
SEVENTH FRAMEWORK PROGRAMME

CloudSpaces
(FP7-ICT-2011-8)

Open Service Platform for the
Next Generation of Personal Clouds

D3.1 Guidelines for Heterogeneous Personal
Clouds

Due date of deliverable: 30-11-2013
Actual submission date: 12-11-2013

Start date of project: 01-10-2012 Duration: 36 months

Summary of the document

Document Type Deliverable

Dissemination level Public

State Final

Number of pages 28

WP/Task related to this document WP3

WP/Task responsible EUR

Author(s) Refer to contributors list

Partner(s) Contributing EUR, URV

Document ID CLOUDSPACES_D3.1_131112_Public.pdf

Abstract Guidelines on adaptive distributed synchronization
and replication schemes for heterogeneous Personal
Clouds. Early prototype of the Adaptive edge plat-
form (adaptors, mediator). Deployment and manage-
ment of the Adaptive cloud platform testbed (Open-
stack Swift, massive testbed, first user trials and dis-
tributed testing) Architecture, APIs, and use cases of
Adaptive Proximity-aware services.

Keywords adaptive synchronization, adaptive replication, Per-
sonal Clouds, adaptors, mediators, proximity-aware

Contributors

Name Last name Affiliation Email

Marko Vukolić EUR marko.vukolic@eurecom.fr

Pedro García López URV pedro.garcia@urv.cat

Xavi León URV xavi.leon@urv.cat

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Table of Contents

1 Executive summary 1

2 Introduction 2

3 Early prototype of Hybrid Cloud Storage 3

3.1 Motivation for Hybrid Cloud Storage . 3

3.2 HCS Architecture . 5

3.2.1 Overview . 5

3.2.2 System Model . 6

3.2.3 Data model and semantics . 7

3.3 HCS Protocol . 7

3.3.1 Overview . 8

3.3.2 PUT Protocol . 8

3.3.3 GET in the common case . 9

3.3.4 Garbage Collection . 10

3.3.5 GET in the worst-case: Consistency Hardening 10

3.3.6 DELETE and LIST . 11

3.3.7 Confidentiality . 11

3.4 HCS implementation . 12

3.4.1 Overview . 12

3.4.2 RMDS implementation over Zookeeper 12

3.4.3 Optimizations . 14

3.5 HCS extensions in Year 2 . 14

4 Early prototype of the Adaptive edge platform 16

4.1 Goals . 16

4.2 Operation . 17

4.3 Current Challenges . 18

4.4 Deployment and management of the Adaptive cloud platform testbed 18

i

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

4.4.1 Log server . 19

4.4.2 Software update . 19

4.4.3 Monitoring service . 19

4.5 Proximity-aware services . 20

5 Comparison to related work 22

ii

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

1 Executive summary

Personal clouds are inherently heterogeneous. Companies and home users store their data
on a variety of private devices as well as on different clouds. In Cloudspaces WP3 we ap-
proach the problem of heterogeneity in personal clouds from two angles: (i) heterogeneous
public clouds and (ii) heterogeneous clients.

In the context of heterogeneous public clouds we propose a robust hybrid cloud storage
solution (HCS). Our HCS system provides a robust and efficient storage abstraction over
multiple clouds that can be used as Personal Cloud backend in Cloudspaces. On the other
hand, in the context of heterogeneous clients, we propose an Adaptive edge platform based
on BitTorrent.

Early prototypes of both approaches are presented and explained in details. Our early
prototypes are founded on and implicitly contain a number of design guidelines for dealing
with cloud heterogeneity.

Page 1 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

2 Introduction

Personal clouds are inherently heterogeneous. Companies and home users store their data
on a variety of private devices as well as on different clouds.

In Cloudspaces WP3 we approach the problem of heterogeneity in personal clouds from
two angles:

• Hybrid cloud storage (HCS). We designed multi-cloud storage backend that orches-
trates heterogeneous public clouds. Our HCS system provides a robust and efficient
storage abstraction over multiple clouds that can be used as Personal Cloud backend
in Cloudspaces. As such, the home users and SMEs can gain more control over their
data. Early prototype design of HCS, designed by EUR, is described in Section 3.

• Adaptive edge platform. The variety of different, heterogeneous users of personal
clouds can be leveraged to overcome current high cost of data transfers in current
cloud providers. To this end, URV has designed an adaptive edge platform that re-
places regular HTTP cloud unicasts with BitTorrent [1]. BitTorrent effectively lever-
ages swarms of heterogenous personal cloud users to boost the efficiency of personal
clouds. Early prototype design of Cloudspaces Adaptive edge platform is described
in Section 4. This adaptive platform prototype has been massively deployed by two
Cloudspaces partners: URV and TISSAT. We discuss the deployment of adaptive plat-
forms in details in Section 4.4.

Our two approaches to heterogeneity can be seen as complementary: HCS explores het-
erogeneity of cloud storage resources, whereas adaptive edge platform leverages hetero-
geneous clients. Our early prototypes are founded on and implicitly contain a number of
design guidelines for dealing with heterogeneity in personal clouds. In this deliverable,
instead of giving an itemized list of independent design guidelines, we opt to present our
guidelines for dealing with cloud heterogeneity by integrating those guidelines in proposals
for early system-level solutions (i.e,. HCS and adaptive edge platform) that we will develop
in Cloudspaces WP3.

Page 2 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3 Early prototype of Hybrid Cloud Storage

3.1 Motivation for Hybrid Cloud Storage

Most of the personal cloud storage providers such as Dropbox, SygarSync, Box or others,
ultimately store users’ data on proprietary commodity cloud storage services such as Ama-
zon S3. In this way, users are given no control whatsoever over where their data is stored
and have no efficient means to migrate their data to a different commodity cloud service
other than change the personal cloud storage provider altogether. Even then, chances are
data are going to end up at the same commodity cloud storage provider anyway, causing
data gravity and provider lock-in.

