
eWave: Leveraging Energy-Awareness for In-line
Deduplication Clusters

Raúl Gracia-Tinedo
Universitat Rovira i Virgili

Tarragona, Spain

raul.gracia@urv.cat

Marc Sánchez-Artigas
Universitat Rovira i Virgili

Tarragona, Spain

marc.sanchez@urv.cat

Pedro García-López
Universitat Rovira i Virgili

Tarragona, Spain

pedro.garcia@urv.cat

ABSTRACT

In-line deduplication clusters provide high throughput and
scalable storage/archival services to enterprises and organi-
zations. Unfortunately, high throughput comes at the cost
of activating several storage nodes on each request, due to
the parallel nature of superchunk routing. This may prevent
storage nodes from exploiting disk standby times to preserve
energy, even for low load periods. We aim to enable dedupli-
cation clusters to exploit load valleys to save up disk energy.
To this end, we explore the feasibility of deferred writes, di-
verted access and workload consolidation in this setting.
We materialize our insights in eWave: a novel energy-

efficient storage middleware for deduplication clusters. The
main goal of eWave is to enable the energy-aware operation
of deduplication clusters without modifying the deduplica-
tion layer. Via extensive simulations and experiments in an
8−machine cluster, we show that eWave reduces disk energy
from 16% to 60% in common scenarios with moderate im-
pact on performance during low load periods.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems; D.4.2 [Operating Sys-
tems]: Storage Management

Keywords

In-line deduplication; power management; disk energy

1. INTRODUCTION
Nowadays, data volumes to be managed by enterprises

and data-centers are growing at an exponential rate [1]. This
motivates researchers to devise novel techniques to improve
storage efficiency. In this sense, data deduplication, a tech-
nique intended to eliminate data redundancies by splitting
files into smaller and indexed chunks for avoiding storing re-
peated ones, has attracted much attention from both indus-
try and academia. Particularly, in-line deduplication clus-
ters are emerging and becoming increasingly popular, since

.

10 20 50 100 1000
0

0.2

0.4

0.6

0.8

1

Deduplication cluster size

F
ra

ct
io

n
 o

f
ac

ti
v
at

ed
 n

o
d
es

Fraction of activated nodes for a store operation

1GB File

10GB File

0 1 2 3 4 5 6 7
0

200

400

600

800

Days

S
to

ra
g
e

O
p
er

at
io

n
s

p
er

 h
o
u
r

Time−series view of URV’s Moodle workload

Uploads

Downloads

Figure 1: Fraction of nodes involved in a store operation in a
deduplication cluster (10MB superchunks) (left). Workload
supported by URV’s Moodle servers (right).

they reproduce the operation of a single-node deduplication
system at a larger scale [2, 3, 4, 5].

In a deduplication cluster, the proxy receives data from
clients, such as files or backups, and performs an in-line
process of chunking (e.g. content-based). The resulting
small chunks (e.g. 4KB) are grouped into larger data units
called superchunks [6]. Once a superchunk is created, the
proxy’s data routing algorithm decides to which storage node
that superchunk will be stored based on its content. The
main goal of routing data at superchunk-level is to improve
throughput, since chunks are not large enough to make an ef-
fective use of network transfers. Then, the recipient storage
node processes the chunks contained into that superchunk
by looking-up for duplicates in a persistent local index of
already stored chunks. When a duplicate chunk is detected,
its contents are deduplicated providing thus storage savings.

Inherently, the design of in-line deduplication clusters is
geared towards high performance and scalability. To wit,
in a deduplication cluster, the proxy exploits parallel access
to storage nodes depending on the data routing algorithm.
Thus, superchunks belonging to a file are addressed based on
their content towards different storage nodes [3, 4, 5]. This
design leverages horizontal scalability since storage nodes
can be dynamically added to the cluster to increase capac-
ity and throughput. Existing commercial products provide
high performance in-line deduplication services that are in-
creasingly fitting the needs of scalable storage and archival
of enterprises and organizations [7, 8, 9].

However, in terms of energy, the unintended consequence
of this design is that it may prevent storage nodes’ disks
from remaining in standby mode for larger periods to save
up energy [10, 11]. To wit, Fig. 1 (left) shows the fraction of
activated nodes storing a single file in a simulated dedupli-
cation cluster. Clearly, Fig. 1 suggests that a large fraction
of nodes may be in accessed in parallel on each request.

The actual problem arises if we consider the variation on
workload intensity typically found in enterprises and orga-
nizations as a result of users’ habits [12, 13] (see Fig. 1,

right). The parallel and randomized nature of data routing
in a deduplication cluster makes it difficult for hard disks
by themselves to fully exploit load valleys to save up energy
by switching to low-power mode. This may lead to a po-
tentially high expense in disk energy, since disks of storage
nodes would be kept idle even during low load periods.

1.1 Motivation and Contribution
Our motivation is to make deduplication clusters able to

save up disk energy during load valleys. Furthermore, to
effectively achieve this goal in a dedupliction cluster it is de-
sirable: i) to respect the data placement defined by the dedu-
plication system [14] and ii) to do not create additional data
redundancy to preserve disk energy [15], since we believe that
it is contrary to the spirit of a deduplication system.
The core idea of our approach consists of decreasing trans-

fer parallelism (i.e. performance) during load valleys to save
up disk energy. To this end, we investigate the feasibility of
deferred writes, diverted access and workload consolidation
in this particular context. Technically, we contribute with:

• We propose an analytical model to estimate the energy
savings brought out by deferred writes in a deduplica-
tion cluster. We provide insights about when deferring
writes in a subset of cluster nodes pays off.

• We propose a workload consolidation algorithm based
on our analytical model. Based on the workload, the
algorithm dynamically diverts writes to a subset of
nodes (or not) considering the potential energy savings.

To materialize our insights, we present eWave: a novel
energy-efficient storage middleware targeted at supporting
existing in-line deduplication systems. The main goal of
eWave lies on enabling the energy-aware operation of dedu-
plication clusters through a temporary energy-aware data
management that takes place during low load periods. eWave
does not modify the deduplication layer (e.g. data routing,
deduplication rate) and it can be integrated with most ex-
isting systems that use stateless data routing (e.g. [2, 3, 4,
6, 5]). Through extensive simulations and experiments in an
8-machine cluster, we conclude that eWave is able to achieve
energy savings from 16% to 60% in several scenarios with
moderate impact on performance during low load periods.
This paper is organized as follows. The architecture and

design of eWave are described in Sections 2 and 3, respec-
tively. We describe our evaluation methodology in Section
4 and the results are reported in Section 5. We discuss the
related work in Section 6 and we conclude in Section 7.

2. EWAVE ARCHITECTURE
Next, we present the overall architecture of eWave and its

role within an in-line deduplication cluster (see Fig. 2).
Upon a file store operation, the deduplication proxy cre-

ates a set of superchunks as a result of splitting the input
data stream. Moreover, the deduplication proxy’s data rout-
ing algorithm assigns these superchunks depending on their
contents to the available storage nodes within the cluster.
Once this decision is taken, the deduplication proxy needs
to transfer that superchunk to the selected storage node,
and in that point is where eWave comes into play.
As shown in Fig. 2, eWave mediates between the dedupli-

cation proxy and the storage nodes. Basically, the dedupli-
cation proxy delegates on eWave the task of eventually trans-
ferring a superchunk to the selected storage node. Such a
delegation is made via an API call from the deduplication
proxy to the eWave proxy process running in the same phys-
ical machine. Concretely, the deduplication proxy executes

Dedup Proxy

eWave Proxy

eStore

eRetrieve

Dedup Node

eWave Node

c
File

Physical Nodes

Superchunks

eWave API

Deferred

superchunk

writes

Eventual

superchunk

recipients

Partition Managers Leaf Nodes

F
il

e
S

y
st

em

Deferred Write

Callback to

dedup. layer

Eventual location

eWave

virtual

topology

Figure 2: Architecture of eWave.

an eStore(node,scid,data) call, that informs eWave about
the actual recipient (node) of a superchunk identified by scid
(e.g. hash). After delegating the superchunk transfer, the
deduplication proxy operates as normal by storing a new
index entry relating scid with node for further file retrievals.

Among other tasks, the eWave proxy organizes storage
nodes as a 2-level hierarchy that we call virtual topology.
In a hierarchy partition, a storage node may be a partition
manager or a leaf node —denoted as dark and light green
in Fig. 2, respectively. On the one hand, a partition man-
ager (PM) absorbs writes to save up energy by lengthening
disk standby times of the nodes it is responsible for. On the
other hand, a leaf node (LN) is a storage node under the
responsibility of a partition manager. As we will see later
on, the number of hierarchy partitions depends on an energy
estimator based on system’s load (see Section 3).

