a higher connectivity facilitates the
balancing of load among themembers of the social cloud. Butmore
importantly, and contrary to conventional wisdom, there exists no
correlation between the load and the user degree in the presence of
availability correlations. This phenomenon can be easily seen in the
lower right subplot of Fig. 7, where users of similar degree present
very disparate load. We explore this issue in the next section.

We summarize the main results of this section as follows:
Observation 4: For low clustering, the degree strongly determines

the load of a user.
Observation 5: In general, a high clustering coefficient results in

a better load balancing within the social cloud.

5.3.3. Load as a function of user availability
Let us now consider the traffic load a user encounters as a func-

tion of its availability. The dispersion graphs in Fig. 9 relate these
metrics for both stored and served blocks in a dynamic scenario
with different clustering values.

The first main observation is that user availability does not pos-
itively correlate with storage load when the degree of clustering
is low. This result is important because conventional wisdom as-
sumes that high user availability is synonym of a higher burden.
However, we observe that load in a social cloud system depends
on other factors like the specific topology of the social graph. Con-
cretely, we find that for low clustering, the number of friends that
a user has is what determines its storage load.

On the contrary,when the social graph is highly interconnected,
availability is what mainly determines the storage load experi-
enced by users. This conclusion is evidenced by the linear increase
in the number of data block transfers with increasing user avail-
ability. This result is not surprising. In the ideal case that all the
members of the social cloud were fully connected, the burden
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Fig. 8. Distribution of served download block requests (GETs) in a churn scenario depending on CC .
Fig. 9. Relationship between storage load and node availability depending on the clustering coefficient.
experienced by each individual would be proportional to its avail-
ability: the higher the availability the greater the odds of under-
taking a storage PUT and GET operation.

We summarize the main insight of this section as follows:
Observation 6: In a social cloud with high clustering, the avail-

ability of a user determines the load it will receive.

5.3.4. Data transfer time
First, we assess transfer speed as a function of the social graph

topology. To avoid any interference caused by availability correla-
tions, Fig. 10 depicts the distribution of transfer time when all the
users in the social cloud are online, i.e., when there is no churn. For
clarity, we only plot the transfer time distribution for three users:
the social hub who is linked to 18 friends, a user with the average
network degree, and the least connected user in the social cloud.

For the low clustering topology, two observations are specially
interesting. First, the least connected user achieves a lower trans-
fer time than its higher degree friends, particularly for downloads.
This is explained by the fact that for low clustering topologies, the
users withmany social links support a higher storage load and suf-
fer from congestion. Second, the differences in the upload time
are less significant. This is mainly due to two factors. First, local
data block transfers among friends are much faster because of our
Fast Ethernet LAN than accessing Amazon S3. Second, uploading in
FriendBox involves the transfer of a fraction of the data to Ama-
zon S3 while downloads retrieve as much as possible from friends
and only access the cloud if there are not enough blocks available
at friends.

For the high clustering topology, however, there are no im-
portant differences in file transfer times neither for uploads nor
downloads. This means that a higher clustering coefficient intro-
duces less congestion.

Now we study the effects of availability correlations on down-
load times. For such a purpose, Fig. 11 plots the download time
given as a time series for the social hub and one of the users whose
degree coincides with the average degree of the social graph. For
the social hub, Fig. 11 (left) reports that the download time is short
whenmost of its friends are logged in. However, this time increases
significantly during night hours. This is because the hub needs to
resort to the cloud in order to complete the file download, which
makes downloading to be slower in our campus scenario.

For the average-degree user, Fig. 11 (right) reports a larger
download time than for the social hub, which indicates that the
download time diminishes with the number of friends since blocks
transfers from friends are faster than accessing the cloud. This is
supported by the fact that for the samenode, inmost cases, a higher
degree induces shorter download times.

Finally, it is worth mentioning that in some cases, specially at
the end of the regular node execution, a few file downloads when
that node has 13 friends are slower thanwhen it has only 5 friends.
As in the case of data availability, a higher degree reduces download
times if friends are simultaneously online at themoment of download-
ing the content. Otherwise, a higher degree will have little or no
positive effect for the storage service a node receives.

We summarize this section as follows:
Observation 7: For low network clustering, users with high de-

grees exhibit larger transfer times due to network congestion. This can
be critical for hubs.

Observation 8: A higher clustering coefficient inherently reduces
congestion and improves transfer times.
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Fig. 10. Effects of CC on transfer times and congestion.
Fig. 11. Time series analysis of download times of two different nodes. We clearly observe the consequences of availability correlations on download times.
Observation 9: Although having more friends may in general
improve download times, the actual number of online friends when
the download occurs is fundamental.