Clearly, data gravity and provider lock-in have serious implications for privacy, availabil-
ity, performance and cost of using personal cloud services. To this end in WP3 of CloudSpaces
(Cloudspaces Storage) we will focus on ways to provide adaptive replication and synchro-
nization for personal storage infrastructure that will integrate different, heterogeneous user
and Cloud storage resources and avoid data lock-in. Our focal use case is specifically that
of an SME that wishes to use (personal) cloud services, but wants more control over its own
data.

Such an SME, desiring to use public cloud service, typically owns some computation
and storage resources in a private infrastructure. A high-level solution for such a company
is hybrid cloud storage which entails storing data on private premises as well as on one
(or more) remote, public cloud storage providers. As such, hybrid cloud storage brings
to enterprises the benefits of public cloud storage (e.g., elasticity, flexible payment schemes
and disaster-safe durability) while allowing the enterprises to maintain the control over their
data. For example, an enterprise can keep the sensitive data on premises while storing less
sensitive data at potentially untrusted public clouds. In a sense, hybrid cloud eliminates
to a large extent the concerns that companies have with trusting their data to commercial
clouds [2] — as a result, enterprise-class hybrid cloud storage solutions are booming with
all leading storage providers such as EMC [3], IBM [4], NetApp [5], Microsoft [6] and others
offering their proprietary solutions. Such solutions are often very costly and are arguably
beyond reach of a typical SME.

As an alternative approach to solving trust and reliability concerns associated with pub-
lic cloud storage providers, several research works (e.g., [7, 8, 9]) considered storing data
robustly into public clouds, by leveraging multiple cloud providers (i.e,. without relying
on private resources). In short, the ideas behind these public multi-cloud storage systems
such as Depsky [7], ICStore [8, 10] and CSpan [9] is to distribute the trust across several
public clouds, and/or increase data reliability and address vendor lock-in concerns. A sig-
nificant advantage of this approach, that makes it also interesting for SMEs, is that it is
typically based on client libraries that share data accessing commodity clouds, and as such,
demands no big investments into proprietary storage solutions. However, none of these ro-
bust multi-cloud storage systems considered leveraging resources on private premises, with
non-negligible compute and storage capacity that is arguably present today in many SMEs
and even in many households.

Our main guideline to designing novel cloud storage solutions with heterogeneous re-
sources is to leverage private portion of these resources to store personal cloud metadata, to

Page 3 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

give a user control over data stored in a public cloud.

In this deliverable we present the key aspects of HCS, the first robust hybrid cloud storage
system. The key idea behind HCS is that it keeps all storage metadata on private premises,
even when those metadata pertain to data outsourced to public clouds. This separation of
metadata from data allows HCS to significantly outperform existing robust public multi-
cloud storage systems, both in terms of system performance (e.g., latency) and storage cost
while providing strong consistency guarantees (namely, linearizability [11]). The key fea-
tures of HCS can be summarized as follows:

• HCS is a multi-writer multi-reader key-value storage system that guarantees lineariz-
ability (atomicity) of reads and writes even in presence of eventually consistent public
clouds. To this end, HCS introduces consistency hardening, i.e., HCS leverages the
atomicity of metadata stored locally on premises to mask the possible inconsistencies
of public clouds [12, 13].

• HCS puts no trust in any given public cloud provider; namely, HCS can mask arbitrary
(including malicious) faults of up to f public clouds. However, unlike traditional stor-
age systems that involve 3 f + 1 storage nodes to mask f malicious ones (e.g., [7]), HCS
is the first storage system that involves only 2 f + 1 public clouds in the worst case
to mask f malicious ones. This feature is a byproduct of HCS design which separates
metadata from data which, as HCS demonstrates, ripes capital benefits in tolerating
untrusted data repositories.

• HCS is efficient and incurs low cost. In common case, when the system is synchronous
and without faults, HCS write to public clouds involves as few as f + 1 public clouds,
whereas reads involve only a single cloud, despite the fact that clouds are untrusted.
HCS achieves this without relying on expensive cryptographic primitives; indeed, in
masking malicious faults, HCS relies solely on cryptographic hashes.

• HCS metadata is stored on private premises in a fault-tolerant manner, where faults on
private premises are assumed to be crash-only. To maintain the HCS footprint small
and to facilitate its adoption, we chose to replicate HCS metadata layering HCS on top
of Apache Zookeeper [14, 15]. HCS clients act simply as Zookeeper client — our system
does not entail any modifications to Zookeeper, hence facilitating HCS deployment.

• HCS supports file-based deduplication and caching of data stored at public clouds
(without impacting consistency). While different caching solutions can be applied to
HCS, we chose to interface HCS with established distributed cache such as memcached
[16], where memcached is deployed on the same machines that run Zookeeper servers.
Beyond caching data stored on public clouds, HCS allows seamless integration with
different key-value stores (e.g., Cassandra, HBase, Redis) that a company may use on
private premises for storing more sensitive data.

Compared to existing cloud storage services, HCS provides the better reliability, perfor-
mance (e.g., latency), consistency, as well as inherent tolerance of untrusted cloud reposito-
ries. HCS adapts to heterogeneous networks and topologies, leveraging geographical distri-
bution of public commodity storage clouds. In future, HCS will also allow dynamic cloud
reconfiguration inherently fighting data gravity and provider lock-in and support erasure-
coding.

Page 4 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3.2 HCS Architecture

3.2.1 Overview

High-level design of HCS is given in Figure 1. HCS mixes two types of resources: 1) private,
trusted resources that consist of computation and (limited) storage resources and 2) public
(and virtually unlimited) untrusted storage resources in the clouds. HCS is designed to
leverage public cloud storage repositories whose API does not offer computation. A de-
facto standard for this type of storage interface is a key-value store (e.g., Amazon S3 [17] or
Openstack Swift [18]).

