Implicit BPM: A Business Process Platform
for Transparent Workflow Weaving

Rubén Mondéjar!-2, Pedro Garcia-Lépez!, Carles Pairot!2, and Enric Brull?

! Department of Computer Engineering and Maths,
Universitat Rovira i Virgili, Tarragona, Spain
{ruben.mondejar,pedro.garcia,carles.pairot}@urv.cat
2 Diputacié de Tarragona, Spain
enric.brull@dipta.cat

Abstract. Theintegration of business processes into existing applications
involves considerable development efforts and costs for I'T departments.
This precludes the pervasive implementation of BPM in organizations
where important applications remain isolated from the existing workflows.

In this paper, we introduce a novel concept, Workflow Weaving, based
on non-intrusive techniques, which achieves transparent integration of
business processes into organizational applications. This concept relies
on BPM standards, Aspect Oriented Programming, and Web patterns
to transparently weave business models among current web applications.
A prototype platform is presented, which includes our design of a dis-
tributed architecture, and a natural and expressive DSL.

Keywords: Workflow Weaving, Implicit BPM, Distributed Platform,
Aspect-Orientation, MVC Architecture.

1 Introduction

There is an increasing demand from organizations to integrate business processes
into existing applications. Many of these applications remain apart from the
company workflows because they were designed as isolated systems without clear
interoperation interfaces. In most cases, the cost of this integration is very high
because it implies detailed knowledge of the existing applications, and ad-hoc
modifications to provide the required connection with workflow engines. This
cost makes it very difficult to adopt BPM strategies in these organizations.

These workflows should provide a way of describing the order of execution and
the dependent relationships between the activities of running processes in het-
erogeneous applications. However, if these processes span existing applications
in the organization, their integration implies a costly plumbing and connection
development work in every piece of software.

In order to reduce this cost, we introduce a novel concept, namely Workflow
Weaving, based on non-intrusive techniques, which achieves transparent inte-
gration of business processes into existing web applications. We mainly employ

S. Sadiq, P. Soffer, and H. Volzer (Eds.): BPM 2014, LNCS 8659, pp. 168-183, 2014.
© Springer International Publishing Switzerland 2014

Implicit BPM: A Platform for Transparent Workflow Weaving 169

Aspect-Oriented Programming (AOP) [1] to transparently intercept existing web
applications and connect them to the workflow system. The novelty of our ap-
proach is that we intercept the Model-View-Controller (MVC [2]) pattern in key
points in order to avoid a detailed knowledge of the target applications. The
MVC pattern enables us to perform black-box [3] wrapping interception and to
avoid costly clear-box interception models. The only natural assumption is that
any of the intercepted applications must be of an MVC web type.

To simplify application integration, we also provide a Domain Specific Lan-
guage (DSL [4]) that transparently performs Workflow Weaving. This weaving
defines the mechanisms to intercept applications and to inject BPM logic into
them. Thus, IT technicians do not need to learn AOP since the simple DSL
is responsible for enabling the required interceptors in MVC applications. The
major contributions of our approach are:

— Transparent introspection and interception of web applications, which ben-
efit from the decoupled nature of the most extended pattern for developing
modern web applications (MVC).

— A natural and expressive DSL that performs Workflow Weaving by injecting
AOP interceptors into web applications. This approach considerably simpli-
fies the integration of business processes into existing applications.

— The design and implementation of a distributed and implicit BPM platform,
which enables distributed process weaving and management.

The rest of the article is structured as follows. Section 2 shortly introduces the
state-of-the-art in BPM integration and implicit techniques fields. In Section 3 we
give an overview of our Workflow Weaving technique proposal and its features.
In Section 4 we introduce our platform design and implementation. Related work
is presented in Section 5, and in Section 6 we draw some conclusions.

2 Background

In this section, we explore relevant background in this area. Firstly, we discuss
different topics in the scenarios of BPM integration, including important issues
like explicit solutions and support for legacy applications. Secondly, we explore
existent techniques to provide transparency and integration concerns.

2.1 BPM Integration

Building systems from the ground up is no longer an acceptable business practice
and it is certainly not cost effective. In this setting, Business Process Manage-
ment (BPM) [5,6] is seen as a mechanism for integrating systems and a way of
developing new applications.

Actual BPM solutions are well-known and explicit approaches to implement
workflows on top of software applications applicable to a certain business. That
approach traditionally supports the separation of the business process from the
core application, but presents important drawbacks. Some of these disadvantages

170 R. Mondéjar et al.

include the accommodation of transversal business processes into applications,
the combination of different design and execution environments, and the fact
of dealing with legacy applications. For these reasons, BPM is in many cases
perceived as being expensive and really complex to deploy.

