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Peer-to-peer (P2P) storage systems aggregate spare storage resources from end users to
build a large collaborative online storage solution. In these systems, however, the high lev-
els of user churn—peers failing or leaving temporarily or permanently—affect the quality of
the storage service and might put data reliability on risk. Indeed, one of the main challenge
of P2P storage systems has traditionally been how to guarantee that stored data can always
be retrieved within some time frame. To meet this challenge, existing systems store objects
with high amounts of data redundancy, rendering data availability values close to 100%,
which in turn ensure optimal retrieval times (only constrained by network limits). Unfor-
tunately, this redundancy reduces the overall net capacity of the system and increases data
maintenance costs. To alleviate these problems data redundancy can be reduced at the
expense of lengthening retrieval times. The problem is that both the rewards and disadvan-
tages of doing so are not well understood. In this paper we present a novel analytical
framework that allows us to model retrieval times in P2P storage systems and describe
the interplay between data redundancy and retrieval times for different churn patterns.
Using availability traces from real P2P applications, we show that our framework provides
accurate estimation of retrieval times in realistic environments.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Cloud storage solutions like Dropbox or Google Drive
are a family of increasingly popular online services that al-
low users to store their personal data off-site, achieving
better reliability than existing local storage solutions,
while offering additional services such as the possibility
to synchronize data across multiple devices, or to collabo-
ratively share data between users. However, despite the

* Corresponding author.

E-mail addresses: Ipjuarez@ntu.edu.sg (L. Pamies-Juarez), marc.
sanchez@urv.cat (M. Sanchez-Artigas), pedro.garcia@urv.cat (P. Garcia-
Lépez), ruben.mondejar@urv.cat (R. Mondéjar), rahma.chaabouni@urv.cat
(R. Chaabouni).

! This work was done while the author was a PhD candidate in
Universitat Rovira i Virgili, Spain.

1389-1286/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bjp.2013.12.005

numerous advantages of cloud storage services, there are
still several impediments for a massive and transversal uti-
lization of such services. For example, companies and gov-
ernments see security and privacy concerns as their major
barriers. The main concern of end users is, however, the
cost of storing an ever-growing amount of personal data.

Peer-to-peer (P2P) storage systems, originally proposed
one decade ago to aggregate users’ spare storage resources
into large distributed storage systems [1,9,28], have now
the potential to address the cost and privacy concerns of
Cloud solutions. For instance, P2P-like infrastructures, very
often coupled with encryption, have already been used to
address privacy concerns over Online Social Networks
[3,7] and Cloud storage [12,13], amongst other works.

In P2P storage systems, users contribute their local
resources to obtain free online storage capacity in return


http://crossmark.crossref.org/dialog/?doi=10.1016/j.bjp.2013.12.005&domain=pdf
http://dx.doi.org/10.1016/j.bjp.2013.12.005
mailto:lpjuarez@ntu.edu.sg
mailto:marc.sanchez@urv.cat
mailto:marc.sanchez@urv.cat
mailto:pedro.garcia@urv.cat
mailto:ruben.mondejar@urv.cat
mailto:rahma.chaabouni@urv.cat
http://dx.doi.org/10.1016/j.bjp.2013.12.005
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

2 L. Pamies-Juarez et al./Computer Networks 59 (2014) 1-16

[6,24]. In these systems, data can be spread to several
nodes, with no node having access to the whole original
data. However, storage resources in P2P systems are less
reliable and highly prone to temporary disconnections,
which require storing data with large amounts of redun-
dancy to mask temporary failures. The simplest way to
store data with redundancy is to store multiple copies (or
replicas) of data in different nodes. However, more elabo-
rated redundancy schemes based on storage codes can im-
prove the reliability achieved by simple replication,
minimizing both the storage and network costs associated
with data redundancy [27,38,39].

Irrespective of how redundancy is introduced into the
system, the key question in the design of any P2P storage
system is: How much redundancy needs to be introduced to
guarantee a certain storage quality and data reliability?
Typically, existing P2P storage systems take the simplest
approach; they determine the amount of redundancy re-
quired to maintain data availability close to 100% at all
times. Loosely speaking, they introduce enough redundant
data pieces to guarantee that enough pieces are always
present in the set of online nodes to reconstruct the origi-
nal data. As a side effect, high data availability in turn guar-
antees that data can be retrieved in optimal time, because
there are always enough online nodes from which down-
load data that users do not need to wait for node re-con-
nections.” Here is where a thorough understanding of the
interplay between data redundancy and retrieval times
makes sense, a relationship that has been not well under-
stood in the literature and our paper starts shedding some
light on it. A good understanding of this relationship is cru-
cial for future research as discussed below.

1.1. Motivation

It is well-known that guaranteeing high data availabil-
ity requires high storage costs in terms of storage over-
heads and maintenance communication [2]. The latter
occurs because data redundancy can be lost due to perma-
nent failures, and the mechanisms required to repair it
might require large amount of network traffic. This is par-
ticularly visible in the case of using storage codes. While the
replacement of replicated data is trivially a copy, in storage
codes, every bit of new data is the result of a coding oper-
ation over several other bits of data, usually stored across
several nodes. This introduces additional communication
costs needed to retrieve the bits to be coded, which trans-
lates into network traffic.

Due to these high costs, minimizing the amount of
redundancy used is crucial to efficiently build both hybrid
and pure P2P storage systems. According to [2], reducing
the amount of redundancy can bring the following bene-
fits: (1) increasing the overall storage capacity of the sys-
tem and/or (2) reducing the amount of communication
required for data maintenance. However, less redundancy
means less data availability, which in turn yields longer
object retrieval times, the subject of study of this work

2 The retrieval time is only constrained by the network bandwidth
conditions.

because of the associated negative consequences of an
underestimation of the required redundancy. Concretely,
longer retrieval times can affect storage systems in two dif-
ferent ways:

1. It can cause users to suffer poor retrieval performance.
2. Data could be destroyed faster than maintenance pro-
cesses are able to repair it, which could be catastrophic.

So, when reducing redundancy, storage systems must
be very cautious to not compromise these two aspects. It
is crucial then, to predict the effects that redundancy have
on object retrieval times. Unfortunately, to the best of our
knowledge, there is no study that explicitly measures the
interplay between the amount of redundant data and re-
trieval times in P2P storage systems, which constitutes
the original contribution of this work. Unlike the relation-
ship between redundancy and data availability, which is
well understood by the existing literature [2,20,27], this
relationship is more tricky.

To whet the reader’s appetite, Fig. 1 plots a general
sketch of the existing relationship between data redun-
dancy, data availability, and retrieval times. Clearly, there
exists a cross-over point beyond which decreasing redun-
dancy can be catastrophic. However, this figure also pro-
vides an interesting insight that has never been discussed
before and can be of great help to system architects: the
fact that by slightly relaxing retrieval times, one might reduce
the amount of redundancy significantly without compromis-
ing data availability too much.