Zookeeper (ZK)

HCS
Reliable MetaData Service

(RMDS)

HCS client

ZK client

Distributed cache
(e.g., memcached)

HCS client

ZK client

HCS client

ZK client

trust
boundary

private premisses
(private cloud)

untrusted
public clouds

data

data

metadata

Figure 1: HCS architecture. Reused (open-source) components are depicted in grey.

HCS stores metadata separately from public cloud data. Metadata is stored within the
key component of HCS called Reliable MetaData Service (RMDS). RMDS has no single point
of failure and, in our implementation, resides on private premises. Our design (see Fig. 1)
does not restrict RMDS to a specific implementation; indeed, RMDS can be implemented
using replicated databases (e.g., MySQL), NoSQL replicated data stores with conditional
updates (e.g., HBase, MongoDB), or using a custom replicated state machine (e.g., Paxos
[19]). However, our goal is an easily deployable and maintainable, yet scalable and reliable
storage system, that can be easily adopted. Hence, we chose to implement RMDS as a thin
layer on top of the Apache Zookeeper coordination service [14, 15] (see Sec. 3.4 for details).
Our choice is driven by the fact that Zookeeper is invented with similar applications in
mind; moreover, Zookeeper is already a part of the open source Hadoop stack, hence likely
to be familiar to companies interested in deploying private cloud infrastructure. Zookeeper-
based RMDS supports HCS scalability: HCS can scale to thousands of clients.

On the other hand, HCS stores data (mainly) on untrusted public clouds. Data is repli-
cated across multiple cloud storage providers for robustness, i.e., to mask cloud outages and

Page 5 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

even malicious faults. In addition to storing data and public clouds, HCS architecture sup-
ports data caching on private premises. While different caching solutions can be used, our
HCS implementation reuses memcached [16], an open source distributed caching system.
In our implementation/deployment, we collocate memcached and Zookeeper servers (see
Sec. 3.4 for details), but this is merely one possible choice.

Finally, a HCS client is at the heart of the system. HCS client library is responsible for
interactions with public clouds, RMDS and the caching service. Hence, in our implementa-
tion, HCS client also contains the Zookeeper client for interactions with RDMS. HCS clients
are also responsible for encrypting and decrypting data in case data confidentiality is en-
abled — in this case, clients leverage RMDS for sharing encryption keys (see Sec. 3.3.7).

In the rest of this section, we first define our system model and assumptions in more
details. Then we define HCS data model and specify its consistency and liveness semantics.

3.2.2 System Model

We assume an unreliable distributed system where any of the components might fail. In
particular, we consider a dual or hybrid [20] fault model, where: (i) the processes on private
premises (i.e., in the private cloud) can fail by crashing, and (ii) we model public clouds as
potentially malicious (i.e., arbitrary-fault prone [21]) processes. Processes that do not fail are
called correct.

Processes on private premises are clients and metadata servers. We assume that any
number of clients and any minority of metadata servers can be (crash) faulty. Moreover, we
allow up to f public clouds to be (arbitrary) faulty; to guarantee liveness (i.e., data availabil-
ity) - we require at least 2 f + 1 public clouds in total. However, safety (i.e., data consistency)
is maintained regardless of the number of public clouds.

Similarly to our fault model, our communication model is dual, with the model bound-
ary coinciding with our trust boundary (see Fig. 1).1 Namely, we assume that the com-
munication among processes located in the private portion of the cloud is partially syn-
chronous [22] (i.e., with arbitrary but finite periods of asynchrony), whereas the communi-
cation among clients and public clouds is entirely asynchronous.

Our consistency model is likewise dual. We model processes on private premises as
strongly consistent, with their computation proceeding in indivisible, atomic steps. On the
other hand, we model clouds as eventually consistent [12]; informally, eventual consistency
guarantees that, if no new updates are made to a given data item, eventually all accesses to
that item will return the last updated value.

Finally, for simplicity, we assume an adversary that can coordinate malicious processes
as well as process crashes. However, we assume that the adversary cannot subvert crypto-
graphic hash functions we use (SHA-1), and that it cannot spoof the communication among
non-malicious processes.

1We believe that our dual fault and communication models reasonably model the typical hybrid cloud
deployment scenarios.

Page 6 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3.2.3 Data model and semantics

Similarly to commodity public cloud storage services, HCS exports a key-value store (KVS)
API; in particular, HCS address space consists of flat containers, each holding multiple keys.
The KVS API features four main operations: (i) PUT(cont, key, value), to put value under
key in container cont; (ii) GET(cont, key, value), to retrieve the value; DELETE(cont, key) to
remove the respective entry and (iv) LIST(cont) to list the keys present in container cont. We
collectively refer to HCS operations that modify storage state (e.g., PUT and DELETE) as write
operations, whereas the other operations (e.g., GET and LIST) are called read operations.

HCS implements a multi-writer multi-reader key-value storage. HCS is strongly consis-
tent, i.e., it implements atomic [23] (or linearizable [11]) semantics. In distributed storage
context, atomicity provides the illusion that a complete operation op is executed instantly at
some point in time between its invocation and response, whereas the operations invoked by
faulty clients appear either as complete or not invoked at all.

Despite providing strong consistency, HCS is highly available. HCS writes satisfy wait-
free [24] semantics, guaranteeing that a write by a correct client eventually completes. On
the other hand, HCS reads satisfy marginally weaker finite-write (FW) terminating seman-
tics [25]. Namely, FW-termination guarantees an operation by a correct client to complete
always, except when there is an infinite number of writes to the same key. In other words, in
HCS, we trade-in read wait-freedom for FW-termination and better performance — namely,
guaranteeing read wait-freedom reveals very costly in KVS-based multi-cloud storage sys-
tems [8] and significantly impacts storage complexity. We feel that our choice will not be
limiting in practice, since FW-termination intuitively offers virtually the same guarantees as
wait-freedom for a large number of workloads.

