
Erasure-Coded Byzantine Storage
with Separate Metadata

Elli Androulaki1, Christian Cachin1, Dan Dobre2, and Marko Vukolić3

1 IBM Research - Zurich, Rüschlikon, Switzerland
{lli,cca}@zurich.ibm.com

2 Work Done at NEC Labs Europe, Germany
dan@dobre.net

3 Department of Computer Science, ETH Zurich, Switzerland and Eurécom,
Sophia Antipolis, France
vukolic@eurecom.fr

Abstract. Although many distributed storage protocols have been introduced, a
solution that combines the strongest properties in terms of availability, consis-
tency, fault-tolerance, storage complexity, and concurrency has been elusive so
far. Combining these properties is difficult, especially if the resulting solution is
required to be efficient and incur low cost.

We present AWE, the first erasure-coded distributed implementation of a
multi-writer multi-reader read/write register object that is, at the same time: (1)
asynchronous, (2) wait-free, (3) atomic, (4) amnesic, (i.e., nodes store a bounded
number of values), and (5) Byzantine fault-tolerant (BFT), using the optimal
number of nodes. AWE maintains metadata separately from bulk data, which is
encoded into fragments with a k-out-of-n erasure code and stored on dedicated
data nodes that support only simple reads and writes. Furthermore, AWE is the
first BFT storage protocol that uses only n = 2t + k data nodes to tolerate t
Byzantine faults, for any k ≥ 1. Metadata, on the other hand, is stored using an
atomic snapshot object, which may be realized from 3t + 1 metadata nodes for
tolerating t Byzantine faults.

AWE is efficient and uses only lightweight cryptographic hash functions. More-
over, we show that hash functions are needed by any BFT distributed storage
protocol that stores the bulk data on 3t or fewer data nodes.

1 Introduction

Erasure coding is a key technique that saves space and retains robustness against faults
in distributed storage systems. In short, an erasure code splits a large data value into
n fragments such that from any k of them the input value can be reconstructed. Erasure
coding is used by several large-scale storage systems [24, 28] that offer large capacity,
high throughput, resilience to faults, and efficient use of storage space.

Whereas the storage systems in production use today only tolerate crashes or out-
ages, storage systems in the Byzantine failure model survive also more severe faults,
ranging from arbitrary state corruption to malicious attacks on processes. In this pa-
per, we consider a model where multiple clients concurrently access a storage service
provided by a distributed set of nodes , where t out of n nodes may be Byzantine. We
model the storage service as an abstract read/write register object.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 76–90, 2014.
c© Springer International Publishing Switzerland 2014

Erasure-Coded Byzantine Storage with Separate Metadata 77

Although Byzantine-fault tolerant (BFT) erasure-coded distributed storage systems
have received some attention in the literature [5, 9, 15, 18, 21], our understanding of
their properties is not mature. The role of different quorums, the semantics of concur-
rent access, the latency of protocols, and the processing capabilities of the nodes have
been investigated thoroughly for protocols based on replication [12,27]; in contrast, our
knowledge about erasure-coded distributed storage is far more limited. In fact, the exist-
ing BFT erasure-coded storage protocols suffer from multiple drawbacks: some require
nodes to store an unbounded number of values [18] or rely on node-to-node commu-
nication [9], others need computationally expensive public-key cryptography [9, 21] or
may block clients due to concurrent operations of other clients [21].

Contribution. This paper introduces AWE, the first erasure-coded distributed imple-
mentation of a multi-reader multi-writer (MRMW) register that is, at the same time, (1)
asynchronous, (2) wait-free, (3) atomic, (4) amnesic, (5) tolerates the optimal number
of Byzantine nodes, and (6) does not use public-key cryptography.

These properties are desirable, as wait-freedom [22] and atomicity (or linearizabil-
ity) [23] are not only the most fundamental but also the strongest liveness and consis-
tency properties (respectively) of distributed storage. Roughly, wait-free liveness means
that any correct client operation terminates irrespective of the behavior of the faulty
nodes and clients, whereas atomicity means that all operations appear to take effect in-
stantaneously. Therefore, guaranteeing wait-freedom and atomicity under the weakest
possible assumptions (asynchrony, Byzantine faults) is highly desirable. Furthermore,
amnesic storage [11] in combination with erasure-coding minimizes the storage over-
head, another important measure for distributed storage. Roughly speaking, in amnesic
storage nodes store a bounded number of values and erase obsolete data. Finally, the ab-
sence of public-key cryptography contributes to an efficient implementation of AWE.
Although different subsets of these robustness properties have been demonstrated so
far, they have never been achieved together for erasure-coded storage. Combining these
desirable properties, has been a longstanding open problem [18].

AWE distinguishes between metadata (short control information) and bulk data (the
erasure-coded stored values) and introduces two separate classes of nodes that store
metadata and bulk data. With this approach, AWE beats the lower bound of n > 3t
nodes needed for distributed BFT storage [26], for the class of data nodes (that store
bulk data). This makes AWE novel, as all known erasure-coded BFT storage solutions
comply with this bound for their bulk data storage.

More specifically, with a k-out-of-n erasure code, protocol AWE needs only 2t+ k
data nodes, for any k ≥ 1. This approach saves resources in practice, as storage costs
for the bulk data often dominate. The data nodes may be passive objects that support
read and write operations but cannot execute code, as in Disk Paxos [1]. In practice,
such services may be provided by the key-value stores (KVS) popular in cloud storage.

