
july/AUGUST 2014	 1089-7801/14/$31.00 © 2014 IEEE	 Published by the IEEE Computer Society� 47

W
eb

-S
ca

le
 D

at
ac

en
te

rs

Smart Cloud Seeding for 
BitTorrent in Datacenters

Xavier León,  
Rahma Chaabouni,  
Marc Sánchez-Artigas,  
and Pedro García-López
Universitat Rovira i Virgili, Spain

Cloud content providers must deliver vast amounts of data to an ever-growing 

number of users while maintaining responsive performance, thus increasing 

bandwidth-provisioning expenditures. To mitigate this problem, the authors 

transparently integrate BitTorrent into the cloud provider infrastructure 

and leverage users’ upstream capacity to reduce bandwidth costs. They also 

allocate seeder bandwidth optimally among swarms to maximize throughput. 

Their system delivers higher performance when dealing with large volumes of 

data compared to the traditional client-server paradigm.

T oday’s Internet lets an increasing 
number of users consume various 
types of content. Services such as 

Dropbox, SugarSync, and Google Drive 
deal with an unprecedented amount 
of data on a daily basis, storing, pro-
cessing, and delivering such content in 
datacenters as if capacity were unlim-
ited. To provide service to their clients 
in a responsive manner at a large scale, 
small and medium content providers 
must rely on third-party content deliv-
ery networks. As the number of clients 
grows, the cost of scaling up resources 
becomes problematic.

To address this issue, content pro-
viders have relied on protocols such as 
BitTorrent to leverage interested clients’ 
spare upstream capacity for specific 
content.1,2 In this way, the group of cli-
ents interested in certain content — also 
known as a swarm — is tasked with 
redistributing small parts of that content 
to other members. This solution not only 
saves precious bandwidth on the provider  

side but also helps reduce clients’ down-
load times compared to using a single 
content source, as when following the 
client-server model.

We foresee two challenges in the con-
text of content distribution in datacen-
ters. Current cloud storage services rely 
mainly on the client-server communi-
cation paradigm to make their content 
available. Therefore, our first challenge is 
how to transparently integrate a swarm-
ing protocol such as BitTorrent (www.
bittorrent.com) into a datacenter to avoid 
placing the burden of managing the tran-
sition between protocols on users.

The second challenge is how to 
allocate the limited bandwidth on the 
datacenter side to different swarms, 
thus maximizing content download 
throughput and increasing the system’s 
efficiency and responsiveness com-
pared to current solutions. For this, we 
propose a smart seeding strategy that 
grants bandwidth according to swarm 
characteristics.

IC-18-04-Leon.indd   47 04/06/14   12:00 PM



Web-Scale Datacenters

48	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Personal Cloud Storage Scenario
The past few years have seen a rush of online 
storage services such as Amazon Simple Storage 
Service and Dropbox entering the market. From 
a technical viewpoint, most of these services use 
HTTP as a transfer protocol and fail to benefit from 
users’ interest in the same content. To illustrate, 
consider a professor who wants to share a large 
dataset with students so that they can synchronize 
across different personal devices and analyze indi-
vidually. In this case, the content provider would 
cut bandwidth costs by using a client-assisted con-
tent delivery mechanism, and students could share 
their upload capacity to improve download speeds.

In this context, we integrated BitTorrent,3 a  
well-known, peer-to-peer (P2P) protocol that 
leverages users’ spare upstream capacity to 
offload some of the burden from storage servers. 
The main challenge is to achieve this seamlessly 
and transparently without user intervention. With 
this approach, the storage service monitors user 
activity and, on detecting a certain critical mass 
for a specific content, transparently switches to 
BitTorrent.

A recent study on Dropbox client behav-
ior4 demonstrates that 5 percent of the service’s 
dataflows were bigger than 10 Mbytes, account-
ing for a high percentage of the traffic measured. 

Related Work in Content Distribution

Various related works focus on how to efficiently distrib-
ute content to a set of users, from classical content dis-

tribution networks (CDNs) to online, multicast streaming of 
live content. Here, we focus on works whose main aim is to 
improve the responsiveness and throughput of large volumes 
of content given a restricted budget on server- or datacenter-
side bandwidth consumption.

Classical CDNs replicate data to a set of intermediate 
servers to alleviate the load on the principal server, reduce 
download times, and handle flash crowds. The very successful 
Akamai, for example, gives content providers a large distributed 
network on which to cache content to support large volumes of 
client requests.1 This business model simply results in increasing 
costs according to the amount of data the delivery network 
handles.