Following the example at Fig. 2, upon an eStore call the
eWave proxy routes a superchunk to the partition manager
responsible for its actual recipient (node). As a result, the
partition manager keeps node inactive, saving up energy. As
the superchunk transfer finishes, the eWave proxy creates an
entry into its in-memory index of deferred writes to keep
the temporal owner of this superchunk. Similarly, partition
managers build a local index to relate deferred superchunks
with their actual recipients to perform future migrations.

Afterwards, the partition manager migrates deferred su-
perchunk writes to their actual recipients. When a super-
chunk is migrated to the its actual owner, the eWave process
calls back the deduplication layer to deduplicate the super-
chunk contents, respecting the initial data routing decision.

On the event of a file retrieval, the deduplication proxy
executes eRetrieve(node,scid) for each superchunk to be
retrieved. The eWave proxy looks-up into its deferred writes
index to retrieve that superchunk from either its actual re-
cipient or from the partition manager responsible for it.

Next, we describe the eWave components: virtual topology,
energy-aware data management and workload consolidation.

2.1 Virtual Topology
The hierarchical topology of eWave pursues 2 main goals:

i) It provides opportunities to develop power-reduction tech-
niques at partition managers, and ii) eWave consolidates load
by simply resizing partitions.

A subprocess within the eWave proxy, named topology
manager, keeps track of the storage nodes in the cluster
and is responsible for processing topology reconfiguration
events. Concretely, the workload consolidation component
triggers these events depending on the system’s load to add
or remove partition managers from the topology (Fig. 3).

The topology accepts two operations over partitions: merge

N0

Proxy

N1 N2 N3 N4 N5

N0

Proxy

N2 N3

N1

N4 N5

N0

Proxy

N3

N1

N4 N5

N2

N0

Proxy

N1 N4

N5

N2N0

Proxy

N1

N5

N2

N3N3N4

1) split event 2) split event

3) split event

4) merge event
5) merge

 event

Time

L
o
ad 1)

2)

3)
4)

5)

6) merge event

6)

Figure 3: eWave dynamic topology adaptation.

and split. Upon a merge partition event, the topology selects
the least populated partition and redistributes these nodes
among the partitions with less nodes. With this policy we
aim to: First, we balance load among partition managers, as-
suming the hash dispersion properties of content based data
routing [6, 3]. Second, we maximize the size of partitions
under low loads to increase the associated energy savings.
Upon a split partition event, the topology splits it in two

the most populated partition. The node with fewest already
stored deferred writes in the original partition is selected as
partition manager of the new one. This decision pursues to
avoid a partition manager to be overloaded.
The main goal of organizing storage nodes in such a way

is that partition managers are a powerful substrate for im-
plementing energy-aware data management techniques.

2.2 Energy-Aware Data Management
Partition managers in eWave are responsible for two major

data management tasks: i) to temporarily absorb writes di-
rected to leaf nodes within their partitions, ii) to eventually
migrate deferred superchunks to the their actual recipients.
All eWave nodes also exploit superchunk caching to increase
the effectiveness of deferring writes under file retrievals.
Deferred writes. Partition managers act as write buffers

to absorb superchunk writes of nodes they are responsible
for. The objective is to enlarge standby periods of leaf nodes
disks and save up power [16, 15] under write-dominated
workloads, common in enterprise systems [12].
The data routing algorithm selects a certain storage node

(n) to store a superchunk (sn). Subsequently, the dedupli-
cation proxy delegates to eWave the responsibility of storing
sn at n via a eStore API call. Once called, the eWave proxy
checks the virtual topology and discerns whether n is a par-
tition manager or not. In the former case, the system acts
as normal storing sn at n. In the latter, the eWave proxy
forwards sn to the partition manager (pm) responsible for
n, keeping the temporary location of sn in a in-memory in-
dex of deferred writes for further retrievals. In turn, upon a
forward call, the eWave process at pm stores sn at disk and
creates the entry sn → n into its own deferred writes index.
This information will be needed for the further migration of
sn to n, its actual recipient. Similarly, when the deduplica-
tion proxy retrieves sn via an eRetrieve API call, the eWave
proxy process checks the deferred writes index and redirects
the operation to pm, the current holder of sn.
In terms of space complexity, the deferred writes index

at the eWave proxy is the worst case since it grows linearly
with the number of superchunk writes (O(n)). However,
considering that superchunks are migrated and their entries
deleted from the index within a maximum time window (e.g.
30 minutes), the size of this index is limited and fits in mem-
ory. For instance, considering a sustained write throughput
of 100MBps and 1MB of average superchunk size, that in-

dex would contain ≈ 180, 000 entries in 30 minutes. Thus,
if every entry consists of a superchunk identifier (e.g. 64-bit
hash) and a 32-bit pointer to the corresponding partition
manager, the index size in memory will require 2.06MB.

Superchunk migrations. Deferring superchunk writes
needs eventually reallocating them to their actual recipients.

For simplicity, we advocate for a lazy migration policy1.
Under this policy, there are only two situations that force
a partition manager pm to execute superchunk migrations.
First, in the case that pm is exhausting its storage space.
In that case, pm starts flushing superchunks belonging to a
particular node or nodes, until its storage capacity becomes
acceptable again. In that moment the flush operation stops.
Second, if pm has not executed migrations for period greater
than the flush timeout T (e.g. 30 minutes) it flushes all the
buffered writes, which arrive coalesced to the leaf nodes.

When a superchunk sn is reallocated at its actual recipient
(n), pm deletes the content and index entry of sn and notifies
the eWave proxy to also delete that index entry.

Superchunk cache. Every eWave node incorporates an
in-memory superchunk cache. We focus on caching at super-
chunk level for avoiding leaf nodes’ disks to be activated on
file retrievals and, therefore, increase the effectiveness of de-
ferring writes under read/write workloads. Thus, we benefit
from the available data locality [12, 17] to reduce read disk
accesses. Superchunk caches in eWave implement a write-
through approach. This is justified in our design given that
we do not target scenarios such as file systems, where write-
back caches may be suitable to absorb multiple changes on
a file in memory, before persisting the state of that file on
disk. Currently, the eWave cache implements a simple LRU
eviction policy. Anyway, other policies can be introduced to
improve superchunk caching effectiveness [18, 19].

3. ENERGY-AWARE CONSOLIDATION OF

DEFERRED WRITES
In this section, we build a model to estimate the disk

energy consumption of deferring writes in a deduplication
cluster. As shown later on, this model is the corner stone of
the eWave workload consolidation mechanism, which decides
whether deferring writes to a subset of nodes pays off or not.

3.1 Definitions and Preliminaries
Hard disk model. Hard disks employ a Fixed Threshold

(FT) scheme, which is the most popular Dynamic Power
Management (DPM) mechanism for conventional disks [20].
FT disks use a fixed idleness threshold (It) to transition
from higher-power to lower-power modes. Usually, It is set
to the break-even time defined as the smallest period of time
for which a disk must stay in low-power mode to offset the
extra energy spent in spinning the disk down and up (e.g. 50
secs.). Bostoen et. al. [21] suggest to set It = (Eu+Ed)/Ps.

According to [15], a disk consumes Ph Watts when pow-
ered on and is ready to service requests (high-power mode).
It also consumes Pl Watts when it is in standby mode and
unable to service requests (low-power mode). A disk spin-
up takes time Tu and energy Eu, whereas a spin down takes
time Td and energy Ed. Pa is the disk power of IO activity
involved in data transfers. Further, we define Ps = Ph − Pl

as the power savings per unit of time from keeping a disk
in low-power mode. In our model, these parameters are the
basis to estimate the energy consumed by a hard disk.

Superchunk transfer energy (se). The maximum load
that a storage node can absorb is LM (i.e., throughput).

1We tested eager policies and we obtained only slight varia-
tions regarding performance and energy savings.

Parameter Description Measure

c Storage node hard disk capacity Bytes
LM Maximum in/out load of a storage node Bytes/second
τ Threshold that defines the point from

which a node is overloaded
∈ [0, 1]

Ph Disk power in high-power mode Watts
Pl Disk power in low-power mode Watts
Pa Extra disk power during seek & transfer Watts
Ps Power savings resulting from keeping a

disk in low-power mode
Watts

Eu Energy to transition to high-power mode Joules
Ed Energy to transition to low-power mode Joules
Tu Transition time to high-power mode seconds
Td Transition time to low-power mode seconds
It Hard disk idleness threshold seconds
r Deduplication ratio ∈ [0, 1]

Table 1: System model parameters and description.