We formulate AWE in a modular way using an abstract metadata service that stores
control information with an atomic snapshot object. A snapshot object may be realized
in a distributed asynchronous system from simple read/write registers [3]. For making
this implementation fault-tolerant, these registers must still be emulated from n > 3t
different metadata nodes , in order to tolerate t Byzantine nodes.

78 E. Androulaki et al.

Finally, AWE uses simple cryptographic hash functions but no expensive public-
key operations. To explain the use of cryptography in AWE, we show that separating
data from metadata and reducing the number of data nodes to 3t or less implies the use
cryptographic techniques. This result is interesting in its own right, as it implies that any
distributed BFT storage protocol that uses 3t or fewer nodes for storing bulk data must
involve cryptographic hash functions and place a bound on the computational power of
the Byzantine nodes. As all existing BFT erasure-coded storage protocols (including
AWE) rely on cryptography, this result does not pose a restriction on practical systems.
However, it illustrates a fundamental limitation that is particularly relevant for k = 1,
i.e., for replication-based BFT storage protocols.

Structure. The paper continues with the overview of related work in Section 2. The
model is given in Section 3 and Protocol AWE is presented in Section 4. The commu-
nication and storage complexities of AWE are compared to those of existing protocols
in Section 5. Section 6 establishes the necessity of cryptographic assumptions for BFT
storage with less than 3t data nodes. Finally, Section 7 concludes the paper. Detailed
proofs appear in a technical report [4].

2 Related Work

Table 1 summarizes this section that gives a brief overview of the relevant related work.
Earlier designs for erasure-coded distributed storage have suffered from potential

aborts due to contention [16] or from the need to maintain an unbounded number of
fragments at data nodes [18]. In the crash-failure model, ORCAS [15] and CASGC [10]
achieve optimal resilience n > 2t and low communication overhead, combined with
wait-free (ORCAS) and FW-termination (CASGC), respectively. FW-termination en-
sures that read operations always progress only in executions with a finite number of
writes.

In the model with Byzantine nodes, Cachin and Tessaro (CT) [9] introduced the first
wait-free protocol with atomic semantics and optimal resilience n > 3t. CT uses a ver-
ifiable information dispersal protocol but needs node-to-node communication, which
lies outside our model. Hendricks et al. (HGR) [21] present an optimally resilient proto-
col that comes closest to our protocol among the existing solutions. It offers many desir-
able features, that is, it has as low communication cost, works asynchronously, achieves
optimal resilience, atomicity, and is amnesic. Compared to our work, it (1) uses public-
key cryptography, (2) achieves only FW-termination instead of wait-freedom, and (3)
requires processing by the nodes, i.e., the ability to execute complex operations beyond
simple reads and writes.

To be fair, much of the (cryptographic) overhead inherent in the CT and HGR pro-
tocols defends against poisonous writes from Byzantine clients, i.e., malicious client
behavior that leaves the nodes in an inconsistent state. We do not consider Byzantine
clients in this work, since permitting arbitrary client behavior is problematic [20]. Such
a client might write garbage to the storage system and wipe out the stored value at any
time. However, even without the steps that protect against poisonous writes, HGR still
requires processing by the nodes and is not wait-free.

Erasure-Coded Byzantine Storage with Separate Metadata 79

Table 1. Comparison of erasure-coded distributed storage solutions. An asterisk (∗) denotes op-
timal properties. The column labeled Type states the computation requirements on nodes: Proc.
denotes processing; Msg. means sending messages to other nodes, in addition to processing; R/W
denotes a read/write register.

Protocol BFT Liveness Data nodes Type Amnesic Cryptogr.
ORCAS [15] — Wait-free 2t+ 1 Proc. — N/A
CASGC [10] — FW-term. 2t+ 1 Proc. �∗ N/A
CT [9] �∗ Wait-free ∗ 3t+ 1 Msg. — Public-key
HGR [21] �∗ FW-term. 2t+ k, for k > t Proc. �∗ Public-key
M-PoWerStore [13] �∗ Wait-free ∗ 3t+ 1 Proc. — Hash func. ∗

DepSky [5] �∗ Obstr.-free 3t+ 1 R/W ∗ — Public-key
AWE (Sec. 4) �∗ Wait-free ∗ 2t+ k, for k ≥ 1 ∗ R/W ∗ �∗ Hash func. ∗

The M-PoWerStore protocol [13] employs a cryptographic “proof of writing” for
wait-free atomic erasure-coded distributed storage without node-to-node communica-
tion. Similar to other protocols, M-PoWerStore uses n > 3t nodes (with processing
capabilities) and is not amnesic.

Several systems have recently addressed how to store erasure-coded data on multi-
ple redundant cloud services but only few of them focus on wait-free concurrent ac-
cess. HAIL [6], for instance, uses Byzantine-tolerant erasure coding and provides data
integrity through proofs of retrievability; however, it does not address concurrent oper-
ations by different clients. DepSky [5] achieves regular semantics and uses lock-based
concurrency control; therefore, one client may block operations of other clients.

A key aspect of AWE lies in the differentiation of (small) metadata from (large)
bulk data: this enables a modular protocol design and an architectural separation for
implementations. The concept also resembles the separation between agreement and
execution used in the context of BFT replicated state machines in partially synchronous
systems [29].

FARSITE [2] first introduced such a separation of metadata and data for replicated
storage; their data nodes and their metadata abstractions require processing, however,
in contrast to AWE. Non-explicit ways of separating metadata from data can already be
found in several previous erasure coding-based protocols. For instance, the cross check-
sum, a vector with the hashes of all n fragments, has been replicated on the data nodes
to ensure consistency [9, 18]. Separation of metadata has been also used in practical
replicated crash-tolerant systems such as Hadoop Distributed File System.