Instead of delivering infrastructure support to content 
providers, systems such as BitTorrent2 and Avalanche3 offer a peer-
to-peer paradigm that shifts bandwidth costs to clients. The work 
most similar to ours is Antfarm,4 a content distribution system 
that measures a swarm’s response curve to seeder bandwidth 
to optimize its uploads among competing swarms. Such a system 
needs to actively measure swarm dynamics and uses an off-band 
protocol to incentivize users to report performance data that is 
later used to do the actual allocation. Although we tackle the same 
problem, we avoid actually measuring swarm dynamics in real time, 
and thus bypass a nonnegligible overhead on the content provider 
and measurement errors.

In contrast, our smart seeding strategy exploits some known 
facts about BitTorrent protocol behavior to model the response 
curve based on data already available from BitTorrent trackers 
and provided by our monitored clients. Our mathematical 
framework lets us solve the multiswarm bandwidth allocation 
in a computationally and network-wise efficient manner. As we 
show in the main text, our strategy provides higher throughput 
to swarms as well as a faster time to convergence without the 
fine-grained monitoring Antfarm requires.

An interesting recent work proposes a model-based allocation 
mechanism for client-assisted content delivery based on building up a 
model from offline measurements. This effectively creates a so-called 
cheat sheet, which provides actual response curves computed 
beforehand.5 Besides their model-based mechanism, the authors 
propose a distinction between static mechanisms that use simple 
strategies to allocate bandwidth — equal and proportional sharing 
in our case — and dynamic mechanisms that constantly adjust 
bandwidth allocation according to swarm dynamics, as with Antfarm.

Our mechanism takes the best from the model-based and 
dynamic mechanisms. On the one hand, our mathematical 
model predicts swarm performance with respect to datacenter 
bandwidth, letting the optimization problem converge 
instantaneously, as in the measurement-based model.5 On the 
other hand, our model is flexible enough to adapt the response 
curve to swarm dynamics using online measurements, which 
are easily gathered from our instrumented clients, as in dynamic 
strategies.4 Although our model’s accuracy is potentially lower 
than a measurement-based model, our strategy’s practicality is 
much higher because no offline measurements are necessary.

References
1.	 E. Nygren, R.K. Sitaraman, and J. Sun, “The Akamai Network: A Platform for 

High-Performance Internet Applications,” ACM SIGOPS Operating Systems Rev., 

vol. 44, no. 3, 2010, pp. 2–19.

2.	 B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc. Workshop Economics 

of Peer-to-Peer Systems, vol. 6, 2003, pp. 68–72. 

3.	 C. Gkantsidis and P.R. Rodriguez, “Network Coding for Large-Scale Content 

Distribution,” Proc. 24th Ann. Joint Conf. IEEE Computer and Communications 

Societies, vol. 4, 2005, pp. 2235–2245.

4.	 R. Peterson and E.G. Sirer, “Antfarm: Efficient Content Distribution with 

Managed Swarms,” Proc. 6th Usenix Symp. Networked Systems Design and 

Implementation, vol. 9, 2009, pp. 107–122.

5.	 A.R. Abhigyan Sharma and A. Venkataramani, “Pros and Cons of Model-Based 

Bandwidth Control for Client-Assisted Content Delivery,” Proc. 6th Int’l Conf. 

Communication Systems and Networks, 2014, pp. 1–8.

IC-18-04-Leon.indd   48 04/06/14   12:00 PM



Smart Cloud Seeding for BitTorrent in Datacenters

july/AUGUST 2014� 49

Considering big and moderately sized files, it 
makes sense to use a peer-assisted mechanism 
such as BitTorrent to offload storage servers.

Our system’s architecture consists of a cloud stor-
age system based on OpenStack Swift (wiki.openstack.
org/wiki/Swift), which we modified to accommodate 
BitTorrent. We also used an open source personal 
cloud system extended with a BitTorrent library. Fig-
ure 1 shows the resulting system architecture, which 
has the following main components.

On the cloud side is OpenStack Swift, which 
replicates the client’s files in each storage node to 
maintain reliability in the face of drive failures. 
The proxy server handles the requests, locating 
objects and routing requests accordingly. This 
server also monitors incoming requests and, on 
detecting a certain mass for specific content, 
decides to switch to BitTorrent. Being a logi-
cally centralized entity, the proxy server could 
suffer from reliability and performance issues. 
Although our implementation doesn’t actually 
cover this problem, this key entity could achieve 
high availability using state-of-the-art replica-
tion and load-balancing techniques.