3.3 HCS Protocol

In this section we first briefly give an overview of the HCS protocol. Then we describe in de-
tail how data and metadata are accessed by clients in the common case, and how consistency
and availability are preserved despite failures, asynchrony and concurrency.

RMDSw w w RMDS w
k

c
1

c
2

c
3

pu
t(k
|ts ne

w
,v)

ack

ackput(k|ts
new
,v) k,ts

new
,H(v),[c

1
,c
2
] ackts

(a) PUT (k, v)

RMDSr r r
k

c
1

c
2

c
3

v

H(v) = hash
?

ts, hash, [c
1
,c
2
]

(b) GET (k)

Figure 2: HCS PUT and GET protocol illustration (f = 1). Common-case communication is
depicted in solid lines.

Page 7 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3.3.1 Overview

At the core of HCS is a multi-writer multi-reader storage protocol. In terms of consistency,
the protocol ensures atomic semantics, while in terms of availability it guarantees wait-free
write operations and slightly weaker FW-terminating reads.

Storage operations by clients access a collection of cloud storage services, of which up
to f can be arbitrary faulty. While HCS consistency is preserved in the face of any number
of arbitrary faulty clouds, f + 1 correct clouds are needed for availability, amounting to a
total of at least 2 f + 1 clouds. The key to shaving off f clouds from the classical 3 f + 1
resilience lower bound is HCS RMDS component. For each key-value pair RMDS maintains
corresponding metadata including: (i) a cryptographic hash of the value, (ii) a list of at least
f + 1 pointers to clouds that store the value and (iii) a timestamp. Besides these critical
metadata, to enable various optimizations RMDS also stores the size of value v.

This metadata, despite being lightweight is powerful enough to enable tolerating arbi-
trary cloud failures, virtually at no additional cost compared to tolerating only crash fail-
ures. Intuitively, the cryptographic hash enables end-to-end integrity protection, ensuring
that corrupted values are never returned to the application. Since the cryptographic hash
is computed by a (trusted) client and never crosses the trust boundary of the private cloud,
any unauthorized modification of a value by the public clouds can be detected by means of
the original hash.

Furthermore, metadata points to f + 1 clouds that have been previously updated, en-
abling a client to retrieve the correct value despite f of them being arbitrary faulty. In fact,
with HCS, as few as f + 1 clouds are sufficient to ensure both consistency and availability of
read operations (namely GET) — indeed, HCS GET never involves more than f + 1 clouds.
Additional f clouds (totalling 2 f + 1 clouds) are only needed to guarantee that write opera-
tions (namely PUT) are available as well. Note that since f clouds can be faulty, and a value
needs to be stored in f + 1 clouds for durability, overall 2 f + 1 clouds are required for PUT
operations to be available in the presence of f cloud outages.

Finally, besides cryptographic hash and pointers to clouds, metadata includes a times-
tamp that, roughly speaking, induces a partial order of operations which captures the real-
time precedence ordering among operations (atomic consistency). Timestamps are managed
by HCS clients and are classical multi-writer timestamps [26], that comprise a monotonically
increasing sequence number and clients’ id as tiebreaker.2

In the following we describe how the HCS protocol works by detailing each storage op-
eration individually.

3.3.2 PUT Protocol

HCS PUT protocol entails a sequence of consecutive steps illustrated in Figure 2. To write
a value v under key k, a client first obtains from RMDS the latest authoritative timestamp

2We decided against leveraging server-managed timestamps (e.g. provided by ZooKeeper) since we prefer
a more generic RMDS implementation to a Zookeeper-specific one. In fact, one of the few primitives that
HCS requires from a RMDS implementation is the availability of conditional update operations, supported not
only by ZooKeeper but also by a few other NoSQL data stores, such as HBase and MongoDB, which allows
reasonably simple porting of RMDS from ZooKeeper to a NoSQL backend.

Page 8 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

ts. The client does so by requesting the metadata associated with key k. Timestamp ts is a
tuple consisting of a sequence number seqno and a client id. The client then computes a new
timestamp tsnew, whose value is (seqno + 1, cid), where cid is the client’s identifier. Next, the
client combines the key k and timestamp tsnew to a new key knew = k|tsnew and invokes put
(knew, v) on f + 1 clouds in parallel. Concurrently, the clients starts a timer whose expiration
is set to typically observed upload latencies (for a given value size). In the common case, the
f + 1 clouds reply to the the client in a timely fashion, before the timer expires. Otherwise,
the client invokes put (knew, v) on up to f secondary clouds (see dashed arrows in Fig. 2).
Once the client has received acks from f + 1 different clouds, it is assured that the PUT is
durable and proceeds to the final stage of the operation.

In the final step, the client attempts to store in RMDS the metadata associated with key k,
consisting of the timestamp tsnew, the cryptographic hash H(v), size of value v size(v), and
the list (cloudList) of pointers to those f + 1 clouds that have acknowledged storage of value
v. Notice, that this final step is the linearization point of PUT and has to be performed in a
specific way as discussed below.

Namely, if the client performs a straightforward update of metadata in RMDS, then it
may occur that stored metadata is overwritten by metadata with a lower timestamp (old-
new inversion), breaking the timestamp ordering of operations and HCS consistency. To
solve the old-new inversions problem, we require RMDS to export an atomic conditional
update operation. Then, in the final step of HCS PUT, the client issues conditional update to
RMDS which updates the metadata for key k only if the written timestamp tsnew is greater
than the timestamp for key k that RMDS already stores. In Section 3.4 we describe how we
implement this functionality over Apache Zookeeper API; alternatively other NoSQL and
SQL DBMSs that support conditional updates can be used.