To shed some light on understanding the problems of
measuring the effects of data redundancy in retrieval times
we depict a small example in Fig. 2. In this example, a sin-
gle data object is redundantly stored using a storage code
that spreads it into several storage nodes (eight nodes in
the left-hand side example and six nodes in the right-hand
side example). Users can retrieve the stored object by con-
tacting and downloading the data stored in any four nodes,
and each on/off process describes the availability periods
of each node. In the first scenario, we have a storage sys-
tem where data is stored with high data availability: there
are always four nodes online, and hence, the stored data
can always be retrieved in optimal time. However, in the
second scenario, data is stored with low data availability,

data availability

\/

Redundancy

Fig. 1. Simple scheme showing the relationship between data redun-
dancy, data availability, and retrieval times.
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Fig. 2. Examples of two object retrievals in an encoded P2P storage system. In the first case data is spread across eight nodes, achieving a high data
availability. In the second case data is spread across six storage nodes, achieving a lower data availability than in the first case. Each on/off process

represents the online/offline sessions of a storage node.

and sometimes, less than four nodes are found online at
the same time. In that case, the retrieval process needs to
wait for one node to re-connect before being able to down-
load the last block, which lengthens the overall retrieval
time.

Although this example simplifies most of the inherent
real complexities in retrieval processes, such as parallel
block downloads, or network inefficiencies, it clearly re-
flects the tricky relationship between data redundancy
(and thus data availability) and retrieval times.

1.2. Contributions

In this paper, we present a basic analytical framework
that allows to model retrieval times in P2P storage sys-
tems. Due to the complexity of the stochastic processes be-
hind retrieval processes, we make some assumptions to
simplify them and obtain an estimator of the retrieval time
distribution. As a second contribution, we evaluate the
accuracy of our model using availability traces from real
P2P systems, showing that our model offers an accurate
estimator. For simplicity, but without loss of generality,
we only consider pure P2P storage systems, leaving the
practical implications of how to combine P2P storage sys-
tems with cloud or other hybrid systems for future re-
search works. As a final conclusion, we discuss how our
framework can help storage system designers provision
their systems with the optimal data redundancy required
to satisfy specific storage quality needs. Using our frame-
work, for example, designers can find the minimum data
redundancy that guarantees a targeted retrieval time per-
formance, or in backup systems, find the minimum data
redundancy that guarantees that data can be repaired fas-
ter than it is lost.

We believe that the reason why existing P2P storage
systems have not considered the relationship between
data redundancy, data availability and retrieval times is
because they discarded the possibility to target flexible
retrieval time guarantees. Instead, existing P2P storage
systems base their service quality on guaranteeing the
highest possible data availability, and hence, optimal re-
pair times. However, by reducing the amount of redundant
data, P2P storage systems can achieve trade-offs that allow
to reduce their costs while still offering a good storage ser-
vice to their users. For example, in backup applications
where data is occasionally read, users can tolerate long

reconstruction times as long as their data durability is
not compromised. Or other storage systems can offer more
storage capacity to those users accepting some loss in their
data retrieval performance. We hope that this paper will
give rise to further discussion on these critical aspect of
P2P storage systems.

The rest of this chapter is organized as follows. In Sec-
tion 2 we present the related work. Section 3 introduces
the P2P storage model that we will use along the paper.
Section 4 states our problem statement. Section 5 provides
the analytical framework to model retrieval times, as well
as our retrieval time estimator. In Section 6 we evaluate
our estimator, and in Section 8 we state our conclusions.

2. Related work

The understanding of the interplay between redun-
dancy and retrieval times is a topic that has not been ex-
plored much in the literature on P2P storage. The closest
work to our proposed framework was done by Toka et al.
in [34,35], where the authors presented a backup schedul-
ing algorithm to minimize the time required to backup
some amount of data in peer-assisted storage systems.
Although their scheduling algorithm might be used to opti-
mize download times, the authors did not investigate how
to analyze the intricate interplay between data redun-
dancy and retrieval times, as we do in this paper. In a more
recent work, Toka et al. [33] indirectly discusses a variant
of the problem discussed in this paper for P2P backup sys-
tems. This work can be seen as complementary to ours. The
differences come from the very nature of backup applica-
tions, which target data durability instead of data availabil-
ity, and involve the bulk transfer of large quantities of data.
In this sense, our focus is on understanding to what extent
smaller redundancy factors affect data availability and re-
trieval times for data objects of moderate size, an issue that
has not been addressed before in the literature.

Besides that, and significantly far from P2P storage,
there are some studies that examine retrieval times in Bit-
Torrent [11,19,25], which is a P2P file distribution system
rather than a storage system. The main similarity between
BitTorrent and a typical P2P storage system based on stor-
age codes is that files are broken into equally sized chunks
which are downloaded from multiple peers, who in turn
can be either online or disconnected as any conventional
P2P application. However, P2P storage systems, and
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particularly those based on storage codes, present some
singularities that require a different analytical treatment
which invalidate the results from BitTorrent studies. On
the one hand, BitTorrent studies investigate retrieval times
in the short term. This implies that peer disconnections are
seen as permanent failures. The direct consequence of this
is that these studies ignore the option that data can be
reintegrated when a peer re-joins the system. In P2P stor-
age systems, however, what is interesting is the long term
behavior of the system. For this reason, transient discon-
nections must be considered as well because when a dis-
connected peer re-joins the system, it could make
available one of the missing chunks or blocks required to
reconstruct the original file.

On the other hand, in BitTorrent multiples nodes can
have a full replica of the file, the nodes known as seeders
in the BitTorrent jargon, which substantially differs com-
pared to what occurs in P2P storage systems. Typically,
in these systems, storage codes are used to disperse data
among several nodes, with no node having a complete rep-
lica of the file. Due to the lack of seeders, retrieval pro-
cesses must mandatorily contact several nodes in order
to reconstruct the original file, which is not necessarily
true in BitTorrent.

Once explained the main drawbacks of attempting to
extrapolate the results of prior works in BitTorrent to pre-
dict retrieval times in storage systems, we are ready to
comment on the most important works in that area. Rama-
chandran and Sikdar [25] studied the times required to re-
trieve replicated objects in BitTorrent using queuing
theory. The result of their analysis was a framework able
to evaluate and predict transfer times along with data
query times. Non-surprisingly, and because their focus
was not on P2P storage, they did not consider the impact
of low data availabilities and the effect of storage codes
on redundancy. Gaeta et al. [11] proposed a stochastic fluid
model to analyze file download times. Their analysis was
focused on the impact of four different parameters: file
popularity, peer selection policies, available bandwidths
and concurrent downloads. Similarly, Liao et al. [19] ana-
lyzed the same four aspects in addition to file retrieval
times, but considering heterogeneity in bandwidth.

Regarding P2P storage, what has received considerable
research effort has been the study of the existing trade-
off between data availability and redundancy [2,20,27].
What kind of redundancy scheme to use has been exten-
sively discussed in the literature and many papers focused
on the comparison between replication and storage codes
[20,27,39]. Compared to replication, the authors of these
studies concluded that erasure codes are more space effi-
cient, but also require more maintenance traffic to recon-
struct a lost block of data [20,27]. Later on, although
more elaborated types of storage codes like Regenerating
Codes [8] have been increasingly appearing, exploring the
interplay between redundancy and retrieval times has re-
mained an open question.

Finally, we want to highlight that some preliminary re-
sults of this paper were presented in [23], where we pro-
vided an estimator for the average retrieval time. In this
paper, we refine our model and derive an estimator for
the whole retrieval time distribution, which is easier to

manage and allows us to study questions that cannot be
answered with an estimate of the average retrieval time
such as what is the risk of exceeding any given threshold
value on the retrieval time, among other issues.