The torrent server is triggered when the proxy 
switches to the BitTorrent protocol for specific 
content. The server runs a seed that extracts the 
requested chunks from the storage nodes. It then 
generates a corresponding .torrent file and 
transmits it to the client.

On the personal cloud client side, we developed 
an open source implementation called StackSync 
(http://github.com/cloudspaces/stacksync) that 
provides storage, syncing, and sharing capabilities 

on top of OpenStack. We extended this prototype’s 
implementation with the jbittorrent library (http://
github.com/cloudspaces/jbittorrent) to enable a 
transparent switch to BitTorrent.

Our system can transparently switch from 
a regular client-server model that uses HTTP to 
a P2P model that uses the BitTorrent protocol, 
without interaction from users. The specific time 
at which the switch occurs depends on how many 
concurrent users there are, clients’ spare upload 
capacity, and the file size. We’re studying these 
tradeoffs, and an in depth analysis is left for 
future work.

Following our model, the datacenter can serve 
different popular content to different swarms 
concurrently. Thus, we must determine how to 
allocate the datacenter’s limited bandwidth in a 
multiswarm scenario. Our main motivation is to 
increase content delivery’s overall throughput 
to provide more users with a responsive system, 
thus minimizing content download time.

Smart Seeding
The primary goal of our smart seeding strategy 
is to determine the upload bandwidth ws that 
the seeder (the entity providing content) should 
allocate to a swarm s ∈ S — assuming an upper 
bound on bandwidth consumption W = ∑s∈Sws —  
to maximize the aggregate download bandwidth 
considering all swarms ∑s ∈ SDs, where Ds is the 
aggregate download bandwidth of the peers  
p ∈ s (entities downloading content) in swarm s.  
By maximizing swarms’ download speed, we 
ensure minimal average download times and 

Figure 1. System architecture (a) before and (b) after the switch to the BitTorrent protocol. Clients 
download content using regular HTTP sessions and, when the system detects a critical mass of users 
interested in the same content, are migrated transparently to the BitTorrent protocol.

Cloud Cloud

More clients arrive ...

Swarm

OpenStack Swift Torrent server

Seed Proxy

OpenStack swift

Proxy

StackSync
StackSync

jbittorrent

Client Client
(a) (b)

IC-18-04-Leon.indd   49 04/06/14   12:00 PM



Web-Scale Datacenters

50	 www.computer.org/internet/� IEEE INTERNET COMPUTING

that the system distributes content as fast as 
possible within a restricted bandwidth budget.

Bandwidth Response Model
Our smart seeding strategy uses information 
about the swarm’s state to determine the proper 
amount of bandwidth for allocation. This key 
information is the response curve, which repre-
sents the swarm aggregate bandwidth as a func-
tion of the allocated seeder bandwidth.1 This 
function fs(ws) embodies information about the 
swarm’s current sustainable download band-
width (a = ∑p∈Sap), as well as the swarm’s 
aggregate upload (u = ∑p∈Sup) and download  
(d = ∑p∈Sdp) saturation bandwidth (see Figure 2).  
We obtain this information from our instrumented 
clients and measure it every time a client uploads 
and downloads new content directly from Open-
Stack Swift (up and dp) or at regular time intervals 
(ap). Table 1 shows these model parameters. These 
response curves depend on several factors, includ-
ing the number of peers (n) and seeders, their 
actual bandwidth contribution to the swarm, or the 

current distribution of unique blocks — elements 
that are naturally dynamic in BitTorrent swarms.

However, bandwidth swarm response curves 
have a characteristic shape that we can model 
approximately using known information. Specifi-
cally, we used a family of hyperbolic functions of 
the form fs(ws) = a + (((d − a)ws)/(ws + c)), where 
ws is the seeder bandwidth allocated to swarm s, 
and c = (d − u)/n is the parameter that shapes the 
function’s increment rate — the higher the value, 
the flatter the curve. We obtain this parameter by 
substituting the coordinate (x, y) = ((u − a)/n), u 
on the bandwidth response curve; it represents the 
point at which the datacenter provides enough 
bandwidth to saturate peers’ upstream links.