Finally, Cachin et al. [7] have recently shown in a predecessor to this work that also
with replication, separating metadata from bulk data has benefits. Their asynchronous
wait-free BFT distributed storage protocol, called MDStore, reduces the number of data
nodes to only 2t+ 1. When protocol AWE is reduced to use replication with the trivial
erasure code (k = 1), it uses as few nodes as MDStore to achieve the same wait-free
atomic semantics; unlike AWE, however, MDStore is not amnesic and uses processing
nodes.

The connection between separating data from metadata, reducing the number of data
nodes, and the necessity of cryptographic techniques appears novel. In a sense, this
paper shows a novel connection between the resilience of a distributed BFT protocol
and the existence of a cryptographic primitive.

80 E. Androulaki et al.

3 Definitions

We use a standard asynchronous deterministic distributed system of processes that com-
municate with each other. Processes comprise a set C of m clients, and a set D of n data
nodes d1, . . . , dn. Clients can only crash and up to t data nodes can be Byzantine and
exhibit NR-arbitrary faults.

Protocols are presented in a modular event-based notation [8]. Processes interact
through events that are qualified by the process identifier to which the event belongs.
An event Sample of a process m with a parameter x is denoted by 〈 m-Sample | x 〉.
Processes execute operations, defined in terms of invocation and response events. We
use the standard notions of operation precedence, histories, and linearizability [23].

A read/write register r is an object that stores a value from a domain V and supports
exactly two operations: (1) a Write operation to r with invocation 〈 r-Write | v 〉, taking
a value v ∈ V that terminates with a response 〈 r-WriteAck 〉; and (2) a Read operation
from r with invocation 〈 r-Read 〉 that terminates with a response 〈 r-ReadResp | v 〉,
containing a parameter v ∈ V . The behavior of a register is given through its sequential
specification, which requires that every r-Read operation returns the value written by
the last preceding r-Write operation in the execution, or the special symbol ⊥ �∈ V if
no such operation exists.

The goal of this work is to describe a protocol that emulates a linearizable register
abstraction among the clients; such a register is also called atomic. Some of the clients
may crash and some nodes may be Byzantine. A protocol is called wait-free [22] if
every operation invoked by a correct client eventually completes, irrespective of how
other clients and nodes behave.

We make use of cryptographic hash functions modeled by a distributed oracle ac-
cessible to all processes [8]. A hash function H maps a bit string x of arbitrary length
to a short, unique representation of fixed length. We use a collision-free hash function;
this property means that no process, not even a Byzantine process, can find two distinct
values x and x′ such that H(x) = H(x′).

4 Protocol AWE

Erasure code. An (n, k)-erasure code (EC) with domain V is given by an encoding al-
gorithm, denoted Encode, and a reconstruction algorithm, called Reconstruct. We con-
sider only maximum-distance separable codes, which achieve the Singleton bound in
the following sense. Given a (large) value v ∈ V , algorithm Encodek,n(v) produces a
vector [f1, . . . , fn] of n fragments, which are from a domain F . A fragment is typically
much smaller than the input, and any k fragments contain all information of v, that is,
|V| ≈ k|F|.

For an n-vector F ∈ (F ∪ {⊥})n, whose entries are either fragments or the sym-
bol ⊥, algorithm Reconstructk,n(F) outputs a value v ∈ V or ⊥. An output value of ⊥
means that the reconstruction failed. The completeness property of an erasure code re-
quires that an encoded value can be reconstructed from any k fragments. In other words,

Erasure-Coded Byzantine Storage with Separate Metadata 81

for every v ∈ V , when one computes F ← Encodek,n(v) and then erases up to n − k
entries in F by setting them to ⊥, algorithm Reconstructk,n(F) outputs v.

Metadata service. The metadata service is implemented by a standard atomic snapshot
object [3], called dir, that serves as a directory. A snapshot object extends the simple
storage function of a register to a service that maintains one value for each client and
allows for better coordination. Like an array of multi-reader single-writer (MRSW)
registers, it allows every client to update its value individually; for reading it supports
a scan operation that returns the vector of the stored values, one for every client. More
precisely, the operations of dir are:

– An Update operation to dir is triggered by an invocation 〈 dir-Update | c, v 〉 by
client c that takes a value v ∈ V as parameter and terminates by generating a
response 〈 r-UpdateAck 〉 with no parameter.

– A Scan operation on dir is triggered by an invocation 〈 dir-Scan 〉 with no parame-
ter; the snapshot object returns a vector V of m = |C| values to c as the parameter
in the response 〈 r-ScanResp | V 〉, with V [c] ∈ V for c ∈ C.

The sequential specification of the snapshot object follows directly from the specifica-
tion of an array of m MRSW registers (hence, the snapshot initially stores the special
symbol ⊥ �∈ V in every entry). When accessed concurrently from multiple clients, its
operations appear to take place atomically, i.e., they are linearizable. Snapshot objects
are weak — they can be implemented from read/write registers [3], which, in turn, can
be implemented from a set of a distributed processes subject to Byzantine faults. Wait-
free amnesic implementations of registers with the optimal number of n > 3t processes
are possible using existing constructions [14, 19].