Unanticipated business processes that need to be modelled and incorporated
into any operating applications are a common requirement [7,8,9] to accom-
modate any change in policies, regulations, etc. In addition, business processes
should also be easily reused among a variety of applications between the same or-
ganization. Such requirements are usually deemed to be painful because existing
solutions use explicit techniques.

Since business processes are designed by business analysts, these need to be
defined and understood by stakeholders, and they are not typically adept in
application development [10]. In this line, the business process must be defined
using a high-level domain language, thus hiding technical concerns. As a conse-
quence, business processes are implemented combining standard software engi-
neering approaches, such as object-oriented programming languages (e.g. Java),
description languages (e.g. XML), and high-level domain languages (e.g. BPMN).

Finally, another important issue is how to deal with existing legacy appli-
cations. Since understanding existing legacy code through reengineering is a
challenging task that may consume a lot of resources. Some recent works [11]
propose to rewrite them using BPM. Unfortunately, building systems from the
ground up can also represent an enormous cost. As an alternative [12] presents
a reengineering tool to identify business rules contained in legacy source code.
But as authors explain, reengineering using BPM is not easy to apply, because
there are no tools that help developers understand the legacy system behaviour.

2.2 Implicit Techniques

Different approaches are taken on implicit middleware [13], like generic wrapping
techniques which are normally more intrusive, as well as ad-hoc interception
solutions [14] provided by a specific platform in an explicit way.

However, in order to solve transparency or genericity limitations, we can use
powerful interception solutions like AOP, which is an established paradigm. In-
deed, it enables describing and separating crosscutting system concerns in a
modular and highly reusable manner. AOP supports switching on and off new
behaviours at a specific point of program execution, while maintaining the sys-
tem well modularized.

AOP applies to support flexibility and adaptability of applications/services by
allowing to switch on and off orthogonal functions, allowing less interdependence
and more transparency. The interception is performed in a join point (a point in
the execution flow), and defined inside a pointcut (a set of join points). Whenever
the application execution reaches one pointcut, an advice (namely a callback)
associated with it is executed. The aspect is a module encapsulating pointcuts
and advices. It specifies the new functionality to be included and the place in
the execution of the original code where this functionality is to be inserted.

Implicit BPM: A Platform for Transparent Workflow Weaving 171

In this setting, a weaver is the AOP mechanism that combines code encapsu-
lated in aspects with the original code. There are different weaving mechanisms
that can be classified as static or dynamic. Dynamic weaving enables the inter-
changeability or deactivation of aspects during program execution, while static
weaving disallows such capability, i.e. once defined, aspects cannot be deacti-
vated or exchanged.

Finally, we can distinguish between clear-box and black-box approaches [3] to
AOP. Clear-box approaches to AOP examine the program internals and source
code, producing a combination of program and aspects. Black-box approaches
shroud components with aspect wrappers in strategic points avoiding a detailed
knowledge of the code internals. Obviously, clear-box or white-box approaches
to interception imply more cost and they are more difficult to apply in real
settings. Black-box or wrapper-based techniques [15] can considerably simplify
the distributed interception [16] of existing systems.

3 Workflow Weaving

Commonly, software applications are developed to automate and to make efficient
business processes, which are previously modelled by analysts. Their requirements
are functional and represent activities that the organization is currently trying to
achieve. However, once applications are finally released, functional requirements
inevitably and naturally change in a major or minor degree, evolving to their
clients desires and thus improving their functionalities.

In this section, we introduce a novel technique named Workflow Weaving, that
enables integration of business processes, represented by BPMN models, like true
crosscutting concerns into corporate web applications. Such technique allows in-
tegrating business processes with heterogeneous web applications transparently.
In this setting, transparent means that our solution must avoid access, modifi-
cation and detailed knowledge of the source code of the existing applications.
The major requirements of our so-called transparent integration are:

— A generic code interception of modern web applications using a black-box
solution (Section 3.2). In addition, it must provide introspection capabilities
that offer information about models, controllers, and views in the existing
web applications to be integrated.

— An easy management and deployment of interceptor code. This requires code
injection using a common interface (Section 3.3), where IT technicians are
unaware of the application code.

— A high-level domain language and interpreter (Section 3.4) simplifying the
integration of business processes and web applications. This avoids knowl-
edge of the underlying interception framework (AOP).

The rest of the section explains how the Workflow Weaving technique deals
with each of these requirements itemized above.

172 R. Mondéjar et al.

3.1 TUse Case

Clear examples of real application requirements, are authentication portals or
payment gateways, which use web redirections to change the navigation rules
and other behaviours of the system.

In Figure 1 we present a use case based on two applications within the same
organization: an e-commerce Pet Store application, and a generic Accounting
application. The Pet Store is a classic sample application from the Java EE Plat-
form, used to show its features. We have also implemented a generic Accounting
application that manages the books, and the customers of an enterprise.