Accordingly, the time needed to read/write a superchunk
of b bytes to disk is Ta = b/LM . Therefore, considering a
storage node disk in high power mode, the disk energy of
storing/reading a superchunk of b bytes to/from disk is:

se = Ta · Pa (1)

Eq. 1 only captures the energy associated to the disk
IO activity (seeks/transfer). This means that the rotational
power (Ph) is not included in se.
However, the disk energy of transferring a superchunk (se)

varies if a storage node’s disk receives the operation in low-
power mode, since we should account for the energy associ-
ated to disk state transitions. Concretely, we should account
for the energy of transitioning to low-power mode (Ed) and
the subsequent disk spin-up (Eu). In this case, the actual

cost of transferring the superchunk is selow = se+Ed +Eu.
Storage nodes progressively achieve a deduplication ratio

r ∈ [0, 1], depending on the deduplication effectiveness. A
value of r = 0 means that no chunk has been deduplicated
and r = 1 is full deduplication. Thus, storing a deduplicated
superchunk of b bytes only requires writing bdedup = b · (1−
r) bytes at disk in a storage node. Note that assuming a
mean superchunk deduplication ratio (r) is reasonable since
deduplication ratios across distinct samples of real datasets
have been observed to be normally distributed [22].
To reflect this effect on the energy associated to trans-

fer a superchunk, we denote by sededup the fact that only
bdedup bytes are actually written to disk. This notation is
convenient to distinguish deferred writes in eWave (not dedu-
plicated) from a regular stores in a deduplication node.
The problem of amortization. Merely switching disks

to low-power mode may not be sufficient to save up energy
if the next storage operation is too close in time after the
transition to low-power mode occurs. To better understand
this, consider that a hard disk in low-power mode spins up
and serves an incoming storage request A that arrived at
TA
ini. At this point, after It + Td seconds it reaches the low-

power mode again at TA
end. Moreover, consider the arrival of

a new storage operation B at time TB
ini. We define that A

has been amortized in terms of energy if the power savings
from keeping the disk in standby mode (Ps) compensates
the energy spent on disk transitions, until the arrival of B.
More technically, this can be expressed as:

Ps · (T
A
end − TB

ini) > Eu + Ed (2)

If Eq. 2 does not hold, operation A is not amortized and
incurs extra energy waste compared with an energy oblivious
disk. Fig. 4 illustrates this problem. Once operation A is
served the hard disk reaches the low-power mode. At this
point, there is a lapse of time where new storage operations
would cause an extra energy waste (red area). Once the
condition in Eq. 2 is satisfied, new storage operations may
be served ensuring that some energy has been saved.

Ea

Eh

Eu

AmortizedAmortized
Not

Amortized

(A) TA

Pl

Ph

Pa

TaTu Th (It) Td

Time

P
o

w
er

Pu

Pd

dEd lEllEl0W.

ini (A) TA
end

(B) TB
ini

Figure 4: A disk spins up to serve operation A at TA
ini and it

switches to standby mode at TA
end. Depending on the arrival

time of operation B (TB
ini), A would be amortized or not.

Unfortunately, since FT disks operate ignoring the arrival
time of the next request, we cannot ensure that storage op-
erations will be amortized under a dynamic workload.

Principle of coalescence. Our intuition suggests that,
depending on the request inter-arrival times, we may in-
crease amortization if requests arrive in batch, i.e. coalesced.

To maximize energy amortization, we apply the principle
of coalescence [23] for superchunk writes. Concretely, par-
tition managers in eWave defer superchunk writes, acting as
write buffers and eventually migrating deferred superchunks
to their actual destination as a group. However, buffering
and migrating superchunks produces an additional disk en-
ergy cost which has not been properly studied in the liter-
ature. The question that we study next is, is it beneficial
to make use of deferred writes in a deduplication cluster?
Under which conditions?

3.2 Energy model of deferred writes
Let us consider a deduplication cluster that consists of one

proxy node2 and a set of s storage nodes. We assume that
eWave organizes these nodes in a single partition formed by
a partition manager pm and n = (s− 1) leaf nodes. pm will
absorb writes directed to the n leaf nodes for a time period
T (i.e. flush timeout), after which pm migrates superchunks.

Energy overhead of deferred writes. In our system,
partition managers defer writes and perform migrations of
superchunks belonging to leaf nodes they are responsible for.
Clearly, this buffering process requires extra disk operations
that are not needed in a regular deduplication cluster.

Let us consider that a leaf node ln and a partition manager
pm are both initially in high-power mode. Deferring and
migrating a superchunk write involves 2 disk operations at
pm (write/read), and 1 deduplicated write at ln. Thus, the
associated disk energy cost is 2 · se + sededup. The worst
case cost occurs when both nodes are in low-power mode.
In that case, the cost is 2 · selow + selowdedup. Thus, the energy

overhead of deferring a write ranges from 2 · se to 2 · selow.
In what follows, we model the energy of deferring super-

chunk writes to better understand if it is profitable. To this
end, we distinguish 3 different energy costs: i) Disk energy at
partition managers (Epm), ii) Leaf nodes disk energy (Eln)
and iii) Cost of migrations (Em). They are described next.

Partition manager disk energy (Epm). As in [21], let
us define ∆ as the mean time interval between the comple-
tion time of a superchunk write and the start time of the
next write for a time period T . Thus, we capture the disk
energy consumed for a single write at pm until the arrival
of the next operation as:

epm(∆) =

{

se+∆ · Ph ∆ ≤ It
selow + It · Ph + (∆− It) · Pl ∆ > It

(3)

2We do not account for the energy consumed by the proxy.

Clearly, in Eq. 3 the It parameter sets a critical point
beyond which the tendency of the cost function changes.
During time period T , pm will store W = T/∆ super-

chunks with a total energy cost of Epm(∆) = epm(∆) ·W .
Leaf nodes disk energy (Eln). While pm absorbs

writes ln remains inactive saving up energy. Thus, the en-
ergy consumption eln of ln during T is:

eln = (T − It) · Pl + It · Ph + Ed, (4)

where eln considers the time that ln has spent in both
idle and standby modes in the absence of storage requests.
We can easily extend Eq. 5 for an arbitrary number of leaf
nodes within a topology partition as Eln(n) = eln · n.
Cost of migrations (Em). Once pm has absorbed W

writes and T is reached, it is the moment of performing su-
perchunk migrations. To constrain the problem, we assume
that the number of superchunk migrations is higher than
the number of leaf nodes, i.e. W >> n, which is the most
common scenario. Therefore, we can assume the dispersion
properties of hash functions used as data routing features [6].
In this case, the number of deferred writes that will receive

any leaf node will not deviate too much from the mean.
Then, we can reasonably assume that M = ⌈W · n/(n+ 1)⌉
writes will be migrated as they do not belong to pm. Thus,
the cost of migrating these writes (Em) can be described by:

Em(n) = M · (se+ sededup) + n · Eu, (5)

where we capture the energy of reading superchunks from
pm and writing them at deduplication nodes plus their disk
spin-up cost. Note that this is the worst case cost, since pm
reads all the superchunks from disk before migrating them.
This yields that the superchunk cache provides no benefit.
Therefore, the total disk energy cost of deferring writes is:

Etotal(∆, n) = Epm(∆) + Eln(n) + Em(n) (6)

Eq. 6 describes the disk energy consumption of a s-node
cluster deferring writes in a single manager pm for a time
period T , plus the associated migrations. Furthermore, we
apply this model to an arbitrary number of eWave partitions
by scaling n and ∆.
Regular cluster disk energy (Ereg). In a regular dedu-

plication cluster armed with FT disks, the energy cost is de-
scribed by Eq. 3 at any given node. So the total energy cost
should be multiplied by s. The difference is that the average
arrival rate per node is λ/s, since superchunks are immedi-
ately routed from the proxy towards their recipients instead
of being deferred. Additionally, the cost of disk writes in
Eq. 3 is sededup (selowdedup) instead of se (selow), since store
operations always involve deduplication.
Model Discussion. The cost of deferring writes in eWave

mainly depends on: the workload intensity (λ, b) and the
disk idleness threshold It. Moreover, the number of leaf
nodes per partition greatly determines the energy savings.
To shed some light on this, in Fig. 5 we compare the

relative energy consumption (y axes) of a simple write-only
workload in a deduplication cluster with/without deferring
writes—denoted by DW and No DW, respectively. Thus, a
value< 0%means that deferring writes saves up energy. The
x axes is the inter-arrival time ∆ between writes of b = 1MB
superchunks. The period before migrations is T = 1h and,
for simplicity, r = 0.0 (no deduplication).
From Fig. 5 we infer three main observations:

O1 : Deferring writes may report important benefits in
the case of low system loads. Otherwise, it may incur extra

10
0

10
1

10
2

−100

−50

0

50

100
N=4 −I

t
=50s.