The intuition behind this model is as follows. 
When the datacenter bandwidth allocated to a 
swarm is zero, the swarm doesn’t receive any new 
block from the seeder, and thus the aggregate band-
width is the current download bandwidth of the 
swarm sustained by any seeder other than the data-
center, which is responsible for injecting new blocks 
(a). If no other seeder is present, a drops to zero as 
soon as no new blocks are ready for exchange.

Our model’s second interesting point occurs 
when the datacenter bandwidth is equal to peers’ 
average uplink capacity, assuming a = 0 for sim-
plicity (u/n). At this point, the datacenter can 
inject new blocks into the swarm at a rate suffi-
cient enough to saturate the peers’ uplink capac-
ity, achieving an aggregate download speed equal 
to the peers’ aggregate upload speed. From here, 
saturated uplinks render peers unable to redis-
tribute blocks to other peers. Any addition to the 
datacenter bandwidth capacity benefits only the 
peer receiving this increment, and the curve starts 
to flatten until clients’ downlinks saturate. At this 
point, the swarm reaches its maximum aggregate 
bandwidth, and any further bandwidth provisioned 
to the seed won’t improve download performance.

Optimization Problem and Implementation
The previous function closely resembles the 
bandwidth response curve of a swarm comprising 

Table 1. Model parameters for every single swarm.

Parameter Description Source of information

d = ∑p∈Sdp
Max download bandwidth Instrumented client

u = ∑p∈Sup
Max upload bandwidth Instrumented client

a = ∑p∈Sap
Self-sustained bandwidth Instrumented client

n Number of peers Tracker information

Figure 2. A swarm’s response curve model. We 
calculate the swarm’s aggregate bandwidth as a 
function of the datacenter’s allocated bandwidth.

d

u

a

u − a
n

Sw
ar

m
 a

gg
re

ga
te

Datacenter (seed)

d

IC-18-04-Leon.indd   50 04/06/14   12:00 PM



Smart Cloud Seeding for BitTorrent in Datacenters

july/AUGUST 2014� 51

heterogeneous peers. Given that our main goal is 
to maximize all swarms’ aggregate bandwidth, we 
can thus state our problem as the following con-
strained optimization problem:

	 max F W W f Wm s s
s S

1, , ,…( ) = ( )
∈
∑

	 where f W a
d a W
W Cs s s
s s s

s s
( ) = +

−( )
+

subject to W Ws
s S

≤
∈
∑

	 Ws ≥ 0 � (1)

The constraints restrict the solution space to those 
allocations that don’t exceed the datacenter’s 
bandwidth budget. An optimal solution W * =

 W Wm1
* *, ,…



  exists for the optimization problem 

because the objective function is continuously 
differentiable, strictly increasing, and concave. 
Such optimization problems have been stud-
ied extensively in the literature5,6 and provide a 
computationally efficient solution using Lagrange 
multipliers, as the algorithm in Figure 3 shows. 
We omit the details of the proofs and the math-
ematical development due to space constraints.

This algorithm’s computational complexity is 
O(m log m), dominated by the initial sorting algo-
rithm. In practice, this algorithm would recom-
pute bandwidth allocations every time any of our 
model’s parameters change, which happens only 
when swarm membership changes — for instance, 
a client leaves or join the swarm, or a client 
becomes a seeder.

Evaluation
We successfully integrated the BitTorrent proto-
col into our open source personal cloud storage 
client, which uses OpenStack Swift as a stor-
age back end. Moreover, we evaluated our smart 
seeding strategy in both a simulation and a real 
setting using PlanetLab nodes.

For our simulation experiments, we used rea-
sonable values for the BitTorrent protocol (2 Gbytes 
per file, 64 Kbytes per chunk, 30 seconds between 
optimistic unchokes, and 10 seconds between 
regular unchokes) and selected upload and down-
load bandwidths from a distribution used in other 
works involving BitTorrent.7 Our simulation con-
sisted of 300 swarms whose membership sizes 
were drawn from the distribution Zipf (z = 2.4),  
which leads to a small number of big swarms 
and a higher number of small swarms — a typical 

distribution for file popularity. We included three 
other strategies for comparison purposes: equal 
sharing, which grants the same datacenter uplink 
capacity to all swarms (Wi = W/m); proportional 
sharing, which allocates datacenter bandwidth in 
proportion to each swarm’s size in terms of peers 

W n n Wi i jj
m= ( )∑ * ; and the Antfarm strategy,1 

the most similar system to our mechanism in terms 
of objectives — that is, maximizing aggregate 
bandwidth.