3. P2P storage model

In this section we provide the node churn model and
the data redundancy model that we will use in the rest
of the paper.

3.1. Application scenario

As usual, we consider a traditional P2P storage system
where free storage of individual users is aggregated in or-
der to realize persistent and highly available data storage.
We assume that data owners specify a local folder with the
files to store remotely. For simplicity, we assume the exis-
tence of a service that is in charge of membership manage-
ment of the P2P system. While decentralized membership
management and system monitoring is very appealing, it is
routine practice (e.g., Wuala, CrashPlan, TotalRecall [17]
and subsequent works [5,21], ...) to rely on a centralized
service and a simple heartbeat mechanism to keep track
of the users subscribed to the application and their avail-
ability patterns.

During a storage operation, data owners query this ser-
vice to obtain remote peers that can be potentially used to
store their data. We say “potentially” because the chosen
remote peers may exhibit temporary and recurrent, peri-
ods of unavailability. Particularly, individual peers may
experience transient and permanent failures and even aban-
don the P2P application. For this reason, the data owner
periodically probes each peer storing part of its data for
availability. During a read or write operation, it is the data
owner himself who downloads and uploads the targeted
data by directly contacting a sufficient number of remote
peers. Consequently, data flows do not traverse any inter-
mediate hop, which minimizes retrieval times.

Transient failures are typically caused by provider er-
rors, power outages, or user disconnections. During tran-
sient failures, stored data is not lost, becoming only
temporarily unavailable, and being reintegrated back into
the system when the remote peer reconnects. Permanent
failures, however, are complete node failures after which
the stored data becomes unrecoverable. Even if a perma-
nent failed node can fix the problem and rejoin the system,
the stored data is never reintegrated back into the system.
Such an autonomous and whimsical behavior of individual
peers is what is known as “churn” in the literature.

Technically, during its lifetime in the system, we model
the behavior of each storage peer as an alternating process
between two states, namely online and offline states. From
the online state, a storage peer can move to the dead state,
which indicates a permanent failure or the abandon of the
P2P system. If a dead peer can manage to fix its problem
and rejoin the system, it will contain no data and will be
modeled as a new joining node. Fig. 3 shows the transitions
between states. Before absorption to the dead state, the
simplicity of this model allows us to describe the behavior



L. Pamies-Juarez et al./Computer Networks 59 (2014) 1-16 5

Y DR

Fig. 3. Transitions between different storage node states.

of the each storage peer i at time ¢ by the renewal process
X ={xi}
Xi— {1 node i is online at time ¢;

710 otherwise.

We also assume that peers behave independently of one
another and that processes X' and X’ for any i # j are inde-
pendent. This means that users do not synchronize their
arrival or departure and do not exhibit regularities such
as diurnal and weekly patterns. Since the centralized ser-
vice monitors the availability patterns of users, we assume
that it returns a set of peers exhibiting uncorrelated life-
time characteristics when asked by data owners. This can
be simply achieved by finding anti-correlated peers as
shown by Kermarrec et al. in [16].

Under this model, we assume that for each process X',
online durations or sojourn times in the online state S
have some joint distribution F'(x) and that its offline dura-
tions or sojourn times in the offline state Sé, have another
joint distribution G'(x). Each of these distributions corre-
sponds to the amount of time that node i spends at offline
and online states, respectively. From Smith’s theorem, we
can easily obtain that the asymptotic availability a; of each
user i, i.e., the probability that it is in the system at a ran-
dom instance ¢, is [40]:

E [sﬂ

a = lim Pr[X; = 1] EEEESI

(1)

where E{Sg] and E[Sﬁ] represent the mean offline and on-

line session durations, respectively. We assume that after
monitoring each node for a long period of time, we can ob-
tain a good estimate of the mean node availability, a;.

Finally, for each process X', we need to characterize the
residual offtime whose duration is described by random
variable ]B. Loosely speaking, ]f) represents, at any given
time t, the length of the remaining time that peer i will
be offline. Note that J| is very important since it will deter-
mine how long a data owner v will have to wait for i to
come back online after a storage operation is triggered by
v. In the equilibrium, i.e., the system has evolved for suffi-
ciently long before i joined, the residual offtime distribu-
tion of storage peer i is given by [40]:

prlly < ] = [ (1P <l @

Similarly, the residual ontime distribution is given by:

Pr[]] <t 51]/

To simplify even further our analysis, we will make use
of the result of Yao et al. [40] that proved that while each
peer i has specific offline and online session distributions,

—Pr s' < uDdu. 3)

both the online and offline session lengths of any randomly
chosen user in the system can be described by only two
general distributions. This allows to characterize the dy-
namic behavior of the users subscribed to the application
by only two random variables Sy and S;. Similarly, this will

allow us to replace the residuals of all peers { {,} and { ‘]}

with random variables J, and J;, respectively.

As we will see, this result reduces importantly the com-
plexity of our analysis while still considering heteroge-
neous online availabilities. In Section 6, we will assume
that Sy and S; are Weibull variates and we will show
how the aggregation of heterogeneous behaviors fits the
distribution of real availability traces.

3.2. Data redundancy

To guarantee a certain storage reliability, P2P storage
systems need to store data with some redundancy. It
means that before storing each data object, these objects
are split into blocks which are then redundantly encoded
and dispersed to different storage nodes. For example,
one simple solution for that is to store multiple replicas
of the same data to different storage nodes. However, stor-
age coding techniques can present higher communication
and storage savings than simple replication [27].

Given a data object o of size m, a storage code allows to
encode and store o into a set of n storage nodes Ny, ...,N,,
assigning an amount « of information to each node, oo < m.
The data redundancy ratio (or the stretch factor) is the ra-
tio between the amount of storage required to store one
object and its original size, and it is measured as the ratio
no/m. Once the data has been successfully stored, the stor-
age code must provide the following two properties:

o Data reconstruction: The original data object can be
recovered by downloading a total amount of informa-
tion m from a subset of k storage nodes. It constrains
the amount of data stored per node to o > m/k. We will
refer to k as the reconstruction degree.

Data repairability: The amount of information o stored
in each node can be repaired by downloading an
amount B per node, from d different storage nodes,
where g < o. We will refer to d as the repair degree.

Fig. 4 depicts the basic operations of an object retrieval
and block repair. The labels at the edges indicate the
amount of data transmitted between nodes during each
of these operations.

It is important to note that the storage codes presented
here generalize the concept of data replication and that of
traditional erasure codes. Replication can be modeled as a
storage code where k =1 and o = . Similarly, traditional
erasure codes like Reed-Solomon [26] codes and its vari-
ants do not distinguish between data reconstructions and
data repairs, and hence are particular instances of storage
codes where k = d and oo = B. Repairing lost blocks in both
cases requires reconstructing the original data and recod-
ing the missing parts, which entails transmitting over the
network an amount of data equal to the size of the original
object, m. However, more elaborated instances of storage
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Fig. 4. Scheme for the repair and retrieve operations of Regenerating
Codes.

codes like Regenerating Codes [8] can significantly reduce
the amount of data transmitted during repairs. To do that
Regenerating Codes allow to reduce the size of g, for larger
values of d, d > k. In particular, Dimakis et al. [8] gave the
conditions that the set of parameters (n,k,d,o,y = dp)
must satisfy to construct a valid Regenerating Code. Basi-
cally, once the subset of parameters: (n,k,d) is fixed, the
relationship between the values of a and 7y presents a
trade-off curve: the larger «, the smaller 7y, and vice versa.
This means that it is impossible to simultaneously mini-
mize both, communication costs and storage costs. Other
recent storage codes [22] have also shown that it is possi-
ble to design storage codes with smaller repair degrees
d < k, at the expense of increasing the amount of data
stored per node o or reducing the number of k-subsets that
allow to reconstruct the original data.