Inter-arrival time (∆)

R
el

at
iv

e
en

er
g
y
 c

o
n
su

m
p
ti

o
n
 %

(D
W

 v
s.

 N
o
 D

W
)

10
0

10
1

10
2

−100

−50

0

50

100
N=32 −I

t
=50s.

 (

∆)Inter-arrival time (

1PM/3LN

2PM/2LN

4PM/0LN

10
0

10
1

10
2

−100

−50

0

50

100
N=128 −I

t
=50s.

 (

∆)Inter-arrival time (

1PM/31LN

8PM/24LN

16PM/16LN

32PM/0LN

10
0

10
1

10
2

−100

−50

0

50

100
N=4 −I

t
=500s.

∆)Inter-arrival time (

R
el

at
iv

e
en

er
g
y
 c

o
n
su

m
p
ti

o
n
 %

(D
W

 v
s.

 N
o
 D

W
)

10
0

10
1

10
2

−100

−50

0

50

100
N=32 −I

t
=500s.

 (

∆)Inter-arrival time (
10

0
10

1
10

2
−100

−50

0

50

100
N=128 −I

t
=500s.

 (

∆)Inter-arrival time (

1PM/127LN

16PM/112LN

64PM/64LN

128PM/0LN

1PM/3LN

2PM/2LN

4PM/0LN

1PM/31LN

8PM/24LN

16PM/16LN

32PM/0LN

1PM/127LN

16PM/112LN

64PM/64LN

128PM/0LN

Figure 5: Results of our energy model in a cluster
with/without deferred writes (No DW/DW). We consider
a write-only workload of superchunks arriving every ∆ sec-
onds during T = 1 hour (IBM Ultrastar disk, see Table 2).

energy waste due to the cost of migrations. To wit, as visible
in Fig. 5, in a 4-node cluster deferring writes saves up energy
for write loads < 2.4MBps whereas for a 32-node cluster
deferring writes pays off for loads < 20MBps (It = 50s).

O2 : A shorter It induces higher energy savings when de-
ferring writes. This can be inspected comparing the energy
savings of the same topology for both It values. This is rea-
sonable since leaf nodes exploit better their standby periods.

O3 : There is a cross-over point beyond which deferring
writes is beneficial. Moreover, beyond this point, the topol-
ogy with fewest managers exhibits the highest savings.

We also observed that varying the deduplication rate r in
our model has a low impact on the achieved energy savings.
This will be evaluated in Section 5.

Our analysis lead us to the design of an energy-aware
workload consolidation mechanism for eWave. In the next
section, we describe how eWave scales the number of parti-
tion managers to adopt the most energy efficient topology.

3.3 Workload Consolidation
eWave exploits workload variability to reduce power con-

sumption by dynamically resizing topology partitions (i.e.
workload consolidation). Conversely to other systems [24,
25, 26], eWave takes consolidation decisions based on an en-
ergy estimation model (see Section 3.2) rather than just con-
sidering load (i.e. requests/sec.). We observed that depend-
ing on several parameters (e.g. It, cluster size) a certain
topology may incur energy savings or extra expenses given
the same load. This makes the load itself an insufficient
source of information to take consolidation decisions.

Every time interval t (e.g. 10 minutes) a monitoring pro-
cess running at the eWave proxy collects information about
the system’s load. Such information is easily gathered by
inspecting the eWave API calls executed by the deduplica-
tion proxy. Thus, we obtain a trace ℓt that represents the
system load during the previous interval t, where λt is the
operation mean arrival rate and bt the mean superchunk
size. We aim to create a reactive mechanism to dynamically
adapt the topology to the most energy efficient configuration.
Thus, the problem that we face can be expressed as: given a
system load trace ℓt(λt, bt), which is the number of partition

managers m that minimizes the energy waste?
As a natural requirement, the number of partition man-

agers that minimizes disk energy costs must also absorb the
current workload. Furthermore, we observed that, in those
situations where deferring writes pays off, the topology with
fewest partition managers (m) exhibits the highest energy
savings —see O3 in Section 3.2. This leads us to find m as:

m =

⌈(

bt
λt

)

/(LM · τ)

⌉

(7)

Eq. 7 outputs the minimum number of partition managers
that can serve writes for a workload characterized by λt and
bt. Besides, Eq. 7 introduces a new parameter, called load
threshold and denoted by τ ∈ [0, 1], that scales down the
maximum load that partition managers can support.
On the one hand, a value τ = 1 means that partition

managers will absorb writes up to their maximum capacity
(LM). This yields potentially higher energy savings, at the
cost of degraded transfer performance (i.e. aggressive mi-
grations, lower transfer parallelism). On the other hand, a
value of τ close to 0 prioritizes transfer performance, since
eWave adds new partition managers before overloading the
existing ones. In our model, τ is a key setting that should be
appropriately defined depending on the deployment scenario
(e.g. workload, hardware). We show in the evaluation how
τ enables us to trade-off energy and transfer performance.
However, building a topology with the minimum set of

partition managers capable of absorbing a workload does not
guarantee that it is beneficial in terms of energy. In other
words, eWave should operate only if deferring writes to m
partition managers consumes less energy than the cluster
in regular operation. Formally, considering ∆t = 1/λt, we
express the previous condition as:

m · Etotal(∆t ·m,
⌈ s

m

⌉

) < s · Ereg(∆t · s) (8)

The left member of Eq. 8 represents the energy estimated
of deferring writes in a topology with m partition managers.
The right member of Eq. 8 estimates the energy for a reg-
ular cluster. If inequality Eq. 8 holds, it is beneficial to
change the topology and let partition managers start buffer-
ing writes. Otherwise, the workload is too intense to amor-
tize the subsequent migration costs, and we let the system
operate as normal (i.e. m = s).
Our workload consolidation mechanism can work either

using mean workload values or replaying complete interval
traces. Making use of mean workload values (λt, bt) requires
little information at runtime. However, the associated down-
side is that we assume: i) good load balancing among stor-
age nodes, and ii) the mean arrival rate and superchunk size
(λt, bt) are representative values of the workload for an inter-
val t. We assess the accuracy of our model using both mean
workload values and complete interval traces in Section 5.

4. EVALUATION FRAMEWORK

4.1 Prototype and testbed scenario
We developed an in-line deduplication system prototype.

This prototype follows a 1-Proxy/N -Nodes architecture. The
proxy node includes content-based chunking/superchunking,
several data routing algorithms (as proposed in [6]), a simple
membership protocol as well as other utilities (e.g. logging,
failure detection). It consist of 2, 000 lines of Python code

and is based on the ClusterDFS system3 that provides fast
3
https://github.com/llpamies/clusterdfs

0 2 4 6 8

x 10
8

0

0.01

0.02

0.03

0.04
Seek profile

Seek distance (blocks)

A
cc

es
s

T
im

e
(s

ec
o

n
d

s)

0 100 200 300 400 500
0

40

80

120
Transfer Profile

Disk region (GB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Access times

Seek Profile

Figure 6: Western Digital WD5000AAKX seek/transfer pro-
files used to estimate disk energy in our experiments.

I/O and concurrency thanks to the asynchronous network
library and lightweight threads offered by gevent.

We also developed eWave as a library which can be called
by the deduplication prototype. eWave consists of 1, 200 lines
of code, and it is also written in Python to ease the inter-
action with the deduplication prototype. The eWave proxy
includes a process to create the virtual topology, a load mon-
itor that updates the system’s load on each API call, and
an index of superchunks deferred to partition managers. In
addition to a deferred writes index, eWave storage nodes in-
clude one write-through LRU superchunk cache.

Our experimental scenario consisted of 10 machines; 1
client, 1 proxy and 8 storage nodes. All the machines in-
corporate an i5 processor, 4GB DDR2 of RAM and 500GB
of hard-disk storage (see Table 2). The operating system
employed was a Debian Linux distribution. Moreover, nodes
were connected via Fast Ethernet (100Mbps) switched links.

Our objective is to quantify the energy gains of eWave
compared with a traditional deduplication system under dif-
ferent scenarios and the implications on performance.

4.2 Experimental energy estimation
In our experiments, we want to account for the disk energy

of all storage nodes in the cluster. This makes it difficult to
instrument every node with physical power meters. For this
reason, we opted for a trace-based energy estimation ap-
proach capturing the disk activity of all nodes. In our view,
this method provides the best trade-off between practicality
and accuracy, as proven in other works [27, 28].