5.3.5. Fairness
Nowwe study the resource fairness among members of the so-

cial cloud. We use the fairness ratio (FR) as defined in (3) to mea-
sure the asymmetry in resource contribution. To start with, we
focus on the fairness in bandwidth contribution. As a boxplot al-
lows to assess the dispersion of a given distribution, Fig. 12 shows
the boxplots of the distribution of fairness ratio when the resource
under consideration is the upstream and downstreambandwidth.9
As can be seen in the figure, a high clustering is crucial to promote

9 In our experiments, the application workload is homogeneous, which means
that asymmetry arises as a result of topological variations.
fairness. For the topology with small clustering, around 70% of the
users consume more resources than they contribute. This forces
the remaining 30% to correct this deficit and contribute the miss-
ing resources for little or no personal gain. Someusers even present
a FR superior to 2, which may be a powerful disincentive for many
users to remain in the system.

For the topology with high clustering, however, the boxplots
resemble a normal distribution centered at the equilibrium point
of FR = 1. This is very positive for the system, as it means that
most users consume an amount of resources that is equal to their
individual contribution.

Next, we investigate the influence of user degree on the fair-
ness ratio. More specifically, Fig. 13 correlates the fairness ratio
with user degree by means of several dispersion graphs. As before,
this figure contains four subplots, each corresponding to a single
combination of topology and availability model.

As can be seen in the figure, and contrarily to our prior obser-
vations, the user degree is the dominant factor controlling local
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Fig. 12. Fairness ratios of up./down. transfers depending on the network’s CC for stable/churn scenarios.
Fig. 13. Relationship between up./down. fairness ratios and node degree for churn/stable scenarios.
fairness: the higher the degree is, the higher the asymmetry is,
because the number of storage operations is proportional to the
number of friends. Interestingly, perfect fairness is only achieved
for those users whose degree is close to the average degree of the
social graph, which is 6.7 and 13.1 for the low and high clustered
graphs, respectively. This gives a clue about the intricate relation-
ship between topology and fairness, whose analytical study is the
object of future work.

Furthermore, the availability of friends does not affect fairness,
which can be verified by comparing the subplots of Fig. 13 where
users are always logged in, labeled ‘‘no churn’’, with those subplots
where users join and disconnect from the social cloud. The main
reason is that while a user is offline, no data block can be stored in
the hard disk of a friend, and vice versa.

Our observations may have important implications on the be-
havior of users in a social cloud. For instance, given that users with
a low degree tend to abuse the system, their friends may, in turn,
reject to transact with them until they increase their degree. This
could lead to a cold-start situation, where newcomers cannot eas-
ily be part of the social cloud. Therefore, further research is needed
to guarantee resource fairness in a social cloud by taking into ac-
count the underlying system characteristics.

Themain insights of this section can be summarized as follows:
Observation 10: A high clustering coefficient is critical to main-

tain fairness in the system.
Observation 11: The degree of a user greatly determines the
fairness it establishes with the system.

5.3.6. Cloud usage and monetary costs
Finally, we study the use of storage cloud resources by Friend-

Box clients. Concretely, we illustrate the total number of data block
transfers in and out of the cloud when the social ‘‘hub’’ is highly
available, abbreviated H.A.H, and low available, abbreviated L.A.H,
for our two topologieswith clustering coefficients of 0.3 and0.7, re-
spectively. To avoid biasing the results, the data blocks transferred
by the hubwere excluded from the final count. The reasonwas that
a highly available hub conducts more block transfers than a hub
with a lower availability, whichmay seriously bias results towards
the H.A.H configuration. Results are shown in Fig. 14.

For the same degree of clustering, this figure shows that overall
the users resort to the online cloud storage service substantially
more times when the availability of the hub is low, effect that is
more significant for file downloads. This behavior is aggravated for
social graphs for which the clustering is small. For instance, for
the topology with CC = 0.3, the number of data transfers out of
the cloud increases a 26.5% when the availability of the social hub
decreases from 0.594 to 0.278. The reason is that for social graphs
with small clustering, users have fewer chances of downloading
data blocks from their friends, thus making the system more
dependent on the availability of the hub.
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Table 2
Costs estimation of FriendBox compared with Amazon S3 for the experiment workload.