3.3.3 GET in the common case

HCS GET protocol is illustrated in Figure 2. To read a value stored under key k, the client first
obtains from RMDS the latest metadata, comprised of timestamp ts, cryptographic hash h,
value size s, as well a list cloudList of pointers to f + 1 clouds that store the corresponding
value. Next, the client selects the first cloud c1 from cloudList and invokes get (k|ts) on c1,
where k|ts denotes the key under which the value is stored. Besides requesting the value, the
client starts a timer set to the typically observed download latency from c1 (given the value
size s) (for that particular cloud). In the common case, the client is able to download the
correct value from the first cloud c1 in a timely manner, before expiration of its timer. Once
it receives value v, the client checks that v hashes to hash h comprised in metadata (i.e., if
H(v) = h). If the value passes the check, then the client returns the value to the application
and the GET completes.

In case the timer expires, or if the value downloaded from the first cloud does not pass
the hash check, the client sequentially proceeds to downloading the data from the second
cloud from cloudList (see dashed arrows in Fig. 2) and so on, until the client exhausts all
f + 1 clouds from cloudList.3

3In our early prototype, clouds in cloudList are ranked by the client by their typical latency in the ascending
order, i.e., when reading the client will first read from the “fastest” cloud from cloudList and then proceed to
slower clouds.

Page 9 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

In specific corner cases, caused by concurrent garbage collection (described in Sec. 3.3.4),
failures, repeated timeouts (asynchrony), or clouds’ inconsistency, the client has to take ad-
ditional actions in GET. These are described in details in the following, in Section 3.3.5.

3.3.4 Garbage Collection

The purpose of garbage collection is to reclaim storage space by deleting obsolete versions
of keys from clouds while allowing read and write operations to execute concurrently.

To perform garbage collection for key k, the client retrieves the list of keys prefixed by
k from each cloud as well as the latest authoritative timestamp. This involves invoking
list(k|∗) on every cloud and fetching metadata associated with key k from RMDS. If ts is the
latest authoritative timestamp, then for each key kold, where kold < k|ts, the client invokes
DELETE (kold) on every cloud.

Garbage collection in HCS is performed by the writing client asynchronously in the back-
ground. As such, the PUT operation can give back control to the application without waiting
for completion of garbage collection.

3.3.5 GET in the worst-case: Consistency Hardening

In the context of cloud storage, there are known issues with weak, e.g., eventual [12] con-
sistency. With eventual consistency, even a correct, non-malicious cloud might deviate from
atomic semantics (strong consistency) and return an unexpected value, typically a stale one.
In this case, sequential common-case reading from f + 1 clouds as described in Section 3.3.3
might not return a value since a hash verification might fail at all f + 1 clouds. In addition to
the case of inconsistent clouds, this anomaly may also occur if: (i) timers set by the client for
a otherwise non-faulty cloud expire prematurely (i.e., in case of asynchrony or network out-
ages), and/or (ii) values read by the client were concurrently garbage collected (Sec. 3.3.4).

To cope with this issues and eventual consistency in particular, HCS introduces consis-
tency hardening. With HCS, we leverage metadata service consistency to mask data incon-
sistencies in the clouds, effectively allowing availability to be traded off for consistency. This
time, however, the tradeoff is under control of the HCS client (e.g., application developer)
who can simply require strong consistency from the clouds, as our HCS demonstrates. We
describe below our consistency hardening scheme that is appended to HCS common-case
GET (as described in Sec. 3.3.3) and executed only if the common-case GET does not return a
value.

Roughly speaking, with consistency hardening HCS client indulgently reiterates the GET
by reissuing a get to all clouds in parallel, and waiting to receive at least one value matching
the desired hash. However, due to possible concurrent garbage collection (Sec. 3.3.4), a
client needs to make sure it always compares the values received from clouds to the most
recent key metadata. This can be achieved in two ways: (i) by simply looping the entire
GET including metadata retrieval from RMDS, or (ii) by looping only get operations at f + 1
clouds while fetching metadata from RMDS only when metadata actually changes.

In HCS, we use the second approach. Notice that this suggests that RMDS must be able

Page 10 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

to inform the client proactively about metadata changes. This can be achieved by having
a RMDS that supports subscriptions to metadata updates, which is possible to achieve in,
e.g.., Apache Zookeeper (using the concepts of watches, see Sec. 3.4 for details). The entire
protocol executed upon common-case GET fails (Sec. 3.3.3) proceeds as follows:

1. A client first reads key k metadata from RMDS (i.e., timestamp ts, hash h, size s and
cloud list cloudList) and subscribes for updates for key k metadata with RMDS.

2. Then, a client issues a parallel get (k|ts) at all f + 1 clouds from cloudList.

3. When a cloud c ∈cloudList responds with value vc, the client verifies H(vc) against h.

(a) If the hash verification succeeds, the GET returns vc.

(b) Otherwise, the client discards vc and reissues get (k|ts) at cloud c.

4. At any point in time, if the client receives a metadata update notification for key k from
RMDS, the client cancels all pending downloads, and repeats the procedure by going
to step 1.

The complete HCS GET ensures finite-write (FW) termination in presence of eventually
consistent clouds. A GET may fail to return a value only theoretically, in case of infinite
number of concurrent writes to the same key, in which case the garbage collection at clouds
(Sec. 3.3.4) might systematically and indefinitely often remove the written values before the
client manages to retrieve them.

3.3.6 DELETE and LIST

Besides PUT and GET, HCS exports the additional functions: DELETE and LIST— here, we
only briefly sketch how these functions are implemented.