During the initial phase of operation, the Ant-
farm mechanism allocates a small amount of the 
seeder bandwidth to every swarm, and then allo-
cates the remaining bandwidth in small incre-
ments to swarms with the highest increase in 
aggregate bandwidth since the last update. This 
way, Antfarm slowly builds response curves for 
each swarm and obtains an estimate of swarm 
performance as a function of the seeder band-
width. This approach computes the response 
curve by fitting a piecewise-linear function to the 
set of measurements it takes periodically, produc-
ing a shape similar to our model (see Figure 2). In 
steady state, Antfarm uses a greedy hill-climbing 
algorithm to allocate bandwidth to swarms with 
the highest gradient.

Figure 4a shows how swarms’ aggregate 
bandwidth evolves as we increase the datacenter 
bandwidth budget. Figure 4b presents our 
strategy’s speedup gains using the equal sharing 
strategy as a baseline. When datacenter bandwidth 
is scarce, our mechanism outperforms equal and 
proportional sharing by a factor of 55× and 45×, 
respectively, in the best case. These differences 
are reduced as the seeder bandwidth becomes 
less congested. Our solution also outperforms the 

Figure 3. Datacenter bandwidth allocation algorithm. This 
algorithm would recompute bandwidth allocations every time any 
of our model’s parameters change, which occurs only when swarm 
membership changes.

Require: W Datacenter bandwidth budget
Require: { (u1 , d1 , a1 , c 1 ), . . . , (um , dm, am, cm )} Parameters of the m swarms

Sort increasingly the set of swarms by its marginal value di − a i
c iCompute largest k such that

√ck (dk − ak )

√ci (di − ai )
k

i=1

c i c k
i=1

(W +
k

) − ≥ 0

Set
∑

∑∑

∑
Δ

Δ

w j = 0 for j > k , and for 1 ≤ j ≤ k , set:

wj =
√c j (dj − a j )

√c j (dj − a j )
k

i=1

(W +
k

i=1

ci ) − cj

return (w1 , . . . ,w m )

IC-18-04-Leon.indd   51 04/06/14   12:00 PM



Web-Scale Datacenters

52	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Antfarm strategy no matter what the datacenter 
bandwidth is, achieving a more stable aggregate 
throughput in steady state. The Antfarm variability 
comes from the BitTorrent protocol’s dynamic 
nature, which leads to inaccurate measurements. 
This inaccuracy doesn’t always guarantee an 
optimal allocation. In fact, during the initial phase, 
the small bandwidth increments might not go to 
the swarm that can obtain the higher benefit.

Another important metric we evaluated was 
convergence time. Figure 4c shows the evolution 
of the aggregate bandwidth of swarms for 
different strategies during a simulated period of 
10,000 seconds when the datacenter bandwidth 
is 2,048 kilobits per second (Kbps). We can see 
that the smart seeding, equal, and proportional 
strategies converge to a steady state in a few 
minutes. This is because all the available 

Figure 4. Experimental evaluation. Our smart seeding strategy outperforms other strategies in simulation. We measured 
(a) aggregate bandwidth, (b) speedup, (c) aggregate bandwidth evolution, and (d) average download time. (e) We also 
conducted a simulation vs. a PlanetLab experiment.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 0  250  500  750  1,000  1,250  1,500  1,750  2,000A
gg

re
ga

te
 s

w
ar

m
 b

an
dw

id
th

 (
K

bp
s)

Datacenter bandwidth (Kbps)

Equal
Proportional
Antfarm
Smart

Equal
Proportional
Antfarm
Smart

 0

 10

 20

 30

 40

 50

 60

 0  250  500  750  1,000  1,250  1,500  1,750  2,000

Sp
ee

du
p

Datacenter bandwidth (Kbps)

Equal
Proportional
Antfarm
Smart

 0

 5,000

 10,000

 15,000

 20,000

 25,000

0  2,000  4,000  6,000  8,000  10,000A
gg

re
ga

te
 s

w
ar

m
 b

an
dw

id
th

 (
K

bp
s)

Time (sec)

Equal
Proportional
Antfarm
Smart

 0

 200

 400

 600

 800

 1,000

 12,00

 1,400

 1,600

 1,800

 0  1,000  2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

A
ve

ra
ge

 d
ow

nl
oa

d 
tim

e 
(s

ec
)