Our estimation of a hard disk energy consumption consists
of modeling first its behavior (benchmarking) and then trace
all the operations scheduled to the device during a experi-
ment. Thanks to benchmarking, we can infer the seek profile
(Sp) and transfer profile (Tp) of a hard disk for any access
(see Fig. 6). Provided the power consumed by the disk in
these stages, we can easily infer the energy consumed. From
these benchmarks we can deduce a function which accurately
models the energy consumed by a operation. Afterwards, we
need to trace all the operations issued to the hard disk: lo-
cation, size and seek time. Replaying these traces with the
inferred energy consumption models, we are able to estimate
the amount of energy consumed by a disk.

4.3 Simulation Environment
To asses our solution in a wider spectrum of parameters

and configurations we make use of simulations. In our sim-
ulator, eWave contains almost the same logic and function-
ing than the deduplication prototype in a real experiment.
However, deduplication and eWave nodes are embedded into
processes of our discrete-event simulation framework4. This
enables us to simulate the communication network and the
energy estimation upon storage requests.

We simulate a deduplication proxy with a raw through-
put of 100MB/s connected in parallel via a Fast Ethernet
(10MB/s) network to storage nodes —this is the network

4
https://simpy.readthedocs.org/en/latest/

Parameter IBM Ultrastar 36z15 (simu-
lation)

W. Digital WD5000AAKX

(experiments)

Interface SCSI SATA
Disk Rotation 15, 000 RPM 7, 200 RPM
High Power (Ph) 13.5W 4.9W
Low Power (Pl) 2.5W 0.816W
Power Active (Pa) 65mJ. per 8Kb block [20] n.a.
Power Transfer n.a. 1.59W (+Ph = 6.49W)
Seek Power n.a. 3.03W (+Ph = 7.93W)
Spin-up Time (Tu) 10.9s. 3.794s.
Spin-down Time (Td) 1.5s. 0.291s.
Spin-up Energy (Eu) 135J. 63.125J.
Spin-down Energy (Ed) 13J. 4.419J.

Table 2: Hard disk specifications used in our simulations
and experimental trace parsing.

used in our experimental cluster. Besides, in our simulations
we make use of an IBM Ultrastar 36z15 disk (see Table 2).
In our simulator, we calculate the energy consumption of

disks by considering their idle/standby periods (dominant
cost [15]) and the energy of transferring data to disk (active
power in Table 2). Therefore, we do not take into account
the movement of the mechanical disk actuator, as we do in
our experimental assessment. Due to the complexity of our
evaluation scenario, our objective is to verify our simulation
results through experimentation in relative terms.

4.4 Workload model
In our simulations, we make use of the following workloads

to describe file accesses (see Fig. 8):
URV’s Moodle. This trace captures the upload and

download patterns of the URVMoodle’s system for 8 months.
For each trace row, the provided information contains the
operation type, the file id, file size, among other features.
Ubuntu One Service (U1). In the context of the FP7-

CloudSpaces EU project on Personal Clouds we are analyz-
ing the U1 service. We captured upload requests of users
during one month (November 2013). The (anonymized)
trace provides upload access patterns, file sizes and file types.
The additional complexity of a workload model to evalu-

ate eWave is that we simultaneously need access patterns to
files and the actual content of files (or at least hash informa-
tion). However, to our knowledge, there is no public trace
containing both sources of information. In essence, we want
to analyze the impact of data routing features and different
deduplication ratios on eWave performance. To this end, in
our simulator we model the contents of each file store oper-
ation with a sample of superchunk hashes calculated from
real backup data (Wikipedia dumps, Linux images). These
superchunks include two data routing features as proposed
in [6]: superchunk minimum chunk hash and first chunk
hash. Besides, we emulate different degrees of deduplication
at each file with a mean value (r).
In the experiments, we execute a write workload consisting

of a set of Linux distribution images (e.g. archival), which
is a common use case of deduplication clusters [2, 3, 29].

4.5 Metrics
We compare eWave with a regular deduplication cluster

making use of the following metrics:
Disk Energy : Amount of Joules consumed by a single disk

during a period of time. We also use the relative energy
consumption metric to compare eWave (e1) with a regular
cluster (e2) defined as (e1 − e2)/e2.
Disk idle times: This metric quantifies the length of disk

idle times to understand the potential energy gains achiev-
able by turning off disks.
Performance: We make use of file transfer times from the

proxy’s perspective to quantify performance in our simula-
tions. Moreover, in our experiments we use the proxy good-
put defined as file size/transfer time (measured in MBps).

0 12 24 36 48 60 72
0

5

10

15

20

Hours

M
B

/s
ec

.

U1 Upload Traffic (3 Days)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
Moodle Upload/Download Traffic (1 Week)

Days

M
B

/s
ec

.

Download Traffic Upload Traffic Downloads dominate uploads since
Moodle is mainly used to distribute content

Figure 8: Workload traces used in our simulations.

We do not quantify deduplication metrics (e.g. effective
deduplication), since it is responsibility of the deduplication
system. The above metrics will be analyzed on several of
scenarios to observe the impact of varying the value of im-
portant parameters (e.g. idleness threshold, cluster size).

5. RESULTS
Unless otherwise stated, for both eWave and a regular clus-

ter, we set by default It = 100s (IBM Ultrastar). eWave in-
cludes a 500MB LRU cache and a flush timeout T = 1800s
to trigger migrations. We set τ = 0.1 to avoid saving up
energy at the cost of high transfer speed degradation.

Regarding the workload characteristics, the average su-
perchunk size is 1MB and we use the first chunk hash as
data routing feature. We simulate that the mean superchunk
deduplication ratio is r = 0.2. In any case, we inspect the
role of all these parameters throughout this section.

5.1 Measuring energy savings
Next, we overview the energy savings provided by eWave

compared with a regular deduplication system. To better
understand the performance of eWave, we discern between
write workloads and mixed read/write workloads. Note that
the energy savings presented in this section are not at the
cost of high performance degradation (see Section 5.2).

Write workloads. We evaluate eWave against a regular
cluster under 3 write workload patterns: Moodle and U1
write patterns (WP) and Moodle read pattern (RP).

Fig. 7a shows the energy savings that eWave provides
under write workloads. In general, we observe that eWave
may bring important disk energy savings in many scenarios
compared with a regular deduplication cluster (16%−57%).
eWave exhibits the best energy savings in the Moodle (RP)
case (19.3%−57%), since it is a light workload that makes it
very difficult for FT disks to remain in standby mode. Fur-
thermore, in those situations where the workload impedes
to save up energy, the dynamic workload consolidation of
eWave keeps the system in the same degree of disk energy
consumption. That is, an energy overhead of only 0.93%
(U1 trace, 4 nodes) has been the worst case tested.

The executed workload patterns help us to understand
the behavior of eWave in disparate situations. In fact, as
predicted by our energy model, eWave does not provide sig-
nificant benefits when the workload is high or extremely low
compared with the number of nodes in the cluster. This can
be confirmed looking at Moodle (WP) forN ≥ 32 and U1 for
N ≤ 8 in Fig. 7a, respectively. Under high workload inten-
sity, eWave cannot amortize buffered writes at the partition
manager with sufficiently large standby times of leaf nodes.
Conversely, FT disks seem to deal well with extremely low
workloads since request inter-arrival times become larger.

However, the strategy of diverting and deferring writes to
a subset of partition managers is successful in most situa-
tions. To understand this, Fig. 7b provides a time-series
view of the disk energy consumption of each node in the
cluster. We observe that a several eWave nodes (partition
managers) exhibit a much higher energy consumption than
the rest of nodes, since they are absorbing writes for them.

4 8 16 32 64
−60

−40

−20

0

20

40
eWave vs regular cluster (write workloads)

Nodes

R
el

at
iv

e
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n
 (

%
)

Moodle (WP/1 Week)

Moodle (RP/1 Week)

U1 (3 Days)

(a) Disk energy of eWave vs a regular
cluster under 3 write workloads.

0 1 2 3 4 5 6 7
0

5

10
x 10

4 Per−node time−series disk energy consumption (16 Nodes)

Days

D
is

k
 E

n
er

g
y

 (
J)

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

1
Superchunk store inter−arrivals (all nodes)

Time (sec.)

C
D

F

10
2

10
3

10
4

0

0.5

1
Per−node standby disk times

Time (sec.)

C
D

FeWave writes
arrive coalesced
due to buffering
and migrations

Flush
Timeout

(b) eWave (green) and a regular cluster
(gray). Moodle (RP) write workload.