To delete a value, the client performs the PUT protocol with a special cloudList value ⊥
denoting the lack of a value. DELETE is local to RMDS and does not access public clouds.
Namely, deleting a value creates metadata tombstones in RMDS, i.e. metadata that lacks a
corresponding value in cloud storage. Nevertheless, metadata tombstones are necessary for
keeping record of the latest authoritative timestamp associated with a given key.

Just like DELETE, LIST operation is local to RMDS. Roughly speaking, our LIST imple-
mentation simply retrieves from RMDS all keys associated with a given container cont and
filters out deleted keys.

3.3.7 Confidentiality

Adding confidentiality to HCS is straightforward and entails the following modifications to
HCS.

During a PUT, just before uploading data to f + 1 public clouds, the client encrypts the
data with a symmetric cryptographic key kenc. Then, in the final step of the PUT protocol

Page 11 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

(see Sec. 3.3.2), when the client writes metadata to RMDS using conditional update, the
client simply adds kenc to metadata and computes the hash on ciphertext (rather than on
cleartext). The rest of the PUT protocol remains unchanged. The client may generate a new
key with each new encryption, or fetch the last used key from the metadata service, at the
same time it fetches the last used timestamp.

Decryption is also straightforward. Upon fetching metadata from RMDS during a GET,
the client also obtains the most recently used encryption key kenc. Then, upon the retrieved
ciphertext from some cloud successfully passes the hash test, the client decrypts data using
kenc.

3.4 HCS implementation

3.4.1 Overview

We implemented HCS in Java. The implementation pertains solely to the HCS client side
since the entire functionality of the metadata service (RMDS) is layered on top of Apache
Zookeeper client. Namely, HCS does not entail any modification to the Zookeeper server
side. Our HCS client is lightweight and consists of 2030 lines of Java code.

HCS client interactions with public clouds are implemented by wrapping individual na-
tive Java SDK clients (drivers) for each particular cloud storage provider4 into a common
lightweight interface that masks the small differences across native client libraries. Initially,
our implementation relied on the portable Apache JClouds library [27] which roughly serves
the main purpose as our custom wrapper, yet covers dozens of cloud storage providers.
However, JClouds introduces its proper performance overhead that prompted us into im-
plementing the cloud driver library wrapper ourselves.

In the following, we first discuss in details our RMDS implementation with Zookeper
API. Then, we describe several HCS optimizations that we implemented.

3.4.2 RMDS implementation over Zookeeper

In the following, we first briefly recall Zookeeper data model and the Zookeeper API (for
more details, please refer to [15]). Then, we detail our RMDS implementation over Zookeeper.

Zookeeper data model and API. Zookeeper data model conveniently maps to that of HCS.
Namely, Zookeeper stores data within objects called znodes which are addressed by paths
in a hierarchical namespace. Each znode stores some data, which we use to store HCS meta-
data.

Zookeeper exports a fairly modest API to its applications. The Zookeeper calls relevant
to us are: (i) create(path, data), which creates znode with path p containing data, (ii) set-
Data(p, data), which updates an existing znode with path p with data, (iii) getData(p) to

4Currently, HCS supports Amazon S3, Google Cloud Storage, Rackspace Cloud Files and Windows Azure.

Page 12 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

retrieve data stores under znode with p, (iv) getChildren(p) (used in HCS LIST) which re-
turns the list of znodes children of the znodes with path p (i.e., all znodes whose path is
prefixed by p), and (v) sync(), which synchronizes a Zookeeper replica that maintains the
client’s session with Zookeeper leader and guarantees that reads that follow will be strongly
consistent.5 Finally, Zookeeper allows several operations to be wrapped into a transaction
which are then executed atomically.

Besides data, znodes have some specific Zookepeer metadata which should not be con-
fused with HCS metadata which is stored as Zookeeper data. Among this Zookeeper meta-
data relevant to us is the znode version number vn, that can be supplied as an additional
parameter to setData operation (i.e., setData(p, data, vn)) which then becomes a conditional
update operation which updates znode with path p only if its version number exactly matches
vn.

Finally, we use the concept of Zookeeper watches. Watches can be set by several oper-
ations, yet we use watches only with getData. Watches are clients’ subscriptions on znode
update notifications; Zookeeper simply triggers a watch at the client when a znode changes
— the client is responsible for fetching the actual znode data itself.

Metadata layout. We layout HCS metadata in Zookeeper namespace as follows. For each
instance of HCS, we generate a root znode. Then, the metadata pertaining to HCS container
cont is stored under Zookeeper path 〈root〉/cont. In principle, for each HCS key k in con-
tainer cont, we store a znode with path pathk = 〈root〉/cont/k.

HCS PUT. At the beginning of PUT (k, v), when client fetches the latest timestamp ts for
k, we need to make sure that this read from Zookeeper is atomic. To this end, the HCS
client issues a sync() followed by getData(pathk). This getData call returns, besides HCS
timestamp ts, the internal version number vn of the znode pathk which the client uses when
writing metadata md to RMDS in the final step of PUT.

In the final step of PUT, the client issues setData(pathk, md, vn)) which succeeds only if
the znode pathk version is still vn. If the Zookeeper version of pathp changed, the client
retrieves the new authoritative HCS timestamp tslast and compares it to ts. If tslast > ts, the
client simply completes a PUT (which appears as immediately overwritten by a later PUT
with tslast). In case, tslast < ts, the client retries the last step of PUT with Zookeeper version
number vnlast that corresponds to tslast. This scheme guarantees wait freedom of PUT since
only a finite number of concurrent PUT operations can use a timestamp smaller than ts.

HCS GET. In interacting with RMDS during GET, HCS client simply needs to make sure
its metadata is read atomically. To this end, a client always issues a sync() followed by
getData(pathk), just like in our PUT protocol.