Time (sec)

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

0  500  1,000  1,500  2,000A
gg

re
ga

te
 s

w
ar

m
 b

an
dw

id
th

 (
K

bp
s)

Time (sec)

Equal (sim)
Equal (planetlab)
SmartSeed (sim)
SmartSeed (planetlab)

(a) (b)

(d)

(f)

(c)

IC-18-04-Leon.indd   52 05/06/14   4:58 PM



Smart Cloud Seeding for BitTorrent in Datacenters

july/AUGUST 2014� 53

datacenter bandwidth is split among different 
swarms — following different strategies — at 
the beginning of the measurement period. In 
contrast, the Antfarm strategy takes a longer 
time to converge to a steady state — an order 
of magnitude six times higher — because of 
the slow initial phase, confirming previous 
findings.2 This slow initial phase worsens if the 
available datacenter bandwidth is higher.

To determine the benefits from a user experi-
ence viewpoint, we evaluated the evolution of the 
average download time for the allocation mecha-
nisms under study (Figure 4d), in this case, using 
small files (16 Mbytes) and a datacenter band-
width equal to 400 Kbps. We compute the average 
using the download time of peers that completed 
their download, as well as the resident time for 
peers with downloads under progress.2 When a 
peer finishes downloading a file, a new peer joins 
the swarm to maintain its membership size. As 
expected, the smart seeding, equal, and propor-
tional strategies quickly stabilize to their steady 
state, whereas the Antfarm strategy takes consid-
erably longer to achieve comparable download 
times because of its initial phase. Note that even 
in steady state, our allocation mechanism provides 
lower download times (20 percent reduction in the 
worst case) compared to other solutions.

Finally, to validate our simulations, we deployed 
a real prototype using the planetary-scale testbed 
PlanetLab. The setup comprised eight different 
swarms (each sharing a single file) with member-
ship sizes of 14, 5, and 2, and 5 singleton swarms. 
We limited peers’ upload bandwidth to 50 Kbps and 
the seeder bandwidth capacity to 128 Kbps. Using 
this setup, we compared our smart seeding strategy 
with the equal sharing strategy to assess the perfor-
mance gains for around 30 minutes. As Figure 4e 
shows, our smart seeding strategy outperforms the 
equal sharing strategy by a factor of 3× in this spe-
cific scenario. We confirmed our simulation results 
by comparing them to the results obtained from an 
experiment with real nodes on PlanetLab using the 
same setup (solid lines), which faithfully matched 
our simulations (dashed lines).

Users expect to receive Internet content in a 
responsive and timely manner from providers, 

without perceiving unnecessary delays. However, 
these requirements can be hard to achieve when 
the provider relies on a cloud infrastructure, and 
costs can drive the service to be nonprofitable. We 

propose seamlessly and transparently integrating 
a well-known P2P protocol such as BitTorrent into 
the datacenter storage service to reduce bandwidth 
consumption while providing higher throughput 
to clients compared to traditional client-server 
approaches. Moreover, a simple formalization 
of swarm dynamics lets our algorithm allocate 
bandwidth among competing swarms to improve 
timely content delivery and overall performance 
compared to other approaches at Web scale.

Following this line of work, our solution could 
be used to provide distinct quality of service to 
different content depending on economic param-
eters or service-level agreements with clients. 
We believe that our integrated solution is a step 
forward to reducing operational costs transpar-
ently and improving the responsiveness and per-
formance that users perceive when dealing with 
large-scale content distribution.�

Acknowledgments
This work has been partially funded by the EU in the con-

text of the CloudSpaces project (FP7-317555).

References
1.	 R. Peterson and E.G. Sirer, “Antfarm: Efficient Content 

Distribution with Managed Swarms,” Proc. 6th Usenix 

Symp. Networked Systems Design and Implementation, 

vol. 9, 2009, pp. 107–122.

2.	 A.R. Abhigyan Sharma and A. Venkataramani, “Pros 

and Cons of Model-Based Bandwidth Control for 

Client-Assisted Content Delivery,” Proc. 6th Int’l 

Conf. Communication Systems and Networks, 2014, 

pp. 1–8.

3.	 B. Cohen, “Incentives Build Robustness in BitTorrent,” 

Proc. Workshop Economics of Peer-to-Peer Systems, 

vol. 6, 2003, pp. 68–72. 