Moreover, a business analyst has designed and modelled a Purchase Workflow
in this scenario, limiting itself to a standard BPMN 2.0 design tool. Note that
since this is a simple example, the represented tasks are user tasks, although
they can be of another type, because our plaftorm provides a full support of
BPMN 2.0 activities.

Both applications are implemented on a MVC framework, and their compo-
nents are: models, consisting of persisted domain objects, controllers, formed
by a set of action to command interactions, and view pages, which communicate
directly with the end-users. For their graphical representation, we use the UML
notation [17] that illustrates interactions among the MVC components of a web
application. In addition, the UML notation has the following basic rules: view
pages can only interact with controllers, model objects can only interact with
controllers, and controllers can interact with any component.

:@ Pet Store (MVC Application, UML)

S

action
. controller

N interact;
. with

Order I Order I Success

trigger AN I I = | :
_______ Y |__ find _ Y Il || perform __
= A (\\A/ render ()l\\ “eols in_-((\cji I bl (E§ - Q
i r====B) N I &)
|| I =~ Payment? [:
H i .
Save [Handle Register :
Purchase Purchase verified Customer .
L flow
init completed . ———

regular

cancelled

:@ Purchase Workflow (Business Process Model, BPMN 2.0) customer?

Fig. 1. Workflow Weaving Use Case

Implicit BPM: A Platform for Transparent Workflow Weaving 173

Lastly, to interrelate the different diagrams, we use dashed arrows to indicate
the existent Workflow Weaving among the business process and the application.
Note that each arrow has a tag describing the associated action, and there are
three different arrow shapes depending on the interception type: before, instead
of, and after.

In Figure 1 we have highlighted the most important spots where Workflow
Weaving occurs:

(A) in the PetStore application, instead of the Process action from the Order
controller, the init event of the Purchase Workflow is triggered.

(B) After the Save Purchase task is completed, the execution returns to the
application to render the Success Page view.

Later on, the Purchase Workflow continues its natural execution, until we
arrive to the Book Balance task. This means that some other participant has
claimed and completed the Handle Purchase task.

(C) Once the payment is verified, the execution flow moves to the Accounting
application. Particularly, before the Book Balance task is started, the process
looks up the customer model by its National Identification Number (NIN) and
sets the result into the exists boolean attribute of this task.

(D) After the Book Balance task is completed, the weaver performs the Edit
action from the Book controller.

(E) Lastly, after the Register Customer task, the weaver performs the Create
action from the Customer controller.

As seen on the example, the Workflow Weaving technique defines the whole
behaviour of the system when the process is running. In the next section, we
present how our technique can crosscut MVC applications transparently, pro-
viding a true black-box solution.

3.2 MVC Pattern

Web development has changed significantly over the past few years. It has not
been long since deploying a web project simply involved uploading static HTML,
CSS and JavaScript files to a web server. Nowadays, web application develop-
ment using web frameworks has become the de facto work environment. Fur-
thermore, current frameworks (e.g. Grails [18]) follow common fundamentals
and best practise principles like reutilization (i.e. DRY - Don’t Repeat Yourself)
or productivity (e.g., conventions over configurations, and scaffolding).

Furthermore, the most important of the common features on modern web
frameworks is the whole adoption of the MVC pattern. Although MVC was
originally developed for desktop computing, it has been widely adopted as an
architecture for web applications in all major programming languages. As a
result, new MVC frameworks have appeared that provide structure and guidance
when developing these applications.

In this work, we mainly focus on MVC based applications, which are mainly
those based on modern web frameworks. This restriction allows us to provide
a real black-box solution. Thus, even though the entirety of legacy applications

174 R. Mondéjar et al.

Workflow Weaver [DSL]

n —
J F L | Fﬁ I ‘]c['
S Z |)
Reflection AOP
Capabilities State View < Facilities
Query [-------- > View
i 1 State Selection
Introspection : Changes XPI
! Notifications MVC
1

Metadata Interception

=

State Changes

Controller

E
L
Workflow Weaver [DSL]

Fig. 2. Black-Box Diagram for the MVC Pattern

may not be included, they can be refactored following some guidelines, like those
presented in other works [2].

In our case, we introduce a solution that follows a black-box model injecting
code in strategic points of the web application framework. Thanks to the MVC
standard pattern, which is used extensively in web frameworks, we are able to
intercept models, views and controllers in a transparent and decoupled way.
Thus, as we have shown in Figure 2, the MVC pattern enables the use of AOP
facilities to intercept code (in points A, B, and C), and to use reflection and
introspection techniques to obtain the necessary information (in points D, E,
and F).