4 8 16 32 64
−80

−60

−40

−20

0

20

40
eWave vs regular cluster (Moodle r/w workload) − 1Week

Nodes

R
el

at
iv

e
E

n
er

g
y
 C

o
n
su

m
p
ti

o
n
 %

eWave (No Cache)

eWave (50MB, LRU)

eWave (500MB, LRU)

(c) Disk energy of eWave vs a regular clus-
ter under a mixed read/write workload.

Figure 7: Energy savings provided by eWave under various workloads compared with a regular deduplication cluster.

0.0 0.2 0.5
0

5

10

15
x 10

7
U1 Trace (3 Days) − 32 Nodes

Deduplication Ratio (r)

D
is

k
 E

n
er

g
y
 (

J)

0.0 0.2 0.5
0

5

10

15
x 10

7
Moodle (RP) (1 Week) − 16 Nodes

Deduplication Ratio (r)

D
is

k
 E

n
er

g
y
 (

J)

eWave

Regular cluster

Figure 9: Impact of r on disk energy for write workloads.

Consequently, the rest of nodes are in low-power mode for
longer periods of time, saving up energy. On the other hand,
in a regular cluster (gray lines) all nodes exhibit very similar
energy consumption numbers as well as shorter inter-arrival
times among write requests. This fact prevents nodes from
switching to low-power mode, being worse for larger clusters.
We executed the same write workloads considering other

deduplication ratios (see Fig. 9). The most important con-
clusion that we draw from Fig. 9 is that eWave is still bene-
ficial even for high deduplication rates (r = 0.5). The main
reason for this behavior is that the dominant energy costs
belong to the rotational disk power [15]. Thus, even for
high r values, upon a store request a node in standby mode
should spin-up the disk if a superchunk contains a single not
deduplicated chunk. eWave mitigates this problem by coa-
lescing store operations. Besides, as expected, we observe
that both a regular cluster and eWave consume less energy
for higher r values. Furthermore, in the case of U1, the
energy consumption rates among distinct r values are more
significant due to the higher workload intensity.
We conclude that eWave is specially beneficial to reduce

the energy waste of over-provisioned deduplication clusters
and/or scenarios with high variance of workload intensity5.
Read/Write workloads. Now we explore the impact of

reads in the energy savings achieved by eWave. To this end,
we execute the complete Moodle trace (reads and writes),
varying the eWave superchunk cache configuration.
In Fig. 7c we see that deferring writes to save up energy is

by itself useless when file retrievals are frequent (No Cache
case). The reason is that nodes which aim to remain in
low-power mode are frequently activated by read requests.
Fig. 7c shows that the energy savings in the presence of

reads are related with the cache size. To wit, a larger cache
has greater probabilities of containing the requested block in
memory, avoiding thus extra disk accesses. For instance, in
a 4-node cluster, nodes with 50MB caches reported around
9.09% − 13.06% of cache read hits, whereas 500MB caches
provided read hit ratios between 39.33%− 47.78%.

5We did not observed significant differences between the min
and first chunk routing policies, suggesting that eWave is able
to handle distinct data routing algorithms.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0 U1 (3 Days) − 32 Nodes

Time (secs.)

P
ro

b
[t

ra
n

sf
er

 t
im

e
>

 x
]

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0 Moodle (RP, 1 Week) − 32 Nodes

Time (secs.)
P

ro
b

[t
ra

n
sf

er
 t

im
e

>
 x

]

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0 U1 (3 Days) − 4 Nodes

Time (secs.)

P
ro

b
[t

ra
n

sf
er

 t
im

e
>

 x
]

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0 Moodle (RP, 1 Week) − 4 Nodes

Time (secs.)

P
ro

b
[t

ra
n

sf
er

 t
im

e
>

 x
]

Regular Cluster eWave (τ =0.1) eWave (τ =0.5)

Figure 10: eWave transfer performance for various τ values.

Therefore, eWave is able to tackle file retrievals, specially
in the case of high data locality. However, if the system sup-
ports read dominated workloads with low locality, deferring
superchunk writes may provide poor energy savings.

5.2 Performance impact
Now we analyze the performance impact of eWave. We pay

special attention on the load threshold parameter (τ), which
is responsible for trading-off performance and energy. Fig.
10 plots file transfer times (CCDF) of both a regular cluster
and eWave for various τ values under two write workloads.

First, the performance penalty of eWave greatly depends
on the τ parameter. A mistaken value of τ may negatively
affect the performance of transfers, as we demonstrate in
Fig. 10 (τ = 0.5, U1 workload). The reason for this perfor-
mance deterioration is twofold: First, eWave inherently lim-
its the exploitable transfer parallelism since writes are served
by a subset of partition managers. Second, partition man-
agers may be simultaneously serving requests from the proxy
and migrating superchunks, which induces congestion.

In the U1 case (N = 32), eWave uploads for τ = 0.1 are
only moderately slower than a regular cluster. To wit, in
the 90th percentile, eWave uploads take 39 seconds more to
complete compared with a regular cluster (+31%). Note
that around the 30% of uploads exhibit the same perfor-
mance in both eWave and a regular cluster. This is because
these uploads occur in periods of higher load where eWave
does not take action.

Following the U1 case, eWave consumes −17, 55% and
−24.22% of disk energy compared with a regular cluster, for
τ = 0.1 and τ = 0.5 respectively. This leads us to the next
conclusion: eWave makes it feasible to save up energy in-
troducing only moderate performance penalty over non-peak
workload transfers. Further, we observe that the energy sav-
ings are not proportional to the impact on performance. To
wit, by sacrificing a 6, 67% savings on disk energy eWave re-

4 8 16 32 64
−60

−40

−20

0

20
Moodle (RP) write workload (1 Week)

Nodes

R
el

at
iv

e
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n
 (

%
)

0 20 40 60 80 100

10
−4

10
−3

10
−2

10
−1

10
0

Moodle (RP) write workload (1 Week) - N=16

Time (secs.)

P
ro

b
[t

ra
n

sf
er

 t
im

e
>

 x
]

I
t
=50s.

I
t
=100s.

I
t
=500s.

eWave I
t
=50s.

eWave I
t
=100s.

eWave I
t
=500s.

cluster I
t
=50s.

cluster I
t
=100s.

cluster I
t
=500s.

Figure 11: Impact of It on energy savings and transfer times.

ports transfers several times faster depending on the τ value.
The Moodle trace follows a similar trend, but the impact of
varying τ is less significant on energy since the workload is
less intense than for U1. To automatically adjust τ given
performance constraints is left for future work.
In the U1 scenario withN = 4, we observe that eWave does

not take action since the workload is too intense compared
with the cluster size, making the cluster to work as normal.
Interestingly, daily patterns present in the Moodle trace

reveal that FT disks by themselves may not only fail on ex-
ploiting load valleys to save energy, but they also may induce
performance problems. To wit, under low loads superchunk
inter-arrival times become larger, which produces frequent
disk spin-ups upon new requests. This fact is more evident
for larger clusters and higher load variability and motivates
diverting access to eWave partition managers.

5.3 Sensitiveness to idleness threshold
We explore the effect of the idleness threshold (It) on the

disk energy and transfer performance. Thus, Fig. 11 shows
the relative energy consumption and transfer times of eWave
and a regular cluster under the Moodle (RP) write workload.
Considering energy, both a regular cluster and eWave con-

sume more energy for larger It values. For instance, a regu-
lar cluster disks consume +10.12% for N = 4 and +26.43%
for N = 32 of energy comparing It = 50s with It = 500s.
We also analyzed this for the U1 trace, observing a similar
trend for larger cluster sizes (e.g. N ≥ 32), since the work-
load is more intense than the Moodle scenario. As expected,
a shorter It provide more opportunities to conserve energy.
However, focusing on transfer times, we observe that in

a regular cluster making use of a shorter It may degrade
performance under moderate/low loads. This is due to the
number of disk spin-ups needed upon storage requests, which
in turn has an important role on the disk lifetime. To wit,
in Fig. 11 for N = 16 a regular cluster executed 45, 652
disk spin-ups for It = 50s, whereas for It = 500s that num-
ber was 1, 472. Thus, a regular cluster by itself importantly
degrades transfer performance and disk reliability to obtain
energy savings by reducing It. On the other hand, eWave
seems less sensitive to the value of It in terms of performance
—for U1 the performance impact of It on eWave is higher
than for the Moodle trace, but it is still lower than in a reg-
ular cluster. Besides, in Fig. 11 for N = 16 eWave exhibited
7, 266 disk spin-ups for It = 50s and 5, 305 disk spin-ups for
It = 500s, providing an attractive trade-off among energy
savings, transfer performance and disk reliability.
We conclude that there exists a tight relationship between

the disk It parameter and the inter-arrival times of requests
(i.e. workload intensity). This has to be considered for
making an efficient use of the cluster in various aspects. We
consider to dynamically adjust It as future work [30, 31].