4.	 G. Gonçalces et al., “Modeling the Dropbox Client 

Behavior,” Proc. IEEE Int’l Conf. Communications (ICC 

14), to appear, 2014.

5.	 X. León and L. Navarro, “A Stackelberg Game to Derive 

the Limits of Energy Savings for the Allocation of Data 

Center Resources,” Future Generation Computer Systems, 

vol. 29, no. 1, 2013, pp. 74–83; www.sciencedirect.com/

science/article/pii/S0167739X12001306.

6.	 M. Feldman, K. Lai, and L. Zhang, “The Proportional-

Share Allocation Market for Computational Resources,” 

IEEE Trans. Parallel and Distributed Systems, vol. 20, 

no. 8, 2009, pp. 1075–1088.

7.	 R. Rahman et al., “Improving Efficiency and Fairness 

in P2P Systems with Effort-Based Incentives,” Proc. 

2010 IEEE Int’l Conf. Communications (ICC 10), 2010, 

pp. 1–5.

IC-18-04-Leon.indd   53 04/06/14   12:00 PM



Web-Scale Datacenters

54	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Xavier León is a postdoctoral fellow in the Department of 

Computer Engineering and Mathematics at the Universi-

tat Rovira i Virgili, Spain. His research interests include 

computer networks, complex systems, and self-orga-

nization of distributed and decentralized peer-to-peer 

systems through economics-based mechanisms. León 

received a PhD in computer architecture from the Uni-

versitat Politècnica de Catalunya (UPC). Contact him at 

xavier.leon@urv.cat.

Rahma Chaabouni is a PhD student in the Department of  

Computer Engineering and Mathematics at Universitat 

Rovira i Virgili, Spain. Her research interests include 

distributed systems and cloud computing. Chaabouni 

received a BSc in computer software engineering from 

the National School of Engineers of Sfax, Tunisia. Con-

tact her at rahma.chaabouni@urv.cat.

Marc Sánchez-Artigas is a lecturer in the Department of Com-

puter Engineering and Mathematics at the Universitat 

Rovira i Virgili, Spain, and helps coordinate the EC FP7 

project CloudSpaces on personal cloud storage. His research 

interests include building massive distributed computing 

systems and clouds, and novel storage infrastructures for 

the cloud. Sánchez-Artigas received a PhD in information 

and communication technologies with European Mention 

at Universitat Pompeu Fabra, Spain. Contact him at marc.

sanchez@urv.cat.

Pedro García-López is a professor in the Department of 

Computer Engineering and Mathematics at the Univer-

sitat Rovira i Virgili, Spain, leads the Architectures and 

Telematic Services (AST) research group, and coordinates 

the EC FP7 project CloudSpaces. His research topics are 

distributed systems, peer-to-peer, cloud storage, software 

architectures and middleware, and collaborative environ-

ments. García-López received a PhD in computing from 

the Universidad de Murcia. He’s a member of IEEE. Con-

tact him at pedro.garcia@urv.cat.

Selected CS articles and columns are also available 
for free at http://ComputingNow.computer.org.

Gordon Bell:  

BuildinG Blocks of computinG, p. 6

data mininG in newspapers, p. 68

makinG proGramminG  

accessiBle and excitinG, p. 78

 
C
o
m
p
u
ter 

J
U

N
E

 2
0

1
3

 

Big Data 

V
o

l u
m

e
 4

6
 N

u
m

b
e

r
 6

J
U

N
E

 2
0

13

ht
tp

:/
/w

w
w

.c
om

pu
te

r.
or

g

ANYTIME, ANYWHERE ACCESS

DIGITAL MAGAZINES
Keep up on the latest tech innovations with new digital maga-
zines from the IEEE Computer Society. At more than 65% 
off regular print prices, there has never been a better time to 
try one. Our industry experts will keep you informed. Digital 
magazines are:

• Easy to save. Easy to search.
• Email noti� cation. Receive an alert as soon as each digi-

tal magazine is available. 
• Two formats. Choose the enhanced PDF version OR the 

web browser-based version.
• Quick access. Download the full issue in a � ash.
• Convenience. Read your digital magazine anytime, any-

where—on your laptop, iPad, or other mobile device.
• Digital archives. Subscribers can access the digital issues 

archive dating back to January 2007.

Interested? Go to www.computer.org/digitalmagazines 
to subscribe and see sample articles.

IC-18-04-Leon.indd   54 04/06/14   12:00 PM