Indeed, reflection is a well-known self-management technique for providing
mechanisms to inspect a system structure and behaviour. Furthermore, the MVC
pattern presents a clear facade, standard naming conventions, and inheritance
rules to easily perform automatic introspection of the application. In this case, we
benefit from this advantage to extract the declared model and attributes (A), the
enabled controllers and actions (B), and the deployed views and navigation rules
(C) among all of them. Additionally, the workflow weaver also injects new code
to add or remove calculated fields to domain classes (D), to change the current
behaviour of the controller actions (E), or inject code in compiled versions of the
page views (F).

Accordingly, our solution benefits from the MVC pattern to become a generic
solution that fulfils the black-box requirement. Furthermore, the limitation of
Workflow Weaving to MVC based web applications is not a big constraint, given
that MVC is the most common architecture pattern.

3.3 Crosscutting Interfaces

Crosscut Programming Interfaces (XPI) [19] are explicit, abstract interfaces that
provide a clear separation between the interceptor logic and the AOP language or

Implicit BPM: A Platform for Transparent Workflow Weaving 175

public abstract aspect MveXpi {
public pointcut inController(): within(x..xController);
public pointcut controllerAction(): inController() && execution(@Action public * *.x(..));
public pointcut inModel(): within(*.persistence.Entity);
public pointcut saveMethod(): inModel() && execution(public Object save(..));
//More CRUD Methods (...)
public pointcut inView(): within(*..gsp * gsp);

PPN

Fig. 3. XPI Example for a MVC Framework

implementation. It allows for their separate and parallel evolution and produces
a better correspondence between programs and designs.

In our scenario, each modern web framework uses different implementations
and mechanisms to instantiate domain classes, inject controllers, handle the data
layer, represent the views, among others. In fact, each of them presents differ-
ent approaches to implement the MVC pattern and its entities, using different
paradigms like object-oriented inheritance, XML configuration, or code annota-
tions.

The idea of the XPI is to create a contract between the platform and the
intercepted system. Therefore, the XPI establishes a binding with the MVC
Framework which states the pointcuts definition; and it also establishes another
binding with the interception platform, namely the advice method definitions.
As a result, if the platform uses different XPIs without modifying the advice
method definitions, each application is able to be implemented in any MVC
framework.

For instance, in Figure 3, we present a crosscutting interface for intercepting
each action method, and the persistence model CRUD methods. This example
intercepts a specific MVC framework (i.e., Grails [18]) where Controllers fol-
low a name convention (e.g., CartController) and Model domain classes (e.g.,
Cart) use inheritance from a persistence entity class. Therefore, with a simple
but effective variation in the pointcut definition, for instance, intercepting those
Controllers marked with a common annotation (e.g., @Controller), we obtain
an XPI suitable to intercept another MVC framework.

In addition to this introspection solution, we also need to use the previously
explained reflection capabilities to properly extract the system metadata. Thus,
we extend this API with the methods to obtain each instance living in the system:
models, controllers, among others. For this purpose, we implement interception
methods that store these object instances, at model construction and controller
injection time.

As a conclusion, we can state that although each MVC implementation re-
quires its own pointcuts, the XPI allows us to maintain the necessary separation
between our solution and the framework particularities. Note that this kind of
solution allows the platform to intercept at the same time different applications
implemented with different MVC frameworks. Therefore, our proposal benefits
from the XPI approach to be the abstracted solution that fulfils the second
requirement of this section.

176 R. Mondéjar et al.

1: dsl =name "{’ {weaver} '}’ ;

2: weaver = in application ’:’ {act ’,’ behaviour} ’;’ ;

3: application = name ;

4 act = when variable element [from controller];

5: when = Before | Instead of | After ;

6: element = action | view | event | task | attribute | flow ;

7: controller = name ;

8: behaviour = connector variable element [from controller] [by variable] [{another}] ;
9: connector = perform | find | save | render | trigger | start | sets in ;
10: another =and behaviour ;

11: npame= { all characters— "’ } ;

12: variable ="’ | name , "7’ ;

13: all characters = ? all visible characters 7 ;

Fig. 4. Reduced DSL Grammar

3.4 DSL

It is well known that AOP paradigm has not been adopted by developers and
organizations due to its inherent complexity [20]. On the other hand, a Domain
Specific Language (DSL) is a reduced language whose main aim is to represent
constructions for a given domain. To begin with, a simple and understandable
human readable language is required. Thereby, if we are able to provide an
adequate DSL, end IT technicians do not need to deal with the underlying AOP
facilities.

For our approach, we propose a DSL specification (Figure 4), which provides
the way to formalize an abstract descriptor for the Workflow Weaving tech-
nique. Basically, this DSL specifies the Workflow Weaving behaviours, and all
the interactions among each element in the system (i.e., applications and process
model).