Data nodes. Data nodes provide a simple key-value store interface. We model the state
of data nodes as an array data[ts] ∈ Σ∗, initially ⊥, for ts ∈ Timestamps. Every value is
associated to a timestamp, which consists of a sequence number sn and the identifier c
of the writing client, i.e., ts = (sn, c) ∈ Timestamps = N0 × (C ∪ {⊥}); timestamps
are initialized to T0 = (0,⊥). Data node di exports three operations:

– 〈 di-Write | ts, v 〉, which assigns data[ts] ← v and returns 〈 di-WriteAck | ts 〉;
– 〈 di-Read | ts 〉, which returns 〈 di-ReadResp | ts, data[ts] 〉; and
– 〈 di-Free | TS 〉, which assigns data[ts] ← ⊥ for all ts ∈ TS, and returns 〈 di-

FreeAck | TS 〉.

4.1 Protocol Overview

AWE uses the metadata directory dir to maintain pointers to the fragments stored at the
data nodes. The directory stores an entry for every writer; it contains the timestamp of
its most recently written value, the identities of those nodes that have acknowledged to
store a fragment of it, a vector with the hashes of the fragments for ensuring data in-
tegrity, and additional metadata to support concurrent reads and writes. The linearizable
semantics of protocol AWE are obtained from the atomicity of the metadata directory.

At a high level, the writer first invokes dir-Scan on the metadata to read the high-
est stored timestamp, increments it, and uses this as the timestamp of the value to be
written. Then it encodes the value to n fragments and sends one fragment to each

82 E. Androulaki et al.

data node. The data nodes store it and acknowledge the write. After the writer has re-
ceived acknowledgments from t+ k data nodes, it writes their identities (together with
the timestamp and the hashes of the fragments) to the metadata through dir-Update. The
reader proceeds accordingly: it first invokes dir-Scan to obtain the entries of all writers;
it determines the highest timestamp among them and extracts the fragment hashes and
the identities of the data nodes; finally, it contacts the data nodes and reconstructs the
value after obtaining k fragments that match the hashes in the metadata.

Although this simplified algorithm achieves atomic semantics, it does not address
timely garbage-collection of obsolete fragments, the main problem to be solved for
amnesic erasure-code distributed storage. If a writer would simply replace the fragments
with those of the value written next, it is easy to see a concurrent reader may stall.

Protocol AWE uses two mechanisms to address this: first, the writer retains those
values that may be accessed concurrently and exempts them from garbage collection so
that their fragments remain intact for concurrent readers, which gives the reader enough
time to retrieve its fragments. Secondly, some of the retained values may also be frozen
in response to concurrent reads; this forces a concurrent read to retrieve a value that
is guaranteed to exist at the data nodes rather than simply the newest value, thereby
effectively limiting the amount of stored values. A similar freezing method has been
used for wait-free atomic storage with replicated data [14, 19], but it must be changed
for erasure-coded storage with separated metadata. The retention technique together
with the separation of metadata appears novel. More specifically, metadata separation
prevents straightforward applications of existing “freezing” techniques, whereas storage
that is simultaneously wait-free and amnesic requires garbage collection method that we
show here for the first time.

For the two mechanisms, i.e., retention and freezing, every reader maintains a reader
index, both in its local variable readindex and in its metadata. The reader index serves
for coordination between the reader and the writers. The reader increments its index
whenever it starts a new r-Read and immediately writes it to dir, thereby announcing
its intent to read. Writers access the reader indices after updating the metadata for a
write and before (potentially) erasing obsolete fragments. Every writer w maintains
a table frozenindex with its most recent recollection of all reader indices. When the
newly obtained index of a reader c has changed, then w detects that c has started a new
operation at some time after the last write of w.

When w detects a new operation of c, it does not know whether c has retrieved the
timestamp from dir before or after the dir-Update of the current write. The reader may
access either value; the writer therefore retains both the current and the preceding value
for c by storing a pointer to them in frozenptrlist and in reservedptrlist. Clearly, both
values have to be excluded from garbage collection by w in order to guarantee that the
reader completes.

However, the operation of the reader c may access dir after the dir-Update of one
or more subsequent write operation by w, which means that the nodes would have to
retain every value subsequently written by w as well. To prevent this from happening
and to limit the number of stored values, w freezes the currently written timestamp (as
well as the value) and forces c to read this timestamp when it accesses dir within the
same operation. In particular, the writer stores the current timestamp in frozenptrlist at

Erasure-Coded Byzantine Storage with Separate Metadata 83

index c and updates the reader index of c in frozenindex; then, the writer pushes both
tables, frozenindex and frozenptrlist, to the metadata service during its next r-Write.
The values designated by frozenptrlist (they are called frozen) and reservedptrlist (they
are called reserved) are retained and excluded from garbage collection until w detects
the next read of c, i.e., the reader index of c increases. Thus, the current read may span
many concurrent writes of w and the fragments remain available until c finishes reading.

On the other hand, a reader must consider frozen values. When a slow read operation
spans multiple concurrent writes, the reader c learns that it should retrieve the frozen
value through its entry in the frozenindex table of the writer.

The protocol is amnesic because each writer retains at most two values per reader, a
frozen value and a reserved value. Every data node therefore stores at most two frag-
ments for every reader-writer pair plus the fragment from the currently written value.
The combination of freezing and retentions ensures wait-freedom.