5Without sync, Zookeeper may return stale data to client, since reads are served locally by Zookeeper
replicas which might not yet received the latest update.

Page 13 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3.4.3 Optimizations

Cloud latency ranks. In our HCS implementation, clients rank clouds by latency and “pre-
fer” clouds with lower latency. HCS client then uses these cloud latency ranks in common
case to: (i) write to f + 1 clouds with the lowest latency in PUT, and (ii) to select from
cloudList the cloud with the lowest latency as preferred cloud in GET.

Initially, we implemented the cloud latency ranks by reading once (i.e., upon initializa-
tion of the HCS client) a default, fixed-size (100kB) object from each of the public clouds.
Interestingly, during our experiments, we observed that the cloud latency rank significantly
varies with object size as well as the type of the operation (PUT vs. GET). Hence, our imple-
mentation establishes several cloud latency ranks depending on the file size and the type of
operation. In particular, we establish four latency ranks: one for each of reading and writing
of small and medium files (up to 10MB in size), as well as additional two for reading (resp.,
writing) objects larger than 10MB. These cloud latency ranks are established by executing,
upon initialization of the client: (i) GET (resp., PUT) of a 100kB object for small/medium-
sized files, and (ii) GET (resp., PUT) of a 10MB file for large-size. In addition, HCS client can
be instructed to refresh these latency ranks when necessary.

Preventing “Big File” DoS attacks. A malicious preferred cloud may mount a DoS attack
against HCS client during a read by sending instead of the correct file, a file of arbitrary
length. In this way, a client would not detect a malicious fault until computing a hash of the
received file, unless the client crashes beforehand. To cope with this attack, HCS client uses
value size s that HCS stores and simply cancels the downloads whose payload size extends
over s.

Caching. Our HCS implementation enables data caching on private portion of the system.
HCS design enables simple integration with different caching policies. We implemented sim-
ple write-through cache and caching-on-read policies. With write-through caching enabled,
HCS client simply writes to cache in parallel to writing to clouds. On the other hand, with
caching-on-read enabled, HCS client upon returning a GET value to the application, writes
lazily the GET value to the cache. In our implementation, we use memcached distributed
cache that exports a key-value interface just like public clouds. Hence, all HCS writes to the
cache use exactly the same addressing as writes to public clouds (i.e., using put(k|ts, v)).

Finally, to leverage cache within a GET, HCS client upon fetching metadata always tries
first to read data from the cache (i.e., by issuing get (k|ts) to memcached). Only in the case
of a cache miss, HCS client proceeds normally with a GET, as described in Sections 3.3.3
and 3.3.5.

3.5 HCS extensions in Year 2

In this section we briefly discuss two possible extensions of HCS that we plan to explore in
Year 2 of Cloudspaces.

Page 14 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Alternative deployments of metadata service. HCS RMDS runs on trusted resources and
hence can rely on crash-tolerant replication protocol that underlies Apache Zookeeper to
handle metadata server crashes. Hence, HCS needs 2t + 1 metadata (Zookeeper) servers to
tolerate t faulty ones. Alternatively, a system with HCS architecture could be deployed in
entirely untrusted environment. However in this case, we would need a “BFT Zookeeper”;
i.e., a BFT state machine replication protocol (e.g., PBFT [28]) with Zookeeper API on top
of such replication protocol. Such protocol would require 3t + 1 metadata servers to toler-
ate t malicious ones [29]. Yet, such a system would still employ only 2 f + 1 public clouds
(i.e., untrusted data repositories) to mask f malicious ones. A possible choice for such a
deployment could be a collocation, i.e., to leverage 3t + 1 virtual machines in the clouds, all
acting as metadata replicas, but only 2t + 1 of those acting as data replicas. In other words,
such alternative HCS design would respect the classical 3t + 1 lower bound on the number
of replicas in BFT storage [30], yet only 2t + 1 of those would be used to store data.

In addition, RMDS could be deployed over wide-area networks to facilitate remote ac-
cesses from different geographical locations.

Erasure coding. In this paper, we focus on using data replication in HCS. To reduce stor-
age blowup associated with replication, some multi-cloud storage systems employ erasure
coding, e.g., Depsky in its Depsky-CA and Depsky-E variants [7]. For example, Depsky-E
employs 3 f + 1 clouds, stores data to 2 f + 1 clouds in the common case and reads from
f + 1 clouds using erasure coding — this results in 2 f+1

f+1 storage blowup. In the typical case
where f = 1, Depsky-E has storage blowup of 1.5 whereas our replication-based HCS yields
blowup equal to 2.6

This evokes back the classical arguments that contrast replication and erasure-coding [31]
and their tradeoffs in high-availability vs. storage blowup. While we believe that exploring
these classical tradeoffs in the game-changing context of cloud storage requires deeper in-
sight we make one important observation.

Namely, to guarantee availability our replication-based HCS requires n = 2 f + 1 public
clouds in the worst case. However, given the abundance of cloud providers and their pay-as-
you-go model, it might make sense to use more cloud providers in combination with erasure
coding to reduce storage blowup. A back of the envelope calculation suggests that with up
to f malicious clouds and n clouds in total, using erasure coding one could maintain HCS
semantics while achieving the blowup of n− f

n−2 f . Since nothing prevents n >> f (e.g., using
10 or more clouds to mask 1 possibly faulty cloud), for large values of n this blowup tends
to 1 and is clearly optimal. Our system architecture does not prevent such erasure coding
variants of HCS that, however induce numerous tradeoffs and that we plan to address in
Year 2 towards Deliverable 3.2.

6Notice that 1.5 is Depsky-E blowup in case of static data, i.e., write-once data that does not change. In case
of dynamic and shared data, Depsky blowup is considerably higher since Depsky requires storing the entire
history of the data object, unlike HCS.