The definition of each dsl starts with the name, which obviously has to be
unique in the system once it is deployed, and needs to be the same as the class
name (e.g., weaver.PurchaseProcess). We continue with the workflow-weaver list.
Each workflow weaver determines the target application, and its collection of
events, as well as their related behaviours.

In line 4 (Figure 4), the act construction is defined, thus establishing when
(past, present or future) and how (i.e., basically which is the involved element) it
is produced in the specified application. Finally, if it is an action, we can specify
from which controller it comes from. Moreover, in this DSL we specify each
behaviour bound to an act, and it is defined in a similar manner. The connector
introduces the action that we want to execute (e.g., render), and the element
that will receive it.

Indeed, connectors are the major hook points that bind business processes and
MVC web applications. In this line, we have defined a basic set of connectors
that allow IT technicians to start an event or trigger a task from a business
processes, access or modify (find or save) domain objects from the model,
render view pages, and perform action methods of a controller.

In Figure 5 we show an example of DSL based on the use case described in
Section 3.1. This DSL example defines a Workflow Weaving among the Purchase

Implicit BPM: A Platform for Transparent Workflow Weaving 177

PurchaseWorkflow {

in PetStore :
Instead of "process’ action from Order, trigger ”init” event;
After "Save Purchase’ task, render ”"success’ view;

in Accounting :
Before "Book Balance” task, find ”customer” by ”nin” and sets in ”exists” attribute;
After "Book Balance” task, perform "update’ action from Book;
After "Register Customer” task, perform ”create” action from Customer;

5

CRIPT R WD

Fig. 5. Purchase Workflow DSL Example

process and the PetStore and Accounting applications. As we can see, each work-
flow weaver is defined simply by following the dotted arrows and the model de-
signed by the business analyst.

Lastly, although this DSL grammar is flexible enough for basic model inter-
actions, in the future we will extend it for executing new actions or accordingly
capturing other events with platform implementation functionalities.

Indeed, this use case example demonstrates the usability and expressiveness of
our approach. We have shown that our proposal builds a DSL solution including
a high-level domain language, which considerably abstracts the use of AOP.
Therefore, the main benefit is that the IT department does not need experts in
the AOP field.

4 Implicit BPM Approach

In order to materialize the Workflow Weaving technique we have implemented
the Implicit BPM approach. We have designed it as a simple, decoupled, and
distributed platform. In this section, we introduce our Implicit BPM platform
architecture and its life-cycle.

4.1 Architecture

The Implicit BPM platform has already been implemented as a distributed archi-
tecture, which consists of two separate parts: the Front-End and the Back-End
systems. Both parts of the platform are connected via web standard mechanisms
for flexibility and extensibility reasons, as well as due to the suitability of the
web paradigm for exposing and consuming remote services.

We can see a diagram of our architecture proposal in Figure 6, where grey
coloured components are either newly implemented or extended for our approach
and are discussed as follows.

Front-End Side: is where organizational applications are deployed and where
they run on servers in a distributed way. In fact, this system provides the inter-
ception and reflection components in our MVC black-box solution (as we have
shown in Figure 2).

178 R. Mondéjar et al.

Front-End
4 \/

Instance

Back-End 1

1

1

Add-on @ DSL BPMN D) 1

Interpreter Parser 1

Application Reflection v v |
PP Capabilties JAL

\. 9 Platform Manager 1
v T J

\I/ 1

1

1

1

1

1

1

1

1

|
|
|
|
|
|
|
|
I g
1 '
MvC AOP
|
1] L Framework k Facilities - (Weaver Workflow \
1 8 ! Coordlnator Engine
| 1 5
1 Server Weaver ! :
1 L Proxies : Replicated i I\évcirkbfbw
1 Back-Ends epository atabase
1\ U\ 1 AN J
- L

Fig. 6. Implict BPM Platform Architecture

Reflection Capabilities: include all the introspection functionalities. Specif-
ically, this reflective approach retrieves meta-data from the MVC application,
for example, the relationship between each model, controller, and view.

Weaver Proxies: live in a container that provides inserting (i.e., deploy-
ment) and installing (i.e., activation) them into the distributed and registered
applications. In the deployment phase, the weaver proxy is sent to the Front-End
container in the same host where the targeted application is running. Whenever
the weaver proxy is needed, it has to be loaded from the container (i.e., serialized
class) into the application.

AOP Facilities: support and use interceptors intensively, and strictly follow
the XPI defined for this purpose. Algorithm 1 shows a workflow weaver example,
which is responsible to render a view from a task, after a specific action is
performed.