4. Problem statement: retrieval times as a reliability
metric

Traditionally, P2P storage systems have measured the
reliability of their storage service in terms of data availabil-
ity and data durability, which can be defined as:

Definition 1 (Data Availability). Data availability is the
probability of finding online k out of the n redundant
blocks required to reconstruct a stored data object.

Definition 2 (Data Durability). Data durability is the prob-
ability of not losing a data object after being stored for
some time t.

In general, the main effort of existing P2P storage
systems is on maximizing data availability, guaranteeing
values close to one. The reason for achieving high data
availability is that it guarantees that objects can be re-
trieved without having to wait for node reconnections with
high probability. High data availability also ensures that
the redundancy lost can be repaired when nodes fail,
which in turn assures long data durability. However, nodes
in P2P storage systems usually have online sessions of a
few hours per day. Achieving high data availability in these

unstable environments might become technically impossi-
ble [20]. Or even when it is possible, it requires large
amounts of redundancy, which significantly increase the
costs of the storage system.

Due to the high cost of guaranteeing high data availabil-
ity, the question that arises is: Can we design P2P storage
systems with low redundancy ratios while guaranteeing a cer-
tain storage quality and data reliability?

Decreasing the amount of redundancy means reducing
data availability, which in turn implies that object retrieval
times will be necessarily longer. Longer retrieval times
might have two undesirable effects as discussed in the
introduction of this paper. On the one hand, it can cause
users to experience poor retrieval performance, i.e., suffer-
ing long delays to completely download the minimum
number of blocks required to reconstruct the stored data
objects. On the other hand, redundancy could be destroyed
faster than maintenance processes are able to repair it,
which could jeopardize data durability and be catastrophic.

To ensure that the reduction on the amount of redun-
dancy does not compromise the quality of the storage sys-
tem, it is critical to predict to what extent a reduction in
data redundancy turns into an increase of object retrieval
times. Equipped with accurate estimates, a system archi-
tect could reduce redundancy to the exact amount that as-
sures that:

1. Users can access the stored data within reasonable
times.

2. Repairs can finish fast enough to guarantee long data
durability.

In practice, the problem is that there is neither a good
understanding of the relationship between redundancy
and retrieval times nor an estimate to anticipate how a gi-
ven amount of redundancy determines retrieval times. This
issue is the target of this paper. However, before going any
further, it is central to define what we mean by “retrieval
time”, which we do in terms of the retrieval time distribu-
tion defined as follows:

Definition 3 (Retrieval Time Distribution). The retrieval
time distribution, T(¢, ¢, n), is the random variate describ-
ing the time required to download ¢ blocks of size ¢ bytes
out of a total n storage blocks.

By modeling the retrieval time distribution, we will be
able to simultaneously predict reconstruction times and
repair times, which are the times required to retrieve k
and d blocks, respectively. In particular, we will be able
to model the following two random variables:

e Reconstruction time distribution: Time that the
reconstruction process of a storage code needs to
retrieve the k blocks required to reconstruct the original
stored object. We can model the reconstruction time
distribution as T(k, o, nn).

o Repair time distribution: Time that the repair process
of a storage code needs to retrieve the d blocks required
to repair a stored block. We can model the repair time
distribution as T(d, 8, n).
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In what follows, we will approximate the retrieval time
distribution T(¢, ¢,n) to allow P2P storage systems to re-
duce redundancy while not compromising neither storage
quality nor data reliability.

4.1. Bandwidth model and optimal retrieval time

Before presenting the retrieval time estimator we want
to define the bandwidth model that we will consider in the
rest of this paper. We will use the notation w 1 and w | to
respectively denote the upload and download bandwidth
of each storage node. For the sake of simplicity, we will as-
sume that all nodes have the same bandwidth capacities.
By making this assumption, peer selection becomes arbi-
trary, and hence the order in which peers are contacted
during an storage operation is irrelevant. When nodes are
heterogeneous, scheduling choices are significant, since
an inefficient scheduling policy can lengthen retrieval
times. By only taking into account download and upload
speeds, the spectrum of choices is so wide to be described
mathematically. To wit, one could immediately ask what is
better, to prioritize the slowest peers, based on the idea
that a node with slower download speed will complete
receiving its corresponding part of the data in longer time,
or to prefer the fastest peers, at the risk that the slowest
nodes cannot complete their data transfers when needed.
In this sense, an algorithmic approach would be more
appropriate [35], for we leave this question for future
research.

Also, we do consider nodes with asymmetric bandwidth
capacities, m 1< w |, and the possibility to allow retrieval
processes to download up to p data blocks in parallel. In
that case, the maximum number of parallel downloads
has been chosen to guarantee that all processes can down-
load at maximum speed without having to share the band-
width between them. To satisfy this condition the number
of parallel process should be constrained between:

w]
\fU_TJ =>p>0.

Additionally, since @ 1< w |, we assume that the retrie-
val time distribution T(¢, ¢, n) will be either constrained by
the upload bandwidth, w T, or by the online/offline behav-
ior of nodes. This means that we neglect the network con-
gestion effects or other network inefficiencies. Under these
assumptions, the minimum time required to download ¢
blocks, t(¢), and hence, the minimum achievable retrieval
time, is clearly given by:

o3[

Since 7(¢) represents the minimum time to download
the required ¢ blocks without interruptions, by definition,
it follows that the retrieval time distribution, T(¢, ¢,n),
must satisfy the following condition: Pr[T(¢, ¢,n)
<1(0)] =0, ie., no user can download faster than t(¢).
Now we are ready to comment on the stochastic model
used to approximate T(¢, @, n).

5. Modeling retrieval times

We first define in Section 5.1 the stochastic model
describing retrieval times in P2P storage systems. How-
ever, due to the complexity of solving this stochastic model
in its generic form, we propose in Section 5.2 a simplifica-
tion of the stochastic model based on assumptions of how
storage nodes behave in realistic P2P scenarios. This sim-
plification allows us to obtain in Section 5.3 an estimator
of the retrieval time distribution.