4.2 Details

Data structures. We use abstract data structures for compactness. In particular, given
a timestamp ts = (sn, c), its two fields can be accessed as ts.sn and ts.c. A data
type Pointers denotes a set of tuples of the form (ts, set, hash) with ts ∈ Timestamps,
set ⊆ [1, n], and hash[i] ∈ Σ∗ for i ∈ [1, n]. Their initialization value is Nullptr =
((0,⊥), ∅, [⊥, . . . ,⊥]).

A Pointers structure contains the relevant information about one stored value. For ex-
ample, the writer locally maintains writeptr ∈ Pointers designating to the most recently
written value. More specifically, writeptr.ts contains the timestamp of the written value,
writeptr.set contains the identities of the nodes that have confirmed to have stored the
written value, and writeptr.hash contains the cross checksum, the list of hash values of
the data fragments, of the written value.

The metadata directory dir contains a vector M with a tuple for every client p ∈ C
of the form

M [p] =
(
writeptr, frozenptrlist, frozenindex, readindex

)
,

where the field writeptr ∈ Pointers represents the written value, the field frozenptrlist
is an array indexed by c ∈ C such that frozenptrlist[c] ∈ Pointers denotes a value frozen
by p for reader c, and the integer readindex denotes the reader-index of p.

For preventing that concurrently accessed fragments are cleaned up too early, the
writer maintains two tables, frozenptrlist, and reservedptrlist, each containing one Point-
ers entry for every reader in C. The second one, reservedptrlist, is stored only locally,
together with the frozenindex table, which denotes the writer’s most recently obtained
copy of the reader indices. For the operations of the reader, only the local readindex
counter is needed.

Every client maintains the following variables between operations: writeptr, frozen-
ptrlist, frozenindex, and reservedptrlist implement freezing, reservations, and retentions
for writers as mentioned, and readindex counts the reader operations. When clients
access dir, they may not be interested to retrieve all fields or to update all fields; for
clarity, we replace the fields to be ignored by ∗ in dir-Scan and dir-Update operations.

84 E. Androulaki et al.

Algorithm 1. Protocol AWE, atomic register instance r for client c (part 1).

State
// State maintained across write and read operations
writeptr ∈ Pointers, initially Nullptr // Metadata of the currently written value
frozenptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Frozen and retained for p
reservedptrlist[p] ∈ Pointers, initially Nullptr, for p ∈ C // Reserved and retained for p
frozenindex[p] ∈ N0, initially 0, for p ∈ C // Last known reader index of p
readindex ∈ N0, initially 0 // Reader index of c
// Temporary state during operations
prevptr ∈ Pointers, initially Nullptr // Metadata of the value written by c before
readptr ∈ Pointers, initially Nullptr // Metadata of the value to be read by c
readlist[i] ∈ Σ∗, initially ⊥, for i ∈ [1, n] // List of nodes that have responded during read

upon 〈 r-Write | v 〉 do
prevptr ← writeptr
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp | M 〉
(wsn, ∗) ← max{M [p].writeptr.ts | p ∈ C} // Highest ts field in a writeptr in M
writeptr.ts ← (wsn + 1, c) // Construct metadata of the currently written value
writeptr.set ← ∅
[v1, . . . , vn] ← Encodek,n(v)
forall i ∈ [1, n] do

writeptr.hash[i] ← H(vi)
invoke 〈 di-Write | writeptr.ts, vi 〉

upon 〈 di-WriteAck | ats 〉 such that ats = writeptr.ts ∧ |writeptr.set| < t+ k do
writeptr.set ← writeptr.set ∪ {i}
if |writeptr.set| = t+ k then

// Update metadata at dir with currently written value and with frozen values
invoke 〈 dir-Update | c, (writeptr, frozenptrlist, frozenindex, ∗) 〉
wait for 〈 dir-UpdateAck 〉
// Obtain current reader indices
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp | M 〉
freets ← {prevptr.ts}
forall p ∈ C \ {c} do

(∗, ∗, ∗, index) ← M [p]
if index > frozenindex[p] then

// Client p may be concurrently reading prevptr or writeptr
freets ← freets ∪ {frozenptrlist[p].ts, reservedptrlist[p].ts}
frozenptrlist[p] ← writeptr; frozenindex[p] ← index
reservedptrlist[p] ← prevptr

freets ← freets \⋃p∈C{frozenptrlist[p].ts, reservedptrlist[p].ts}
forall j ∈ [1, n] do // Clean up fragments except for current, frozen, and reserved

invoke 〈 dj-Free | freets 〉
invoke 〈 r-WriteAck 〉

Operations. At the start of a write operation, the writer w saves the current value of
writeptr in prevptr, to be used later during its operation, if w should reserve and retain

Erasure-Coded Byzantine Storage with Separate Metadata 85

Algorithm 2. Protocol AWE, atomic register instance r for client c (part 2).

upon 〈 r-Read 〉 do
forall i ∈ [1, n] do readlist[i] ← ⊥
readindex ← readindex + 1
invoke 〈 dir-Update | c, (∗, ∗, ∗, readindex) 〉; wait for 〈 dir-UpdateAck 〉
// Parse the content of dir and extract the highest timestamp, potentially frozen for c
invoke 〈 dir-Scan 〉; wait for 〈 dir-ScanResp | M 〉
readptr ← highestread(M, c, readindex)
if readptr.ts = (0,⊥) then

invoke 〈 r-ReadResp | ⊥ 〉
else // Contact the data nodes to obtain the data fragments

forall i ∈ readptr.set do
invoke 〈 di-Read | readptr.ts 〉

upon 〈 di-ReadResp | vts, v 〉 such that vts = readptr.ts ∧ readlist[i] = ⊥ do
if v �= ⊥ ∧H(v) = readptr.hash[i] then