Algorithm 1. renderTaskView
Advice: afterAction /* Pointcut */
Input: resp /* Response */
Output: resp /* Response */

1: acts + proxy.getActs()

2: action < joinPoint.thisMethodName()

3: if action € act.getActions() then

4: act + proxy.getAct(action)

5. behaviours + prozy.get Behaviours(action)
6: for beh € behaviours do

7 if beh.connector = render then

8: attrs < backEnd.getTaskAttrs(act.task)
9: resp < proxy.render(attrs)

10: end if

11: end for

12: end if

13: return(resp)

Implicit BPM: A Platform for Transparent Workflow Weaving 179

For this purpose, this algorithm intercepts a specified action of a controller,
and changes the application behaviour just following the enabled DSL instruc-
tions. In addition, it is able to recover the application metadata from the local
proxy, and the model information (e.g. task attributes) from remote Back-End
instances. We can see an example of this algorithm injection in our use case
(Figure 1, Point B) and its DSL code (Figure 5, Line 4) where the Front-End
detects the act After ‘Save Purchase’ task, and consequently execute the be-
haviour render ’success’ view.

This way, each activated workflow weaver is converted to an AOP interceptor
and is loaded in the proper proxy instance. With the XPI, the dynamic and
decoupled techniques of the Weaver Proxy produce an important benefit we
already explained in the previous section: it supports runtime reconfiguration,
although the underlying weaver, from the AOP facilities, does not.

Back-End Side: supports the infrastructure of the system and provides de-
ployment, management, and execution capabilities.

BPMN Parser: transforms the uploaded BPMN 2.0 XML file into a Work-
flow Engine component. Previously, it verifies the correcteness of the model and
it saves the necessary data into the platform to allow future Workflow Weavers
to be integrated.

DSL Interpreter: is included in the Back-End to allow developers to write
accurate DSL codes. It takes advantage of the remote MVC instrospection to
facilitate the creation and edition of the Workflow Weaver. Using the commu-
nication system, it remotely retrieves all the necessary information from the
Front-End reflection capabilities.

Platform Manager: controls, coordinates and consolidates the BPMN mod-
els, DSL codes, and registered applications. As a first layer of functionality for
the Back-End, administrators are able to deploy models and classes, and man-
age the registered applications. Finally, it also provides reporting features for
the business analysts.

Weaver Coordinator: is responsible for handling the state of each dis-
tributed workflow weaver in the platform. In addition, it periodically receives
information about the deployed and activated weavers to perform monitoring
tasks into the platform.

Weaver Repository: is capable of storing wokflow-weavers remotely. These
weavers need to scatter the DSL parts and link them to each business process,
which was previously deployed into the Workflow Engine.

Replicated Back-Ends: extend scalability features on this platform side. Ap-
plication instances are duplicated, since they are mirror images of each other,
and running on multiple servers of the organization.

Communication Bus: uses the standard HTTP protocol to expose all the
services between the Front-End and the Back-End systems, mainly via REST
technology.

180 R. Mondéjar et al.

4.2 Platform Life Cycle

Figure 6 shows the platform life cycle. First of all, enabling the Front-End
Add-on an any application automatically registers it (1) into the Back-End
(A) instance. Once an application is redeployed, the same process is executed
in order to detect possible updates, for instance, a simple modification in the
application deployed URL. Using remote reflection capabilities, the platform is
able to retrieve all the needed information, as the application name, the operat-
ing URL, the main domain class (i.e., process instance binding) and the MVC
structure and navigation rules.

Later on, in order to perform a new deployment, an administrator user needs: a
DSL code class (2), and the related BPMN model (3) exported from a workflow
designer. The Platform Manager (4) checks the consistency and coherency be-
tween the deployed files, and determines if it can be formally introduced into
the system. If it is successfully installed, the generated classes go to the underly-
ing systems (5-6), saving them in their supported Database and Repository,
respectively.

The Workflow Engine (5) is wrapped by the Back-End system and it is
used like a set of services which are exposed in a distributed fashion. There-
fore, the engine is completely decoupled from the platform, and it could be eas-
ily switched by another BPM compliance implementation (e.g., Activiti[21] or
Camunda[22]). In this scenario, tasks are executed within targeted applications,
even the service tasks, that have to reference and use code from its corresponding
application. Other types of activities, like manual tasks, do not have any special
requirements.

Next, the Weaver Coordinator (6) controls all remote instances. Following
the example in Figure 6, the Back-End (B) instance directly (7) deploys, and
later injects the specified weaver proxies using the remote AOP Facilities (8).

In the end, these Weaver Proxies live in each application and they fol-
lows the instructions from the deployed DSL. To perform these rules, Weaver
Proxies use the necessary AOP mechanisms implemented into the Front-End
Add-on (e.g., Algorithm 1), as a black-box solution.

Finally, since the black-box mechanisms are linked to the XPI contract, they
can use Reflection Capabilities (9) to return gathered feedback information
(1) to any Back-End instance. This information is sent to the Weaver Co-
ordinator (6) for monitoring purposes, as well as for reporting tasks to the
Platform Manager (4).