5.1. A stochastic retrieval process

To stochastically compute retrieval times, it is neces-
sary to account for the number of blocks downloaded by
the retrieval process. Let Z = {Z;},., denote the number
of downloaded blocks in time interval [0, t]. Then, it is easy
to see that stochastic process Z is a pure-birth process
whose first hitting time distribution to the absorbing state
(which corresponds to the download of the ¢-th block) is
the retrieval time distribution T(¢, ¢, n). That is,

T(¢, @, n) = inf{t > 0:Z = (|Zy = O}. (5)

Unfortunately, the computation of the first hitting time
distribution of process Z = {Z;},., depends on the evolu-
tion of two other stochastic processes, which makes it hard
to give a closed-form expression for (5) if no extra assump-
tions are made. Concretely, a general specification of pro-
cess Z ={Z:},., would require describing the evolution
of two other values:

e The number of online nodes out of the total n nodes
storing blocks at time t, namely X = {X},.,; and

e From the blocks available at time t, the number of
online blocks that have not yet been downloaded at
time t, namely Y = {Y.},.,, which corresponds to a
birth-death process with state space {n,n —1,...,0}.

The dependencies between these three stochastic pro-
cesses make the characterization of process Z = {Z},., ex-
tremely complex, since the value of Z, depends on the state
of process Y = {Y;},.,, which in turn depends on the state
of process X = {X:}.,, which can also become more com-
plex if the retrieval process can download different blocks
in parallel from different nodes, among other issues. Also,
the description of the future behavior of the retrieval pro-
cess (at least in a probabilistic sense) depends on the
knowledge of the past history of downloads, thereby mak-
ing inadequate a standard Markovian treatment of the
problem. The reason is that the transition from state i to
state i+ 1 in process Z, where i€ {0,1,...,¢—1} is the
number of downloaded blocks, depends on the fact that
from the set of available nodes at time ¢, there exits at least
one block that has not been previously downloaded (which
can be seen as a variant of the Coupon collector’s problem
where the coupons are the blocks to be downloaded but
with the added complexity that the availability of each
block varies over time).

Fig. 5 illustrates an example of the evolution of the
three stochastic processes X, Y and Z to show the existing
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dependencies between them. In the horizontal axis, we
plot the three different types of events that make the sys-
tem evolve: (8) a block is downloaded successfully, (¢) an
offline node connects, and (D) and online node disconnects.
Every time that a block is successfully downloaded (s), the
number of downloaded blocks increases while the number
of non-downloaded blocks decreases. Using this example,
some of the existing dependencies can be clearly identi-
fied. For instance, two consecutive node disconnections oc-
cur at times t =4 and t = 5, respectively. Obviously, both
disconnections decrease the number of online blocks, X;,
but have different implications on the value of Y, depend-
ing upon whether the block stored in each disconnecting
node has already been downloaded or not. Observe that
while the disconnection at t = 4 decreases the number of
non-downloaded blocks, the node disconnection at t =5
does not reduce the number of non-downloaded blocks be-
cause that block was previously downloaded by the retrie-
val process, so Y; is not decreased at t = 5. Finally, we can
see that in time period [6, 7) there are no missing blocks to
download because the two online blocks have already been
downloaded, so Y; = 0 while X; = 2. During these periods
the retrieval process is waiting for node re-connections,
and as we shall see in short, node re-connections are by
far the major contributors to the abrupt increase in retrieval
times.

Based on this insight, we will be able to obtain a practi-
cal yet accurate estimate of the retrieval time distribution,
T(é, ¢, n), getting rid of the tremendous complexity of a
general solution. In particular, we will obtain a closed-form
expression to approximate the distribution of T(Z, ®,n)
with good accuracy and based on reasonable assumptions.

5.2. Simplifying node churn

Several studies have analyzed the duration of online
and offline sessions in P2P file sharing systems

X,: online blocks

Y.: non-downloaded and online blocks

I
Z.: downloaded blocks

time;: 1 2 3 4 5 6 7 8 9
events: S C S D D S C C S

Fig. 5. Evolution of the three stochastic process used to model object
retrieval times: X, Y;, Z.

[29,31,15]. In these studies we can observe how nodes tend
to have long online sessions, usually of the order of some
hours. These studies give us the insight that even in these
highly unstable distributed infrastructures, some nodes
present long online sessions. Although these empirical
studies where not targeted to P2P storage applications,
we can expect that nodes in P2P storage systems have even
longer online sessions because they have incentives to re-
main connected for long periods of time [14,24].

Due to these considerations, it is reasonable to expect
that P2P storage systems exhibit data retrieval times short-
er than online node session durations: T(¢, @,n) < E[S1].
For example, assuming an average bandwidth of 20 KBps,
a user can retrieve a 60 MB object in approximately
50 min. However, typical session durations are of the order
of hours, and this gap can become even larger in better-
provisioned storage infrastructures. Consequently, by
considering the significant difference between session
durations and retrieval times, one can make the following
assumption:

Assumption 1 (Nodes change their state once). During a
retrieval process, nodes change their online state once. It
means that initially online nodes will tend to disconnect,
but once disconnected, they will not connect again.
Similarly, initially offline nodes will tend to connect, but
once connected, they will not disconnect again.

In Section 5.1, we defined the process X; as the number
of online blocks at time t. Assuming that the retrieval pro-
cess starts at t = 0, we can use Assumption 1 to classify the
number of online blocks at time t, X;, in two different
categories:

X=X+ X0,

On the one hand, X{" represents the online blocks stored in
nodes that were online when the retrieval process started.
On the other hand, X" represents the online blocks stored
in nodes that were offline when the retrieval process
started. To better understand this, let us assume a simple
scenario with 100 redundant blocks (n = 100) and with
30 online blocks when the retrieval process started. In this
scenario, we initially have that X" = 30 and X" = 0; so
the number of initially offline nodes can be represented
as n—Xj" =100—-30=70. Since under Assumption 1
nodes can only change their state once, X" will evolve
from 30 to O as time tends to infinity, lim,_..X;" = 0. Anal-
ogously, Xfff will evolve from 0 to 70 as time tends to infin-
ity, lim,_ X" = n — X3".

5.2.1. Impact of Assumption 1

As any assumption could be doubtless controversial and
unrealistic, it is important to quantify to what extent the
assumption that each node only changes its state once dur-
ing the retrieval process can be considered unharmful to
the accuracy of our estimator. To this aim, we evaluate
the validity of Assumption 1. This is done by analyzing
the evolution of the number of online nodes in each cate-
gory, X" and X°", in two simulated scenarios.

In the first scenario, nodes act freely, connecting and dis-
connecting according to the non-simplified churn model
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described in Section 3. In the second scenario, we restrict
node behaviors to Assumption 1, that is, nodes connect or
disconnect once during the retrieval process. In both
simulations, we study the evolution of n = 100 nodes that
have an online availability of 30%, a = 0.3. For both simula-
tions, we used simple exponential session durations with
the following rates: S; ~ Exponential(2 = 0.14) and Sp ~
Exponential(. = 0.06); which give us the following ex-
pected session durations: E[S;]~7.14 hours and
E[So] ~ 16.7 hours. As in the previous example, we set the
number of initially online nodes to 30 in both cases, hence,
Xg" = 30. This initial number of online blocks corresponds
to the expected number of online nodes in the system.

In Fig. 6a, we depict the evolution of X" and X°, we
use lines to describe the evolution of the nodes modeled
by Assumption 1 and points for non-constrained nodes.
We can see how after some hours, the number of online
nodes in each category clearly differs in both scenarios.
However, if we take a look at Fig. 6b where only the first
4 h of simulation are shown, we can see that the effects
of Assumption 1 are almost inappreciable for the first 3 h
of simulation. Since we expect retrieval times much more
shorter than online sessions, T(¢, ¢,n) < Sy, simplifying
the behavior of nodes using Assumption 1 will have small
impact in the measured retrieval times while being of great
help for us.