5.4 Assessing the deferred writes energy model
Next, we evaluate the accuracy of our energy estimation

0 6 12 18 24
0

5

10

x 10
5 U1 Trace (1 Day) − 32 Nodes

Hours

D
is

k
 E

n
er

g
y

 (
J)

0 6 12 18 24 30 36 42 48 54 60 66 72
0

1

2

3

4

5
x 10

5 Moodle (RP) Trace (3 Days) − 16 Nodes

Hours

D
is

k
 E

n
er

g
y

 (
J)

0 6 12 18 24
−40
−30
−20
−10

0
10
20
30
40

Hours

R
el

at
iv

e
E

rr
o

r
(%

)

0 6 12 18 24 30 36 42 48 54 60 66 72
−50
−40
−30
−20
−10

0
10
20
30
40
50

Hours

R
el

at
iv

e
E

rr
o

r
(%

)

Regular Cluster (actual) Regular Cluster (estimation) eWave (actual) eWave (estimation)

eWave (1PM/15LN)eWave (8PM/24LN)

Figure 12: Accuracy of our deferred writes estimation model
based on mean workload values.

model for deferred writes. We have shown that our model
satisfactorily guides eWave based on mean workload values.
However, we want to understand in depth its accuracy in
different scenarios. To this end, Fig. 12 shows the actual
and estimated energy consumption of eWave (fixed topology)
and a regular cluster under various write workloads.

In first place, we observe that for an important fraction
of samples (72%) the relative error falls within a range of
±10%. This makes our model accurate enough to guide
eWave on taking decisions about the topology.

However, we observe few moments that report important
estimation errors —specially in the case of a regular cluster
under the Moodle (RP) workload. We identified two factors
that are difficult to capture with simple mean measures: i)
Rapid and high workload variability (e.g. day to night work-
load change) and ii) Non-perfect load balancing.

We also tested our energy estimation model in a trace
based fashion, that is, periodically replaying (e.g. 600s) a
trace sample to estimate the energy consumption of the clus-
ter. As expected, this approach reported a much higher ac-
curacy (100% of samples fall within an error range of ±1%
for a regular cluster in the Moodle tarce) but at the cost of
keeping more workload information at runtime to feed our
model —instead of using simple mean measures.

We conclude that our model provides a fair estimation
accuracy when working just with mean workload measures.
However, we can fully exploit its potential by adding a com-
plete view of the workload.

5.5 Experiments
Next, we show the results of our experimental testbed in

our university labs. The testbed consists on a single client
uploading several linux distribution images. Concretely, the
client uploaded 20GB of data in 2 hours. We set up a cluster
of 8 storage nodes. At each storage node we captured disk
activity during the experiment. We repeated the experiment
5 times with/without eWave to confirm our results.

Throughout the experiment, eWave maintains the same
fixed topology (1 partition manager and 7 leaf nodes). eWave
executes a lazy migration policy (flush timeout T = 1800s).
We parsed the disk IO traces assuming It = 100s

Energy savings. eWave provides important energy sav-
ings to the deduplication system. That is, eWave consumed
−24.06% of energy compared with a regular cluster. We ob-
serve in Fig. 13 (left) that deferring writes in the partition
manager significantly reduces the rotational disk power con-
sumption at leaf nodes, which is the most important fraction
of energy [32]. To wit, in our experiments, the disk rotation
accounts for the 99.72% of disk energy consumed in a reg-
ular cluster, whereas transfer and seek energy represent the

1 2 3 4 5 6 7 8
0

1

2

3

4
x 10

4
Disk energy of nodes in our experimental testbed

Nodes

D
is

k
 E

n
er

g
y
 (

Jo
u
le

s)

eWave storage nodes

Regular storage nodes

Partition manager

7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1
Proxy goodput (file size/transfer time)

Goodput (MBps)

C
D

F

eWave

Regular cluster

Partition manager congestion
due to receive stores and
migrate deferred writes at the
same time

Figure 13: Per-node disk energy (left) and performance of
proxy transfers (right) in our experiments.

0 20 40 60 80 100 120
0

2

4

6
x 10

7 Traced disk IO activity (eWave vs regular cluster)

D
is

k
 I

O
 (

B
y
te

s/
s.

)

0 20 40 60 80 100 120
0

2

4

6
x 10

7

Minutes

D
is

k
 I

O
 (

B
y
te

s/
s.

)

node 1 node 2

partition manager leaf nodeSuperchunk migrations

Figure 14: Disk IO of nodes in eWave and a regular cluster.

0.139% and 0.136%, respectively.
Fig. 14 provides a time-series view of the traced disk ac-

tivity for both eWave and a regular cluster. Observably, the
partition manager is activated on each file store operation.
This causes an increased energy consumption compared with
leaf nodes (as shown in Fig. 13, left). However, leaf nodes
are activated only during superchunk migrations, being in
low-power mode in the rest of experiment. This reduces the
overall energy cost compared with a regular cluster.
Performance impact. In terms of performance, Fig. 13

(right) shows the proxy goodput, that relates the size of a file
with the time needed to store it in the system. For most
store operations, eWave and a regular cluster exhibit very
similar performance numbers. This is due the limitations of
our experimental hardware: the proxy is a regular server (as
any other storage node) and the network maximum speed
is 100Mbps (Fast Ethernet). Therefore, the proxy cannot
exploit parallel connections in the same way that in a real
cluster to observe the impact of loosing parallelism in eWave.
In Fig. 13 (right) we see that the 23% of store operations

in eWave exhibit a degraded performance. This is due to
congestion, since the partition manager may be concurrently
serving storage request from the proxy as well as performing
migrations. This opens the door to further optimize the
virtual topology of eWave to avoid this situation.

6. RELATED WORK
Energy-aware Storage. Much effort has been devoted

on making storage systems energy-efficient. Bostoen et. al.
[1] excellently describe the literature in this field and provide
a comprehensive taxonomy of the existing techniques.
Diverted access. A relevant power-reduction approach

is popular data concentration (PDC) [20, 33]. PDC benefits
from the typical skewed distribution (e.g. Zipf) of file access
to distribute data across disks accordingly. This approach
intrinsically diverts the majority of accesses towards a sub-
set of disks. This concept has been also applied in Hadoop
clusters to differentiate among cold/hot cluster zones [34,
35]. Rabbit [26] diverts access in a distributed file system
(HDFS) to achieve power proportionality. Rabbit targets
read-dominated workloads, common in a MapReduce sce-
nario. Rabbit elaborates on the idea of primary set, which
is the minimal number of nodes to hold a single file replica.
Rabbit places r different replicas on r different subsets of

nodes, which enables diverting access to active nodes while
keeping other nodes saving energy. Similarly, Sierra [25] tar-
gets general workloads including read and writes by integrat-
ing write off-loading. SRCMap [24] combines several power
reduction techniques such as live migration, replication and
write off-loading. SRCMap increases the idle periods sub-
stantially by also off-loading popular data reads. SRCMap
uses replication by creating partial replicas that contain the
working sets of data volumes. eWave focus is on write dom-
inated workloads diverting access to partition managers to
defer writes. In contrast to most works, eWave respects the
data placement defined by the system. Moreover, eWave
makes use of superchunk caching to handle reads instead of
creating additional redundancy to divert read accesses.

Workload consolidation. SRCMap [24] provides fine
grained power proportionality via storage virtualization and
workload consolidation. Rabbit [26] and Sierra [25] also pro-
vide workload consolidation mechanisms based on the load
of the system. In contrast, eWave provides workload consol-
idation based on an dynamic energy estimation.

Deferred writes. Write off-loading [16] is a technique
intended to save up energy by increasing idle disk times in
write-dominated workloads. Every data volume (one/many
physical disks) has a space reserved for temporary storage
of off-loaded blocks. This means that other active volumes
transiently absorb writes directed to inactive volumes to pre-
serve their idleness. An off-loaded block is copied to its tar-
get volume when this volume becomes active because of a
read-cache miss. In this line, authors in [36] study the use
of write buffers in a parallel I/O storage system to reduce
power consumption. The present paper extends these works
providing a analytical energy model of deferred writes.

Key differences with previous works. The goal of
eWave is to make current systems (e.g. [29, 6, 5, 37]) energy
aware, without altering their behavior (e.g. data routing).