5 Related Work

Previous works in literature [7,8,9] used AOP interception techniques to inte-
grate applications with BPM platforms or external rule engines. For example,
[7] proposed hybrid aspects for integrating object-oriented programming appli-
cations and rule-based reasoning. However, this approach relies on the in-depth
knowledge of the targeted application to deploy the appropriate interceptors and
pointcuts. The adoption of DSLs to simplify the implementation of interceptors

Implicit BPM: A Platform for Transparent Workflow Weaving 181

have been also proposed in the past [9]. The main disadvantage of these DSLs
is that to successfully apply them: they need to know the business classes, re-
lationships among them, the semantics of their methods, and the interactions
among instances.

Another related work is [23], where authors propose an AOP approach to
separate out the base workflow from addition workflows, which can be weaved
into the base when additional features are selected. Again, these works require
detailed knowledge of the application that must be intercepted.

Interception approaches for standards such as BPEL have also been proposed
before. AO4BPEL [24] and BPEL’n’aspects [25], are specific aspect-oriented lan-
guage extensions. Each implementation is based on a modified BPEL engine,
which checks at all potential join points, if an aspect has specified it in its point-
cut. This allows easy and dynamic weaving of BPEL aspects with the drawback
of less performance. As we plan to implement generic AOP mechanisms, we will
not change the workflow engine but perform weaving on model level prior to
workflow execution.

The major difference between all aforementioned previous works is that they
follow a clear-box AOP interception model that requires in-depth knowledge of
the application that must be intercepted. This clear-box model clearly compli-
cates the adoption of these approaches and reduces their potential uses. In our
case, we follow a black-box approach that intercepts code in strategic points us-
ing AOP facilities and following a common XPI for MVC frameworks. Thanks to
the MVC standard pattern used extensively in web frameworks, we are able to
interrogate and manipulate models, views and controllers transparently to the
internal code of each application.

As stated before, reengineering legacy applications using BPM [12] is not
easy to apply, because there are no tools that help the developers understand
the legacy system behaviour. The introspection and wrapping capabilities on
top of the MVC pattern enable us to perform black-box interception of any web
application using this pattern. This considerably simplifies the integration of
Web applications with BPM platforms using our DSL. The users of our DSL
do not need to study the code of the existing application, and can thus weave
business processes in legacy applications.

We propose the first approach of a distributed platform that interconnects
different MVC based applications, and which allows business analysts to observe,
proceduralize, and model each process in a holistic way.

6 Conclusions

We outline the importance of integrating business processes into existing ap-
plications. Nevertheless, rewriting legacy applications or reengineering them for
BPM integration involves important development costs and in-depth knowledge
of the targeted applications.

In this paper we present a novel solution (Implicit BPM) for integrating busi-
ness processes into existing core applications as if they were a whole system.

182 R. Mondéjar et al.

We introduce a new concept, namely Workflow Weaving, based on non-intrusive
techniques, which achieves this kind of integration transparently.

The novelty of our approach is to use black-box AOP techniques that bene-
fit from the MVC web pattern to weave processes in a more transparent way.
Previous approaches in literature used clear-box models, which require detailed
knowledge of the legacy application. In our previous works [16,26] based on the
same underlying distributed AOP principles, we have accurately evaluated that
this kind of approach does not impose an additional overhead.

We also provide a natural and easy to use DSL that considerably simpli-
fies the workflow weaving process, while at the same time hiding the under-
lying AOP complexity. Our prototype implementation is freely available at
http://implicit-bpm.sf.net, under a LGPL license. This prototype makes
use of the following well-known and widespread technologies: Groovy, Activ-
iti, AspectJ, and Grails. This implementation includes the Front-End Add-on,
which includes the MVC weaver, the Back-End system, which contains the DSL
interpreter, and the Platform Manager, as well as the mentioned use case appli-
cations.

Cloud computing will enable organizations to bypass expensive BPM En-
terprise products and start using open BPM platform solutions into their own
private clouds. For these, we have designed and implemented our approach to
be perfectly suitable for easy deployment and operation into a Cloud. In a close
future, we are going to combine our platform with a private PaaS Cloud, like
CloudSNAP [26].

Acknowledgments. We thank the BPM chairs and the three anonymous re-
viewers for their constructive comments, which helped us to improve this work.
In addition, we also want to thank to Manuel Bertran for his many helpful review
and suggestions.

This work has been partially funded by the EU in the context of the project
CloudSpaces: Open Service Platform for the Next Generation of Personal Clouds
(FP7- 317555).