5.3. Obtaining an estimator of the retrieval time distribution

In this section, we provide an approximation of the dis-
tribution T(¢, ¢, n), namely T((, ¢@,n) under Assumption 1
(i.e., nodes change their state once). One of the implica-
tions of this assumption is that the time needed to down-
load a block, 7(1), as defined in (4), is required to be several
orders of magnitude smaller than the average session
durations 7(1) < E[So] and 7(1) < E[S;]. In this case it is
also reasonable to make the following extra assumption:

Assumption 2 (No transfer is canceled). Once a block
transfer starts, it is always finished. No block transfer is
canceled because of a node disconnection. The storage
system can choose a block size small enough to guarantee
that no block transfer is ever canceled.

Given Assumptions 1 and 2 one can expect that:

100 T T T T T T T
sof X{" ]
X(t)ff 777777777
2 60F 1
g
S 40} 1

0 5 10 15 20 25 30 35 40
time (hours)

(a) First 40 hours of simulation.

1. The retrieval process can download the blocks from all
nodes that were initially online when the retrieval
started. Assuming that the number of initial online
blocks were x, the retrieval process will take t(x) sec-
onds to obtain all these blocks.

2. Once an initially offline node reconnects, the data
owner will be able to initially start downloading its
stored block. The download of this block will take (1)
seconds.

In addition to these two simplifying observations, we
will make use of the following theorem in order to obtain
our retrieval time estimator:

Theorem 1. Let o be the number of offline nodes at any time
t. The time elapsed until r of these o nodes reconnect, W, is
distributed as:

Pr[W, < t] =Ig(Pr[J < t];r,0 —1+41),

where I; is the regularized beta function, and Pr{J, < t] is
the residual offline time distribution given in Eq. (3).

Proof. Let (x1,Xxa,...,X,), where x; <X, <...<X,, be an
i.i.d. sample drawn from Pr[J, < t]. This sample represents
the residual offline times of the o offline nodes. Since the
sample is ordered, W,,, corresponds to the rth order statis-
tic of a sample of size 0. As shown in [4], W, is distributed
accordingly to a regularized beta function. O

Now, lets consider a retrieval process that starts at time
t =0, and let X, be the number of online nodes at time
t = 0. From Assumption 1 we can state that if the number
of initially online nodes is Xg > ¢, then the retrieval pro-
cess finishes in optimal time, which is 7(¢) seconds. Con-
trarily, when X, < ¢, the retrieval process takes exactly
T(Xp) seconds to download the X, initially online blocks.
However, to download the remaining ¢ — Xo blocks the re-
trieval process needs to wait for ¢ — X, nodes to reconnect,
and download their blocks. In practice, the blocks are
downloaded in the order in which they are coming back
online, and hence, order statistics W,,, approximate well
the delay experienced by data owners. This can be per-
formed by the decentralized management system, which
can monitor the n— X, nodes and notify the retrieval

60 T T T T T T T
50 F X?n i
40 | Xi - B---- .

30 1

nodes

20 | =

0 bz . .
0 0.5 1 1.5 2 2.5 3 35 4
time (hours)

(b) First 4 hours of simulation.

Fig. 6. Evolution of the number of nodes online in X°" and X°" categories. With lines we depict a simulation scenario where nodes are constrained to
Assumption 1. With points we depict a simulation scenario with non-constrained nodes.
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process as soon as any of the nodes become available
again.

Then, it is clear that the retrieval time distribution
T, ¢,n) depends on the initial number of online nodes,
Xo. As a consequence of this, the CDF of T (¢, ¢, n) can be ex-
pressed as the sum of the conditioned retrieval times:

Pr[T(e, @.n) < r] - znjpr[xo =i Pr[?(f, @.n) < r]xo - i},
i=0

where Pr[X, = i] is the probability to find i online nodes out
of the total n storage nodes, which is binomially distributed
with mean n - a:

n ) .
PriXo =i] = (i )a'(l —a)™,
where a is the average node online availability.

To define Pr T(Z, @,n) <tXo = i], we must consider the
following different cases:

0 if t<1(0),
~ 1 if t= i >4,
Pr[T(om <tio=i] ={ ife=7(f)andi>?,
I(i,¢,n,t) ift>t(¢)andi<¥,

0 otherwise.

The first case happens with probability 0 due to the
impossibility of retrieving ¢ blocks with less than 7(¢) sec-
onds. However, when ¢ is equal or larger than 7(¢), we need
to consider two cases depending upon whether there are
all the necessary blocks initially online (i > ¢) or not
(i < £).Wheni > ¢, it follows by Assumption 1 and the fact
that 7(¢) <« E[S1] (i.e., the time for downloading ¢ blocks is
several orders of magnitude shorter than the online resid-
ual time) that the probability to retrieve ¢ initially online
blocks with 7(¢) seconds is always one. Finally, when
i < ¢, the retrieval process will download the i initially on-
line blocks with 7(i) seconds, but it will have to wait for
¢ —inodes to reconnect.

Once again, observe that we assume that the time wait-
ing for any of the n — i storage nodes to reconnect will be
several orders of magnitude longer than t(i), ie,
7(i) < E[S1]. From Theorem 1, we know that the retrieval
process will last W,_;.,_; additional seconds, plus the 7(1)
seconds required to download the block from the ¢ — ith
reconnected node. We define the probability of this total
time being shorter than t as 9(i, ¢, n, t):

9(i,6,n,t) = PrW, i < £ — T(1)|Wi_ini = T(0)]

CPIW i < € —T(1)] = PrW, iy < T(0)]
1T—PrW, in i < T(0)]

In the rest of cases, the retrieval probability is zero, be-
cause otherwise it would imply breaking Assumption 1in a
way or another. Finally, putting all pieces together, we get
our estimator:

0 if £ < 7(6)
iPr[XO =i

ipr[xg =i)9(i,¢,n,t) if t>71(0)

i=0

. ift=1(0)
Pr[T(4,0.n) gr] -

It is important to note here that to use such an estima-
tor, two types of information should be provided as input.
On the one hand, the estimator requires to know the
average node availability a to compute Pr{X, =i]. This
information is empirically obtained by the centralized ser-
vice. On the other hand, the estimator requires to know the
shape of the residual offline time distribution Pr[J, < t] to
compute ¥(i, £, n,t), since residual offtimes are involved in
the computation of order statistics (see Theorem 1). Again,
this information can be empirically inferred using different
techniques [30,37]. Equipped with this information, it is
easy first to compute 7(¢) using Eq. (4) and then approxi-
mate the retrieval time distribution based on that value
and t. That is, if t < 7(¢), then return 0. If t = 7(¢), then
compute > PriXo = ], or return Y3 Pr{Xo = ij0(i, £,n, t)
otherwise.

To conclude, it also must be noted that this estimator is
accurate provided that the download time is significantly
shorter than both the average on- and offline session dura-
tions, which occurs when downloading MP3 songs, photos,
etc. Indeed, and according to the authors of [32] who con-
ducted a measurement study of Gnutella, around 90% of all
files are typically smaller than a few megabytes in size,
while only a very small portion of files (around 0.1%) have
a size larger than 1 GB. This suggests that our estimator
will be accurate in common cases and it agrees very well
with our simulation results in Section 6. (See Table 1.)