Storage
($/month)

Down.
Traffic ($)

Storage Buffering ($/month,
only 1st month)

Down. Buffering Traffic
($)

FriendBox vs.
Cloud (1st month)

FriendBox vs. Cloud
(permanent)

H.A.H. CC = 0.3 9.234 3.891 8.571 10.826 −21.19% −68.19%
CC = 0.7 9.234 2.941 8.227 10.392 −25.37% −68.83%

L.A.H. CC = 0.3 9.234 5.294 11.417 14.421 −2.18% −64.79%
CC = 0.7 9.234 3.459 9.373 11.839 −17.84% −69.24%

Amazon S3 18.465 22.8 -. - - -
Fig. 14. Cloud block transfers depending on the hub’s availability and the clustering coefficient.
For the same hub availability, a higher CC reduces significantly
the number of data block transfers out of the cloud. To give some
numbers: if the hub has low availability, the number of transfers
is comparatively a 34.6% smaller in the high clustering graph than
for the social topology with small clustering. This can be explained
by the fact that a higher clustering degree is accompanied by a
greater number of links between users, which in general increases
the number of data blocks retrievable from friends at any time
[8,5]. This reduces the number of accesses to the cloud.

Further, we observe that uploads consume a higher amount of
cloud resources than downloads. This is because FriendBox min-
imizes the number of cloud transfers by giving priority to friends
in the download schedule, only accessing the cloud in those situa-
tionswhere available friends cannot supply the necessary blocks to
complete the file retrieval. However, uploads always require trans-
ferring a fraction of the data to the cloud,which increases its overall
usage. It should be noted that alternatively uploading and down-
loadingdistinct filesmakes it difficult for offline nodes to download
buffered blocks and serve download requests when they become
online again. This means that less aggressive workloads would
greatly reduce the number of cloud downloaded blocks, since there
would be enough blocks available at friends.

Therefore, we see that a higher CC alleviates the consumption
of cloud resources when the social hub is poorly available. This
implies that when the hub is disconnected, Amazon S3 is used to
temporarily buffer a smaller number of blocks per file storage op-
eration than when the degree of clustering is low.

The previous observations are reflected in the economic cost of
the FriendBox service as visible in Table 2.10 At first glance, we
observe that as the lower network CC and hub availability, the
higher economic expenses in cloud resources. This particularly im-
pacts on the number of extra blocks buffered in the cloud due to
the unavailability of friends at the moment of storing a file. How-
ever, we should note that FriendBox greatly reduces the long term
cloud costs. For example, configuring FriendBox with FC = 0.5
and n/k = 2, users save up 50% of permanent storage costs and
87%–77% of download traffic costs compared with Amazon S3.
Thus, we conclude that FriendBox is feasible in economic terms.

10 According to Amazon’s S3 at December 2013we assume0.12 per GB of outgoing
traffic and 0.095 per GB/month of storage. Incoming traffic is free of charge.
These economic savings opens up the possibility to develop
storage services at low cost. Very often, SMEs and Startups cannot
afford the steep infrastructure costs to support their businessmod-
els, making the cloud an attractive hub for them.While cloud com-
puting may save money in IT costs, the costs of renting a storage
facility can be still very expensive for small businesses and Star-
tups. Internet is full of successful IT stories of services, like
Spotify or Wuala, which combined data centers with end-user
resources to significantly lower the investment in servers and
bandwidth,which is a pretty big deal for Startups. For instance, this
combination allowed Spotify to scale up quickly without having
to invest heavily in cloud resources, saving the companymillions of
dollars every year. In this sense, it is not hard to imagine businesses
that take advantage of the ‘‘social cloud’’ model to reduce costs and
flourish. Online social networks like Facebook launched develop-
ment platforms that blossomed into entire ecosystems. And hence,
it is not unwise to say that a similar approach could be followed
by a social cloud to craft a blossoming ecosystem of value-added
service providers. This issue is, however, outside the scope of this
paper.

We summarize this section as follows:
Observation 12: The availability of social hubs plays an important

role in the consumption of cloud resources, specially for low clustering
topologies.

Observation 13: In general, a high clustering degree reduces the
overall amount of consumed cloud resources.

Observation 14: FriendBox provides an attractive trade-off
between storage service and economic cost.

6. Discussion on future directions

An important conclusion drawn from our evaluation is that the
degree of clustering plays a critical role on how storage resources are
exchanged among social links. More concretely, we have seen that
resource fairness, simply understood as a cost–benefit ratio, can
exhibit a large imbalance when the cluster coefficient is low.

We envisage two different strategies to address this situation:

• Apply a different placement policy to balance the contributed
resources by each user; and

• Increase the cluster coefficient through incentives.