readlist[i] ← v
if
∣
∣{j|readlist[j] �= ⊥}∣∣ = k then

readptr ← Nullptr
retval ←Reconstructk,n(readlist)
invoke 〈 r-ReadResp | retval 〉

that value. Then w determines the timestamp of the current operation, which is stored in
writeptr.ts. After computing the fragments of v, sending them to the data nodes, and ob-
taining t+k acknowledgements, the writer updates its metadata entry. It writes writeptr,
pointing to v, together with frozenptrlist and frozenindex, as they resulted after the previ-
ous write to dir. Then w invokes dir-Scan and acquires the current metadata M , which
it uses to determine values to freeze and to retain. It compares the acquired reader in-
dices with the ones obtained during its last write (as stored in frozenindex). When w
detects a read operation by c because M [c].readindex > frozenindex[c], it freezes the
current value (by setting frozenptrlist[p] to writeptr) and reserves the previously written
value (by setting reservedptrlist[p] to prevptr). Finally, the writer deletes all fragments
at the data nodes except for those of the currently written and the retained values.

To determine the timestamps for retrieving fragments, the reader uses the following
two functions:

function readfrom(M, c, p, index) is
if index > M [p].frozenindex[c] then

return M [p].writeptr
else // index = M [p].frozenindex[c]

return M [p].frozenptrlist[c]

function highestread(M, c, index) is
max ← Nullptr
forall p ∈ C do

ptr ← readfrom(M, c, p, index)
if ptr.ts > max.ts then

max ←ptr
return max

86 E. Androulaki et al.

Upon retrieving the array M from dir, the reader sets

readptr ← highestread(M, c, readindex),

which implements the logic of accessing frozen timestamps. The details of AWE appear
in Algorithms 1–2.

Remarks. AWE does not rely on a majority of correct data nodes for correctness, as
this is encapsulated in the directory service. For liveness, though, the protocol needs
responses from t + k data nodes during write operations, which is only possible if
n ≥ 2t + k. Furthermore, several optimizations may reduce the storage overhead in
practice, e.g., readers can clean up values that are no longer needed by anyone.

5 Complexity Comparison

This section compares the communication and storage complexities of AWE to existing
erasure-coded distributed storage solutions, in a setting with n data nodes andm clients.
We denote the size of each stored value v ∈ V by � = �log2 |V|�. In line with the
intended deployment scenarios, we assume that � is much larger (by several orders of
magnitude) than n2 and m2 , i.e., � � n2 and � � m2.

We examine the worst-case communication and storage costs incurred by a client
in protocol AWE and distinguish metadata operations (on dir) from operations on the
data nodes. The metadata of one value written to dir consists of a pointer, containing the
cross checksum with n hash values, the t+k identities of the data nodes that store a data
fragment, and a timestamp. Moreover, the metadata entry of one writer contains also the
list of m pointers to frozen values, the m indices relating to the frozen values, and the
writer’s reader index. Assuming a collision-resistant hash function with output size λ
bits and timestamps no larger than λ bits, the total size of the metadata is O(m2nλ). In
the remainder of this section, the size of the metadata is considered to be negligible and
is ignored, though it would incur in practice.

According to the above assumption, the complexity of AWE is dominated by the
data itself. When writing a value v ∈ V , the writer sends a fragment of size �/k and a
timestamp of size λ to each of the n data nodes. Assuming further that � � λ, the total
storage space occupied by v at the data nodes amounts to n�/k bits. Similarly, a read
operation incurs a communication cost of (t+ k)k/� bits.

With respect to storage complexity, protocol AWE freezes and reserves two time-
stamps and their fragments for each writer-reader pair, and additionally stores the frag-
ments of the last written value for each writer. This means that the storage cost is at most
2m2n�/k bits in total. The improvement described in a remark of Section 4.2 reduces
this to 2mn�/k in the best case.

Table 2 shows the communication and storage costs of protocol AWE and the related
protocols. Observe that in CASGC [10] and HGR [21], a read operation concurrent
with an unbounded number of writes may not terminate, hence we state their cost as ∞.
Moreover, in contrast to AWE, DepSky [5] is neither wait-free nor amnesic and M-
PoWerStore [13] is not amnesic. It is easy to see that the communication complexity of
AWE is lower than that of most storage solutions.

Erasure-Coded Byzantine Storage with Separate Metadata 87

Table 2. Comparison of the communication and space complexities of erasure-coded distributed
storage solutions. There are m clients, n data nodes, the erasure code parameter is k = n − 2t,
and the data values are of size � bits. An asterisk (∗) denotes optimal properties.

Protocol Communication cost Storage cost
Write Read

ORCAS-A [15] (1 +m)n� 2n� n�

ORCAS-B [15] (1 +m)n�/k 2n�/k mn�/k

CASGC [10] n�/k ∗ ∞ mn�/k

CT [9] (n+m)n�/(k + t) � ∗ n�/(k + t) ∗

HGR [21] n�/k ∗ ∞ mn�/k

M-PoWerStore [13] n�/k ∗ n�/k ∞
DepSky [5] n�/k ∗ n�/k ∞
AWE (Sec. 4) n�/k ∗ (t+ k)�/k 2m2n�/k

6 Necessity of Cryptography

In this section, we show that every BFT storage protocol that maintains bulk data (as op-
posed to short metadata) on 3t or fewer nodes while tolerating t Byzantine faults implies
the existence of cryptographic hash functions. We strengthen this result by considering
single-writer single-reader implementations of a register object with value domain V
where n data nodes are aided by one metadata service (MDS) process; intuitively, the
role of the MDS in an implementation is to store coordination data, but not values. Up
to t data nodes may exhibit Byzantine faults, yet the MDS is a correct process. We do
not rely on self-verifying data [25] — the processes have no way to check to tell apart
“valid” from “invalid” values.