6. Evaluation

In order to evaluate our analytical framework, we com-
pare the retrieval times estimated in Eq. (6) with the retrie-
val times obtained by simulating a realistic P2P storage
system using availability traces from two real P2P applica-
tions. The first traces were obtained by Guha et al. [15] and
describe the behavior of 4000 Skype super-nodes during a
period of one month. The second traces, obtained by Stei-
ner et al. [29], characterize the behavior of 400,000 KAD
peers that were monitored during 6 months. A downside
of these traces is the high presence of peers with short life-
time, i.e., the time between the first and last appearances
in the trace. Since real storage systems provide incentives
to nodes to prolong their membership [14,24], we filtered
these traces to use only the nodes with longer lifetimes.
We kept the top 1000 nodes with longer membership from
Skype traces and the top 10,000 nodes from KAD.

To input our analytical model, we obtained the distribu-
tion of online/offline session durations by fitting the Skype
and KAD traces to a Weibull variate. Although Steiner et al.

Table 1

Weibull parameters used to fit the session durations. The u and 1
parameters correspond to the scale and shape parameters of the Weibull
distribution.

Online sessions Offline sessions

KAD =038, i=6300 =039, 7 =28,000
E[S;]=6.7h E[So] = 27.7h

Skype w=042, j=19,000 pu=042, 7 =13,000
E[S;]=15.4h E[So] = 10.5 h
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provided the parameters for a Weibull fitting, we needed
to refit after filtering the top 10,000 nodes. Using the result
from Yao et al. [40] and as we explained in Section 3, we
used the offline session durations of all nodes to obtain
So, and all the online session durations to fit S;. In Fig. 7,
we can see how the fitted distributions are close to the real
distributions of both the online and offline sessions ob-
served in Skype and KAD.

In order to use the Weibull distribution in our analytical
framework, we needed to measure the residual lifetimes of
the online/offline session durations. We represent the on-
line/offline session duration distributions as S.. Then, from
the Weibull distribution we know that,

Pris, < t]=1—e )" E[S,] = )J“(l +%>

And then, using Egs. (2) and (3), we obtained the residual
online/offline distributions, J,, as:

Pr{J, < ] :% /0[(1 —PrS. < u)du
v et )
ar(1+4) Jo ur(1+d)

where I' is the gamma function, and x and A denote the
shape and scale parameters of the Weibull distribution,

)
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Fig. 7. Log-log plot of the CCDF for the online/offline session durations, Sy
and S; respectively, (in seconds) of each trace, and its Weibull fitting. The
crosses represent the values obtained from the traces and the continuous
line the fitted distribution.

respectively. Due to the mathematical complexity of work-
ing with beta and gamma functions, it is practically unfea-
sible to obtain a closed-form expression of the retrieval
time as defined in (6) for Weibull variates. The results pre-
sented in this section are then numerical evaluations of all
the parts involved in (6).

Although in Section 4 we defined the retrieval time as a
generic concept that can be indistinguishably used to rep-
resent both reconstruction and repair times, in this paper,
we will only consider reconstruction times to evaluate our
estimator. For that purpose, we assume a P2P storage sys-
tem where data is stored using a storage code where the
reconstruction degree k is fixed at 30 but for a variable
number of storage blocks n, n > k, as reported in Table 2.
Note that, to achieve a similar level of data availability so
that both datasets can be compared with one another,
the number of storage blocks n differs significantly, and
so does the data redundancy ratio. The reason is that Skype
nodes present a higher availability than KAD nodes, for
which n can be made clearly smaller.

For simplicity, we assume that the optimal time re-
quired to download each individual block, 7(1), is a system
constant determined by the block size o and the upload
bandwidth w 1: (1) = o/w 1. However, the value of t(1)
should be short enough to satisfy Assumption 2 —block
downloads are not canceled because of node disconnec-
tions. This assumption is satisfied when the residual online
sessions are much larger than 7(1), that is, when J; > 7(1).
To upper bound the value of 7(1) so that Assumption 2 is
shown to hold, one simple way is to define a small positive
constant € =0.001 such that Pr[; < 7(1)] <€ which
loosely speaking means that Assumption 2 is fulfilled with
high probability. Given the distribution of J; for the KAD
and Sype traces, we obtain that the block transmission
time 7(1) must be set to txap(1) = 26 seconds for KAD
and to Tspe(1) =59 seconds for Skype, respectively.
Therefore, assuming the number of parallel retrieval pro-
cesses is p =4, this yields an optimal retrieval time of
Trap (k) = 208 seconds for KAD and of Tiype(k) = 472 sec-
onds, respectively.

Under this scenario, what will be measured is thus the
accuracy of T(¢ =k = 30, ¢ = o, n). We want to note that,
although our analytical framework is constrained to
Assumptions 1, simulations were not constrained to these
assumptions and were conducted by playing back each of
the traces for n non-correlated nodes. Concretely, this im-
plied that: (1) there was no restriction in the number of
online/offline sessions of each node; (2) block downloads
could be canceled because of node departures; and (3)
nodes could exhibit daily and weekly patterns. This sce-
nario puts the most pressure on the precision of our esti-
mator when anticipating retrieval times in a real scenario.

In Fig. 8, we show the log-log plots of the complemen-
tary cumulative distribution function (CCDF) of 5000 re-
trieval times obtained by simulation compared with the
CCDF derived from our closed-form estimator defined in
(6), i.e., lfPr[T(é, @,n) <t|. In the case of the Skype
traces where nodes have high online availability (around
60%) the experimental CCDF is closer to the estimated
CCDF than in the case of KAD traces (with 20% online avail-
ability). One reason for this difference is directly related to
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Table 2
Redundancies and availabilities studied.

KAD traces (a ~0.2)

n 110 130 150
Redundancy ratio 36 43 5
Data availability 0.030 0.181 0.476
Skype traces (a ~ 0.6)

n 40 45 50
Redundancy ratio 13 1.5 1.6
Data availability 0.030 0.200 0.525

170 190 210 230
5.6 6.3 7 7.6

0.761 0.921 0.981 0.996

55 60 65 70 75
1.83 2 2.16 23 2.5
0.807 0.945 0.989 0.998 0.999

online availability. Nodes with high online availability
present longer online sessions and hence, the cases where
Assumption 1 does not hold are significantly reduced. In
addition, we can also see how for both traces the difference
between the estimated values and the experimental values
increase for large values of n, i.e., when the amount of data
redundancy increases (recall that k is fixed at 30). The rea-
son is that for large values of n, more retrieval operations
finish in optimal time and hence, the absolute error mea-
sured using a Kolmogorov-Smirnov test decreases as the
value of n grows: the larger the n value is, the more accurate
our estimator becomes. In general, for a significance level of
o = 0.1, the Kolmogorov-Smirnov test could not reject the
hypothesis that our estimator provides a good fit of the re-
trieval time distribution in any of the evaluated cases.