Regarding the first solution, the idea is to replace the round
robin allocation policy used in FriendBox by a fairer policy. For
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Fig. 15. Fairness ratio for different CC using round robin placement or widening storage links to the extended network.
instance, a better policy would be to allocate much more data to
the members with a small number of social ties, because, in gen-
eral, those users are prone to consume more resources than they
contribute. This would free the hubs from donating too much re-
sources to the social cloud.

However, this policy might introduce undesirable effects. For
example, a large number of blocks might be allocated to a single
friend in an attempt to reduce contribution asymmetry. Once this
friend went offline, data availability could be highly affected be-
cause the data owner might unable to retrieve a sufficient number
of redundant blocks from the remaining set of logged-in friends
and the cloud.

Regarding the second solution, we have seen that the best fair-
ness ratio is achieved in the social graphs with high clustering,
mainly because the data is better spread among friends without
overloading hubs. This leads to the question of which type of in-
centive mechanism would be appropriate to increase the cluster-
ing coefficient and improve the overall fairness.

An appealing way of regulating sharing, providing incentives to
users and mitigating the risk of an unfair distribution of resources
in a social context is the use of market metaphors as shown in [2].
Although using market-based mechanisms is not a new idea to
solve the resource allocation problem in computer systems (see,
for example, [30,31]), leveraging digitized social relationships pro-
vides benefits in terms of increased trust and lowers the barrier to
share spare resources. The key idea would be to provide incentives
for users to create new social interactions to increase the cluster
coefficient up to the necessary level upon which a fair distribution
of work among the whole social network could be achieved.

More technically, given a user v of the social cloud, let us con-
sider the ratio of fairness at v, namely FRv and calculated by (3), as
the objective metric we want to equalize among all participants.
Let us now denote by d(v1, v2) the shortest distance between node
v1 and v2 in the social graph, and by

Xv =

vi : d(v, vi) ≥ 1 ∧ FRvi < 1


the extended network of v that includes the friends and friends of
friends that have a fairness metric less than 1 (contribute less than
consume). If we consider the excess of contribution M = Rp − Rc
as a currency in the social market, participants with a FRvi > 1 and
M > 0 could be allowed to use its extended network Xvi to dis-
cover new social contacts where store new content, increase their
FRvj while decreasing its own FRvi .

To give a sense of the efficacy of this solution, an initial simula-
tion was run on the topologies of Fig. 4 using round robin schedul-
ing for exactly 10 rounds of simulation. In each simulation round,
storage requests were repeatedly made by all the members of the
social cloud using the same setup as in the experiments of the
preceding section. Results are depicted in Fig. 15, where it is easy
to appreciate the high imbalance when the social graph is sparse
(CC = 0.3) compared when it is highly connected (CC = 0.7).
If we turn our attention to the newmechanism, themembers of
the social network with an initial excess of contribution (FR > 1)
after the first round of storage requests are allowed to use the
extended network on subsequent rounds as explained above un-
til they run out of storage currency. Contrary to the simple round
robin policy, Fig. 15 clearly verifies how the fairness index at each
member is close to the target value of 1: Rp = Rc ⇒ FR = Rp/Rc =

1, thanks to the use of the extended network and very importantly,
irrespective of the clustering degree. The extended network serves
to artificially increase the degree of clustering by creating new so-
cial links (transient social ties), thereby leading to a better balanced
system. As a side effect, we are also improving data availability by
adding more social contacts to the ego-centric graph of each user.
The new social acquaintances might even belong to other time
zones which would alleviate the effects of availability correlations.

Although the use of market metaphors in the social cloud is a
promising line of work, their final adoption is yet uncertain as it
remains to be studied how factors like the topology, availability
correlations, etc., shape the form of utility functions. Regarding the
implications on trust and privacy of adding new social ties, this
decision potentially could be made using reputation measures to
leverage the level of trust among direct links and the extended net-
work, addressing to some degree the trust and privacy concerns of
users.

7. Conclusions

Recently, the notion of ‘‘social cloud computing’’ has gained
momentum for its amalgamation of social and cloud computing.
Following this new trend, we have shown how to leverage social
relationships to form a dynamic social cloud for storage. Although
this model builds upon the unique environment in which users are
motivated by social incentives, we have seen that there exist some
difficulties and subtleties that prevent the realization of this con-
cept in the real world, such as the availability correlation between
social contacts and the asymmetry in contribution levels. Through
a real deployment of a social cloud application in our campus, we
have studied towhat extent these factors affect the feasibility of so-
cially oriented storage. Our analysis has revealed new insights on
how to design a social storage cloud, in particular, when the stor-
age resources contributed by eachmember are augmentedwith an
external storage service like Amazon S3.
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