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

2. Ping, Y., Kontogiannis, K., Lau, T.C.: Transforming legacy web applications to
the mvc architecture. In: STEP, Washington, USA, pp. 133-142 (2003)

3. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction.
Communications of the ACM 44, 29-32 (2001)

4. Dinkelaker, T., Eichberg, M., Mezini, M.: An Architecture for Composing Embed-
ded Domain-specific Languages. In: AOSD, pp. 49-60 (2010)

5. Jablonski, S.: A Software Architecture for Workflow Management Systems. In:
DESA, pp. 739-744. IEEE Computer Society (1998)

http://implicit-bpm.sf.net

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Implicit BPM: A Platform for Transparent Workflow Weaving 183

Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance
of cross-organizational business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 146-154. Springer, Heidelberg (2013)

D’Hondt, M., Jonckers, V.: Hybrid Aspects for Weaving Object-oriented Function-
ality and Rule-based knowledge. In: AOSD, pp. 132-140 (2004)

Cibran, M., D’hondt, M.: High-Level Specification of Business Rules and Their
Crosscutting Connections. In: AOSD (2006)

Hnatkowska, B., Kasprzyk, K.: Integration of application business logic and busi-
ness rules with DSL and AOP. In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.)
CEE-SET 2009. LNCS, vol. 7054, pp. 30-39. Springer, Heidelberg (2012)

Geiger, M., Wirtz, G.: Detecting Interoperability and Correctness Issues in BPMN
2.0 Process Models. ZEUS, Rostock, Germany (2013)

do Nascimento, G.S., Tochpe, C., Thom, L.H., Reichert, M.: A Method for Rewrit-
ing Legacy Systems using Business Process Management Technology. In: ICEIS
(3), pp- 57-62 (2009))

do Nascimento, G.S., Iochpe, C., Thom, L., Kalsing, A.C., Moreira, A.: Identifying
Business Rules to Legacy Systems Reengineering Based on BPM and SOA. In:
ICCSA, pp. 67-82 (2011)

Patel, S.R., Gerald, B., Micah, S.: Mastering Enterprise JavaBeans 3.0. John Wiley
& Sons, Inc., New York (2006)

Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2. John Wiley
& Sons (2000)

Mondéjar, R., Garcia-Lépez, P., Fernandez-Casado, E., Pairot, C.: TaKo: Provid-
ing transparent collaboration on single-user applications. Computer Languages,
Systems & Structures 38, 108-121 (2012)

Mondejar, R., Garcia-Lopez, P., Pairot, C., Pamies-Juarez, L.: Damon: a Dis-
tributed AOP Middleware for Large-Scale Scenarios. Information and Software
Technology 54, 317-330 (2012)

Rosenberg, D., Scott, K., Matter, F.: Use Case Driven Object Modeling with UML:
A Practical Approach (1999)

Rocher, G.K., Brown, J., Laforge, G.: The Definitive Guide to Grails. Springer
2009

(Grrisw)old, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N.: Modular Software
Design with Crosscutting Interfaces. IEEE Software 23, 51-60 (2006)

Hohenstein, U.D.C., Jager, M.C.: Using aspect-orientation in industrial projects:
Appreciated or damned? In: AOSD, pp. 213-222 (2009)

Rademakers, T.: Activiti in Action: Executable business processes in BPMN 2.0.
Manning Publications Co. (2012)

Freund, J., Riicker, B.: Real-Life BPMN: Using BPMN 2.0 to Analyze, Improve,
and Automate Processes in Your Company (2012)

Elsner, C.: Towards separation of concerns in model transformation workflows. In:
EA, pp. 81-88 (2008)

Charfi, A., Mezini, M.: Aodbpel: An aspect-oriented extension to BPEL. World
Wide Web 10, 309-344 (2007)

Sonntag, M., Karastoyanova, D.: Compensation of adapted service orchestration
logic in bPEL’n’Aspects. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 413-428. Springer, Heidelberg (2011)

Mondéjar, R., Garcia-Lépez, P., Pairot, C., Pamies-Juarez, L.: CloudSNAP: A
transparent infrastructure for decentralized web deployment using distributed in-
terception. Future Generation Computer Systems 29, 370-380 (2013)

	Implicit BPM: A Business Process Platform
for Transparent Workflow Weaving

	1 Introduction
	2 Background
	2.1 BPM Integration
	2.2 Implicit Techniques

	3 Workflow Weaving
	3.1 Use Case
	models,
	controllers,
	view
	before, instead
	of,
	after.
	instead of
	After
	before
	After
	after
	3.2 MVC Pattern
	3.3 Crosscutting Interfaces
	3.4 DSL
	start
	trigger
	find or save)
	render
	perform

	4 Implicit BPM Approach
	4.1 Architecture
	4.2 Platform Life Cycle

	5 Related Work
	6 Conclusions
	References