However, in our context, this goal can only be effectively
achieved by i) respecting the data placement defined by the
deduplication system [14] and, ii) being agnostic of the file
system, since the deduplication layer may be really coupled
with it [17]. Besides, conversely to other works, eWave does
not create additional redundancy to preserve energy, since
we believe that it is contrary to the spirit of a deduplica-
tion cluster [15]. To our knowledge, there is no power-aware
storage middleware that copes with these requirements.

7. CONCLUSIONS
This work is the first attempt to leverage energy-awareness

for in-line deduplication clusters. To this end, we propose
eWave: an energy-efficient data management middleware tai-
lored to the specific needs of deduplication clusters. The
design of eWave lead us first to study the potential energy
savings of deferring writes in this kind of storage systems,
which has not been properly analyzed in the literature. As a
result, we obtained an energy model of deferred writes that
guides the eWave workload consolidation mechanism. To our
knowledge, eWave is the first system that consolidates load
purely based on an energy metric.

Via extensive simulations and experiments in an 8-machine
cluster, we evaluated the effectiveness of our design and the
potential energy savings of eWave. We conclude that eWave
may report energy savings up to 60% in several scenarios
and workloads with moderate impact on performance dur-
ing non-peak loads. Further, eWave is specially beneficial to
reduce the energy waste of over-provisioned clusters and/or
scenarios with high variance of workload intensity. We be-
lieve that this makes eWave suitable for a variety of enterprise
and organizational deduplication clusters.

Acknowledgment

This work has been partly funded by the European Union
through project FP7 CloudSpaces (FP7−317555). We thank
Toni Cortés for his suggestions on the final stages of this ar-
ticle. We also thank to Jordi Pujol-Ahulló for his help on
gathering the URV’s Moodle traces and John Lenton from
Canonical for his help on collecting traces from U1.

8. REFERENCES
[1] T. Bostoen, S. Mullender, and Y. Berbers,

“Power-reduction techniques for data-center storage
systems,”ACM Computing Surveys, vol. 45, pp.
33:1–33:38, 2011.

[2] D. Bhagwat, K. Eshghi, D. D. Long, and
M. Lillibridge, “Extreme binning: Scalable, parallel
deduplication for chunk-based file backup,” in
MASCOTS’09, 2009, pp. 1–9.

[3] D. Frey, A.-M. Kermarrec, and K. Kloudas,
“Probabilistic deduplication for cluster-based storage
systems,” in SoCC’12, 2012, pp. 17:1–17:14.

[4] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and
Y. Wan, “Debar: A scalable high-performance
de-duplication storage system for backup and
archiving,” in IPDPS’10, 2010, pp. 1–12.

[5] C. Dubnicki et. al., “Hydrastor: A scalable secondary
storage,” in FAST’09, 2009, pp. 197–210.

[6] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,
and P. Shilane, “Tradeoffs in scalable data routing for
deduplication clusters,” in FAST’11, 2011, pp. 15–29.

[7] “Emc centera,” http://www.emc.com.
[8] “Sepaton s2100,” http://www.sepaton.com.
[9] “Nec hydrastor,” http://www.necam.com/hydrastor/.

[10] J. Leverich and C. Kozyrakis, “On the energy (in)
efficiency of hadoop clusters,”ACM SIGOPS Op. Sys.
Review, vol. 44, no. 1, pp. 61–65, 2010.

[11] Z. Li, K. M. Greenan, A. W. Leung, and E. Zadok,
“Power consumption in enterprise-scale backup storage
systems,” in FAST’12, 2012, pp. 1–6.

[12] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L.
Miller, “Measurement and analysis of large-scale
network file system workloads.” in USENIX ATC’08,
vol. 1, no. 2, 2008, pp. 213–226.

[13] R. Gracia-Tinedo, M. Sánchez-Artigas,
A. Moreno-Martınez, C. Cotes, and P. Garcıa-López,
“Actively measuring personal cloud storage,” in IEEE
CLOUD’13, 2013, pp. 301–308.

[14] D. Harnik, D. Naor, and I. Segall, “Low power mode
in cloud storage systems,” in IPDPS’09, 2009, pp. 1–8.

[15] E. Pinheiro, R. Bianchini, and C. Dubnicki,
“Exploiting redundancy to conserve energy in storage
systems,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 34, no. 1, 2006, pp. 15–26.

[16] D. Narayanan, A. Donnelly, and A. Rowstron, “Write
off-loading: Practical power management for
enterprise storage,”ACM Transactions on Storage
(TOS), vol. 4, no. 3, pp. 10:1–10:23, 2008.

[17] K. Srinivasan, T. Bisson, G. Goodson, and
K. Voruganti, “idedup: Latency-aware, inline data
deduplication for primary storage,” in FAST’12, 2012,
pp. 1–14.

[18] D. Meister, J. Kaiser, and A. Brinkmann, “Block
locality caching for data deduplication,” in
SYSTOR’13, 2013, pp. 15:1–15:12.

[19] Q. Zhu et. al., “Reducing energy consumption of disk
storage using power-aware cache management,” in

IEEE Software, 2004, pp. 118–118.
[20] E. Pinheiro and R. Bianchini, “Energy conservation

techniques for disk array-based servers,” in
Supercomputing’04, vol. 26, 2004, pp. 68–78.

[21] T. Bostoen, S. Mullender, and Y. Berbers, “Analysis
of disk power management for data-center storage
systems,” in e-Energy’12, 2012, pp. 2:1–2:10.

[22] D. Harnik, O. Margalit, D. Naor, D. Sotnikov, and
G. Vernik, “Estimation of deduplication ratios in large
data sets,” in IEEE MSST’12, 2012, pp. 1–11.

[23] P. Ranganathan, “Recipe for efficiency: principles of
power-aware computing,”Communications of the
ACM, vol. 53, no. 4, pp. 60–67, 2010.

[24] A. Verma, R. Koller, L. Useche, and R. Rangaswami,
“Srcmap: Energy proportional storage using dynamic
consolidation.” in FAST’10, 2010, pp. 267–280.

[25] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra:
practical power-proportionality for data center
storage,” in EuroSys’11, 2011, pp. 169–182.

[26] H. Amur et. al., “Robust and flexible power
proportional storage,” in SoCC’10, 2010, pp. 217–228.

[27] H. Huang, W. Hung, and K. G. Shin, “Fs2: dynamic
data replication in free disk space for improving disk
performance and energy consumption,”ACM SIGOPS
Op. Sys. Review, vol. 39, no. 5, pp. 263–276, 2005.

[28] A. Hylick, R. Sohan, A. Rice, and B. Jones, “An
analysis of hard drive energy consumption,” in
MASCOTS’08, 2008, pp. 1–10.

[29] A. Wildani, E. Miller, and O. Rodeh, “Hands: A
heuristically arranged non-backup in-line
deduplication system,” in ICDE’13, 2013, pp. 446–457.

[30] D. P. Helmbold, D. D. Long, T. L. Sconyers, and
B. Sherrod, “Adaptive disk spin-down for mobile
computers,”Mobile Networks and Applications, vol. 5,
no. 4, pp. 285–297, 2000.

[31] T. Bisson, S. A. Brandt, and D. D. Long, “Nvcache:
Increasing the effectiveness of disk spin-down
algorithms with caching,” in MASCOTS’06, 2006, pp.
422–432.

[32] M. Allalouf, Y. Arbitman, M. Factor, R. I. Kat,
K. Meth, and D. Naor, “Storage modeling for power
estimation,” in SYSTOR’09, 2009, pp. 3:1–3:10.

[33] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes, “Hibernator: helping disk arrays sleep
through the winter,” in ACM SIGOPS Operating
Systems Review, vol. 39, no. 5, 2005, pp. 177–190.

[34] R. T. Kaushik and M. Bhandarkar, “Greenhdfs:
towards an energy-conserving, storage-efficient, hybrid
hadoop compute cluster,” in USENIX ATC’10, 2010,
pp. 1–9.

[35] R. T. Kaushik, L. Cherkasova, R. Campbell, and
K. Nahrstedt, “Lightning: self-adaptive,
energy-conserving, multi-zoned, commodity green
cloud storage system,” in HPDC’10, 2010, pp.
332–335.

[36] X. Ruan, A. Manzanares, S. Yin, Z. Zong, and X. Qin,
“Performance evaluation of energy-efficient parallel i/o
systems with write buffer disks,” in ICPP’09, 2009,
pp. 164–171.

[37] R. Koller and R. Rangaswami, “I/o deduplication:
Utilizing content similarity to improve i/o
performance,”ACM Transactions on Storage (TOS),
vol. 6, no. 3, pp. 13:1–13:26, 2010.