We consider a computational model and adopt a cryptographic security notion [17].
Let κ be a security parameter. Suppose every process is implemented by an efficient al-
gorithm, that is, an algorithm whose running time is bounded by some polynomial in κ;
the length of the input values and the internal state of every process are also bounded
by this polynomial. We assume the storage emulation takes inputs of length �(κ), a
polynomial in κ, i.e., |V| ≤ 2�(κ). Suppose that any MDS implementation has small
state in the sense that its internal memory is restricted to φ(κ) bits such that there exists
a constant c > 1 such that for all κ > 0, �(κ) > φ(κ)c. This ensures that a register
emulation cannot simply store the written at the MDS.

We abstract the hash function as follows.

Definition 1 (Digest oracle). A digest oracle D is a distributed atomic object accessi-
ble to all processes. It supports only one operation that takes a bit string x of arbitrary
length as input and outputs a bit string d (denoted D(x)) of fixed length λ(κ), where λ
is a polynomial in κ.

The operation of D may be probabilistic but it implements a mathematical function
in the sense that when queried with an input that has already been queried before, it re-
turns again the same output. Furthermore, D satisfies the following collision-resistance
property. Consider any efficient adversarial process A with access to D that attempts
to find a collision in D. The probability that A outputs two values x and x′ such that

88 E. Androulaki et al.

D(x) = D(x′) is negligible in κ. (A function μ is called negligible when for every
integer c > 0 there exists an integer κc such that for all κ > κc, it holds |μ(κ)| < κ−c.)

The principal result of this section, stated next in Theorem 1, combines a standard in-
distinguishability argument about a concurrent system with a cryptographic reduction.

Theorem 1. Consider a deterministic emulation Π of a safe register, which uses a
meta-data service MDS and n ≤ 3t data nodes such that up to t of the data nodes
may be Byzantine and controlled by an adversary. If MDS has small state, then a
collision-free digest oracle D can be implemented.

Proof. We first define D, which is implemented from a simulation of the storage proto-
col Π that uses MDS. More precisely, to compute the digest of a value x, a simulator
executes Π by simulating one writer process w that executes write(x), the n data nodes,
and MDS. Then the simulator outputs the internal state md of process MDS as the
return value of D. Whenever D is invoked, the simulator starts from the initial state and
uses the same schedule; this ensures that two invocations of D with the same input give
the same output.

We now show that D constructed from Π is collision-free. Towards a contradiction,
assume there exist two distinct values a and b in V such that D(a) = D(b). We now
argue that Π is not a safe register emulation by describing multiple executions of Π .
For simplicity, assume that n = 3t and divide the n data nodes into three groups of t
each, called A, B, and F .

Consider first an execution α of Π where initially w writes a using the schedule of
the emulation of D. Suppose the nodes in A and F participate in this emulation and let
tα denote the time when the simulation of D returns mda, the state of M . No messages
from the writer are delivered to nodes in B.

Second, in execution β of Π , the value b is written. The execution is the same as
α, except that the nodes in B participate instead of those in A and no messages from
the writer are delivered to nodes in A. Note that mdb = D(b) = D(a) = mda by
the assumption on a and b — the state of MDS is the same after write(a) in α as
after write(b) in β.

Consider now an execution ᾱ that extends α beyond tα. At time tα, the processes
in A are being delayed indefinitely and do not take any further steps; as in α, no mes-
sages from w to nodes in B are ever delivered before the execution ends and the nodes
in B continue operating from their initial state. Next, a reader r invokes read, interacts
with the nodes in B ∪F and with MDS, and returns a according to the safety property
of the storage emulation.

Finally, consider an execution β̄ that extends β beyond tα. Here, the processes in
B are delayed indefinitely from time tα onward. Again, the nodes in A have still their
initial state and continue now to participate in the execution. Furthermore, all nodes
in F exhibit a Byzantine fault and replace their state with their state at time tα in α;
after that they again follow Π . Next, a reader r invokes read and only interacts with the
nodes in A ∪ F and with MDS. Recall the state of MDS in β is the same as in α at
time tα. Since the nodes in A have the initial state and those in F and process MDS
have the same state as in α at time tα, execution β̄ resumes from the same state as in ᾱ
except that the roles of the nodes in A and B are exchanged. However, as the emulation

Erasure-Coded Byzantine Storage with Separate Metadata 89

is deterministic, the reader cannot distinguish β̄ from ᾱ and returns a. This violates the
safety of the storage emulation as write(b) precedes read in β̄ but read returns a. A
contradiction.

7 Conclusion

This paper has presented AWE, the first erasure-coded distributed implementation of a
multi-writer multi-reader read/write register object that is, at the same time, (1) asyn-
chronous, (2) wait-free, (3) atomic, (4) amnesic, (i.e., with data nodes storing a bounded
number of values) and (5) Byzantine fault-tolerant (BFT) using the optimal number of
nodes. AWE is efficient since it does not use public-key cryptography and requires data
nodes that support only reads and writes, further reducing the cost of deployment and
ownership of a distributed storage solution. Notably, AWE stores metadata separately
from k-out-of-n erasure-coded fragments. This enables AWE to be the first BFT proto-
col that uses as few as 2t+ k data nodes to tolerate t Byzantine nodes, for any k ≥ 1.