To conclude the evaluation we measure how heteroge-
nous bandwidth values affect our estimator. For that
purpose, in Fig. 9 we simulate the same Kad and Skype
traces for only two values of n. For each node, the simulator
picks the time required to download a block from it, 7(1),
uniformly at random from {7'/2,37'/4,7',37/2,27'}, where
again v/ = 26 for KAD traces, and v/ = 59 for Skype traces.
This emulates bandwidth heterogeneity between pairs of
nodes. We then compare the retrieval times obtained by
simulation (depicted by a line) with the ones obtained by
our estimator (depicted by points), evaluated at three pos-
sible values of 7(1). Although this is a simplistic model, it
allows us to measure how heterogeneous bandwidths af-
fect retrieval times. We can see from these figures that
when t(1) = v (which is close to the average download
time ~ 1.157’) the estimated CCDF is close to the simulated
CCDF. However, the results differ significantly when the
value of 7(1) in our estimator is different than the average
value. Although our estimator is designed for systems with

1
n=40 -
n=45 =
| n=50 -
. 0.1 s .
& n=60 x
o n=65
0.01F "f++y
0.001

10000 100000
object retrieval time (seconds)

1000 let06

(a) Results using Skype fitted parameters

bandwidth homogeneity, we can see that when some
bandwidth heterogeneity is present, taking the average
bandwidth allows to approximate retrieval times with
small error.

7. A framework usage guide

We have evaluated our analytical framework in terms
of its accuracy on predicting object retrieval times. Now
that we have an accurate estimator of object retrieval
times, it is natural to ask how P2P storage systems can take
advantage of our framework to allow nodes to trade-off
storage costs for retrieval time and optimize their storage
systems. For instance, system architects may need to
determine to which extent object retrieval times can be
lengthened in order to reduce the storage and communica-
tion costs. Let us assume a system using a MDS code (MSR
Regenerating Code where k =d), and that x- t(k) is the
mean reconstruction time expected by users, being t(k)
the optimal retrieval time. For a specific x, the system
can determine the value of n that achieves a mean retrieval
time of x - T(k) as:

n= min{n’ n = k,EF(k, o, n’)] <X- r(k)},

where the expected retrieval times can be obtained
numerically from (6).

Armed with the exact value of n, one can also compute
the expected data availability D (probability to detect k out
of n blocks online) using the complementary cumulative
distribution function of the Binomial variate as:

D= g(?)du —a"

n=110
n=130
n=150
n=170
n=190
n=210

0.1

+ X x e m »

CCDF

0.01

0.001

10000 100000
object retrieval time (seconds)

(b) Results using KAD fitted parameters

1000 let06

Fig. 8. Log-log plots of retrieval times for KAD and Skype scenarios. The lines depict object retrieval times obtained by simulation when ¢ = 30 and for
different n values. Dots represent the results approximated by T (¢, ¢, n) for the same ¢ and n values.
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where a is the expected online availability of the storage
nodes.

In Fig. 10 we plot for both traces data availability D and
the redundancy overhead (i.e., no/m) for nine different ex-
pected retrieval times x-t(k), where x € {1.01,1.1,1.3,
1.5,1.75,2,3,4,5}. We depict redundancy using squared
points and data availability using triangle points. We can
see how in both traces, the amount of data redundancy
and data availability reduce as the mean retrieval time in-
creases, and such a reduction tends to decrease sharply at
the beginning, then steadily beyond certain point. In both
datasets, this point equals to 3 times the optimal retrieval
time. This suggests that by lengthening slightly the object
retrieval time, it is possible to reduce data redundancy sig-
nificantly without excessively compromising data availabil-
ity. For instance, in KAD, by setting the mean retrieval time
equal to twice the optimal time, data redundancy can be
reduced from 8 to 5.7 (a reduction of 28%) while maintain-
ing data availability above 80%. Beyond a certain point,
however, further reduction in data redundancy does not
compensate the almost linear drop in data availability. This
occurs because there exists a threshold in the object retrie-
val time beyond which data redundancy flattens out,
meaning that further reduction in data redundancy will
be marginal beyond the threshold but not the drop in data
availability.

Using the results from Fig. 10, we can state how storage
systems can benefit from our analytical framework and re-
duce their storage costs:

o P2P storage systems: In storage systems like Wuala
[36] or OceanStore [18], users trade their local storage
resources to obtain an ubiquitous and reliable storage
service. The more redundancy required to store each
object, the more local resources the user needs to trade.
Using our framework, users can individually reduce the
amount of local resources they trade by allowing longer
object retrieval times: each user can choose its own
trade-off between retrieval times and resources used. For
example, a user that can afford retrieval times 50%
longer than optimal retrieval times (x = 1.5) can reduce
their redundancy requirements by a 30% in KAD traces
(a=0.2) and by a 18% in Skype traces (a = 0.6). This
entails a significant reduction of the amount of traded
resources.

Backup systems: In backup systems stored objects are
occasionally read. In these environments, repair times
should be shorter than the mean time between block
failures, i.e. redundant data needs to be repaired faster
than it is lost. For example, let us assume that the aver-
age lifetime of a node until it permanently disconnects is
L. Then, the expected number of blocks that fail during a
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Fig. 10. Redundancy required and data availability obtained to achieve different mean object retrieval times.

repair process is determined by E[T(d, 8,n)]-n/L [10],
where T(d, 8,n) is the reconstruction time distribution.
Assuming that E[T(d, 8,n)] = x - t(d), we can determine
the number of nodes that fail during a repair as
x-t(d) - n/L. A backup system must configure n to guar-
antee that x - t(d) - n/L < 1, i.e. on average, less than one
node disconnects during a repair process. For KAD
traces, this means that when x = 5 and n = 154, the stor-
age system is able to repair the lost redundancy pro-
vided that mean node lifetime L is at least 44 h. For
Skype traces, with x = 5 and n = 56, the storage system
replenishes the lost redundancy if mean node lifetime is
L > 36 h. Since in storage systems nodes are expected to
remain in the system for several months instead of only
several hours, lengthening the object retrieval time to 5
times the optimal one can translate into reducing the
required redundancy up to 60% without compromising
data reliability.

These are some potential applications but we believe
that future research will benefit from our estimator to de-
vise, for instance, novel adaptive replication algorithms
that are able to reduce redundancy for those objects that
are not “hot”, i.e.,, not accessed too much frequently, at
the expense of a small increase in the time taken to read
them.

8. Conclusions

In this paper, we have introduced an analytical frame-
work to describe the retrieval process in P2P storage sys-
tems and proposed one estimate to approximate the
retrieval time probability distribution for different data
redundancy ratios. The main feature of our framework is
that allows the study of the implications that data redun-
dancy and data availability have on object retrieval times.
In fact, we have showed that data availability, retrieval
times, and data redundancy, are in fact, three faces of a un-
ique storage quality metric. Increasing redundancy always
shortens retrieval times and increases availability. On the
contrary, reducing redundancy always lengthens retrieval
times and reduces availability. Thanks to our framework,
we have demonstrated that under real P2P churn scenar-
ios, P2P storage systems can reduce their redundancy up
to 60% without affecting more than half of the object
retrieval times. By using our framework, P2P storage

applications will be able to reduce the storage costs while
maintaining optimal service. For P2P backup applications,
this means performing maintenance tasks with minimal
communication. For other storage systems, it may repre-
sent the opportunity to reduce storage and communication
costs with an acceptable loss in the retrieval performance.
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