Future work should address how to optimize protocol AWE and to reduce the stor-
age consumption for practical systems; this could be done at the cost of increasing its
conceptual complexity and losing some of its ideal properties. For instance, when the
metadata service is moved from a storage abstraction to a service with processing, it is
conceivable that fewer values have to be retained at the nodes.

Acknowledgment. We thank Radu Banabic, Nikola Knežević, and Alessandro Sorniotti
for inspiring discussions during the early stages of this work. This work is supported in
part by the EU CLOUDSPACES (FP7-317555) and SECCRIT (FP7-312758) projects.

References

[1] Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk Paxos: Optimal resilience
with Byzantine shared memory. Distributed Computing 18(5), 387–408 (2006)

[2] Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R., Howell, J.,
Lorch, J.R., Theimer, M., Wattenhofer, R.P.: FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In: Proc. Symp. Operating Systems Design
and Implementation (2002)

[3] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of
shared memory. Journal of the ACM 40(4), 873–890 (1993)

[4] Androulaki, E., Cachin, C., Dobre, D., Vukolić, M.: Erasure-coded Byzantine storage with
separate metadata. Report arXiv:1402.4958, CoRR (2014)

[5] Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable and
secure storage in a cloud-of-clouds. In: Proc. European Conference on Computer Systems,
pp. 31–46 (2011)

[6] Bowers, K.D., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer for cloud
storage. In: Proc. ACM Conference on Computer and Communications Security, pp. 187–
198 (2009)

[7] Cachin, C., Dobre, D., Vukolić, M.: Separating data and control: Asynchronous BFT storage
with 2t + 1 data replicas. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 1–17.
Springer, Heidelberg (2014)

90 E. Androulaki et al.

[8] Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming, 2nd edn. Springer (2011)

[9] Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded Byzantine distributed storage.
In: Proc. Dependable Systems and Networks, pp. 115–124 (2006)

[10] Cadambe, V.R., Lynch, N., Medard, M., Musial, P.: Coded atomic shared memory emu-
lation for message passing architectures. CSAIL Technical Report MIT-CSAIL-TR-2013-
016. MIT (2013)

[11] Chockler, G., Guerraoui, R., Keidar, I.: Amnesic distributed storage. In: Pelc, A. (ed.) DISC
2007. LNCS, vol. 4731, pp. 139–151. Springer, Heidelberg (2007)

[12] Chockler, G., Guerraoui, R., Keidar, I., Vukolić, M.: Reliable distributed storage. IEEE
Computer 42(4), 60–67 (2009)

[13] Dobre, D., Karame, G., Li, W., Majuntke, M., Suri, N., Vukolić, M.: PoWerStore: Proofs
of writing for efficient and robust storage. In: Proc. ACM Conference on Computer and
Communications Security (2013)

[14] Dobre, D., Majuntke, M., Suri, N.: On the time-complexity of robust and amnesic storage.
In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 197–216.
Springer, Heidelberg (2008)

[15] Dutta, P.S., Guerraoui, R., Levy, R.R.: Optimistic erasure-coded distributed storage. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 182–196. Springer, Heidelberg
(2008)

[16] Frølund, S., Merchant, A., Saito, Y., Spence, S., Veitch, A.: A decentralized algorithm
for erasure-coded virtual disks. In: Proc. Dependable Systems and Networks, pp. 125–134
(2004)

[17] Goldreich, O.: Foundations of Cryptography, vol. I & II. Cambridge University Press
(2001–2004)

[18] Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient Byzantine-tolerant
erasure-coded storage. In: Proc. Dependable Systems and Networks, pp. 135–144 (2004)

[19] Guerraoui, R., Levy, R.R., Vukolić, M.: Lucky read/write access to robust atomic storage.
In: Proc. Dependable Systems and Networks, pp. 125–136 (2006)

[20] Hendricks, J.: Efficient Byzantine Fault Tolerance for Scalable Storage and Services. Ph.D.
thesis, School of Computer Science, Carnegie Mellon University (2009)

[21] Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-overhead Byzantine fault-tolerant storage.
In: Proc. ACM Symposium on Operating Systems Principles (2007)

[22] Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 11(1), 124–149 (1991)

[23] Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

[24] Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., et al.: Erasure coding in
Windows Azure Storage. In: Proc. USENIX Annual Technical Conference (2012)

[25] Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Distributed Computing 11(4), 203–
213 (1998)

[26] Martin, J.P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: Malkhi, D. (ed.) DISC
2002. LNCS, vol. 2508, pp. 311–325. Springer, Heidelberg (2002)

[27] Vukolić, M.: Quorum Systems: With Applications to Storage and Consensus. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool (2012)

[28] Wong, W.: Cleversafe grows along with customers’ data storage needs. Chicago Tribune
(2013)

[29] Yin, J., Martin, J.P., Alvisi, A.V.L., Dahlin, M.: Separating agreement from execution in
Byzantine fault-tolerant services. In: Proc. ACM Symposium on Operating Systems Princi-
ples, pp. 253–268 (2003)

	Erasure-Coded Byzantine Storage with Separate Metadata
	1Introduction
	2Related Work
	3Definitions
	4Protocol AWE
	4.1Protocol Overview
	4.2Details

	5Complexity Comparison
	6Necessity of Cryptography
	7Conclusion
	References