Page 15 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

4 Early prototype of the Adaptive edge platform

During the first year we have developed an early prototype of the Adaptive Edge platform
that is completely integrated with the open source StackSync Personal Cloud. We focused
our efforts in the transparent integration of Bittorrent edge technologies with StackSync and
OpenStack. Note that this prototype has been presented as a demonstration paper in the
IEEE P2P’13 conference [32].

Content delivery in current cloud providers make use of HTTP as a transfer protocol,
missing the opportunity of offloading storage servers from doing much of the serving when
multiple clients download the same content. Besides, bandwidth costs increase with the
number of users a cloud provider serves. Making a smarter, efficient and effective use of
the otherwise limited available bandwidth might encourage the proliferation of a higher
number of competing personal clouds.

A good opportunity to overcome the high cost of data transfers is to replace regular
HTTP unicast transfers by BitTorrent [1]. Since its conception, BitTorrent has proven to
be one of the most effective techniques for distributing large content. Rather than directly
downloading a file from the server, the BitTorrent protocol allows clients to join a “swarm” of
hosts to download and upload portions of the file from each other simultaneously. Because
BitTorrent utilizes the upload bandwidth of clients to offload the original content source, the
result is that content distribution becomes less bandwidth intensive for the server, saving
bandwidth costs.

Unfortunately, the adaptation of BitTorrent to fit the requirements of personal storage
services is an open issue. While BitTorrent has been adopted by market leaders like Ama-
zon to reduce the network costs of the S3 service [33], the integration of BitTorrent into
the operational cycle of a personal cloud is not trivial. This is mainly because BitTorrent is
meant to complement, not replace, regular file synchronization in scenarios where there is a
simultaneous demand for the same set of objects. This means that BitTorrent cannot run as
a standalone service within the personal cloud but rather must operate as an integral part of
the system.

In this section, we briefly discuss the experiences and insights gained from integrating
BitTorrent into StackSync.

4.1 Goals

The adoption of BitTorrent aims at keeping the general features expected in any personal
cloud like file synchronization and data sharing but overcoming one important limitation:
the data transfer bottleneck [34]. However, contrarily to the Amazon S3 service where it must
be explicitly requested the .torrent file associated with an object, the use of BitTorrent in a
personal cloud should remain oblivious to users to not affect usability. Typically, personal
clouds like Dropbox synchronize files dynamically with limited or no human intervention.
And clearly, asking the users to manually start a BitTorrent client would impair the usability
of the whole system. This implies that BitTorrent cannot run as a standalone service. Rather,
it must be activated by the personal cloud service whenever it seems advantageous to do so
and without the involvement of users. Achieving this transparency requires the introduction

Page 16 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Client OpenStack Proxy Memcached TorrentServer Cloud Seed

GET(file,chunk)

reach_threshold(file)

ok

create_torrent

launch_seed(torrent)

ok

torrent

save_torrent(file, torrent)

ok

.torrent

Figure 3: Interaction of a client with the cloud to switch to BitTorrent.

of important changes in the “classical” behaviour of BitTorrent as discussed below. The first
obvious change is that the peers within a swarm will no longer be independent BitTorrent
clients but personal cloud clients with a BitTorrent client embedded into it.

Very succinctly, the idea is that the personal cloud service (Mediator) monitors user ac-
tivity and upon detecting a certain critical mass of users, it generates a .torrent file “on the
fly” to offload the servers in the data center from doing much of the serving. In this case, the
data center will act as a seed and the coordinator will instrument the personal cloud clients
to optimize content distribution and bandwidth consumption. To the best of our knowledge,
no such a novel use of BitTorrent has been reported to date in the literature.

4.2 Operation

To better understand how the components interact with one another during a synchroniza-
tion operation, Fig. 3 shows the interactions between one client and the Swift proxy in the
cloud. The interactions are the following:

1. Clients use the standard Swift REST API to ask the server for the missing and the
modified portions of files since the last synchronization. The target file is added as
metadata to the HTTP requests, so that the Swift proxy can check whether a sufficient
number of clients are interested in the file. To maintain the popularity counter for each
file, we used memcached. Memcached is a free open source in-memory key-value
store for caching small pieces of data. The use of memcached served two purposes: to
reduce the number of calls to the database and to enable inter-proxy communication
when several proxies coexist for scalability reasons.

2. Whenever the threshold on the number of users is reached, the proxy requests the
TorrentServer the creation of the .torrent file and the bootstrap of the new swarm.

Page 17 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

3. The TorrentServer in turn launches a BitTorrent seed in the data center that immedi-
ately joins the swarm to start serving pieces to the clients.

4. In addition, the proxy stores the .torrent file associated with the file in the memcached
servers while the swarm is active.

5. Finally, the Swift proxy responds to the clients with the .torrent file and the instruction
to change to BitTorrent. Upon reception of the response, the clients join the swarm
using their local BitTorrent instance. From this point onward, new clients that request
pieces of this file will obtain from the proxy the already existing .torrent file and join
the existing swarm.

4.3 Current Challenges

Although in early stages of prototyping, our implementation is ready for testing in a sce-
nario with real users. However, this solution opens the door to new challenges which remain
to be studied more in depth.

One of the key issues we faced was the determination of the suitable moment to initiate
BitTorrent and pause the HTTP protocol for content delivery. It is well known that until the
system has a critical mass of concurrent users, peer-to-peer serving in BitTorrent is not effec-
tive [35]. For this reason, we based the switching decision on the number of simultaneous
clients that are downloading a given file. Concretely, the switch to BitTorrent occurs when
the number of concurrent clients surpasses a certain threshold, namely MAX_USER. Although
this approach seems a simple heuristic to follow given our experience with BitTorrent, po-
tential alternatives should be considered and evaluated. For example, a natural path to
follow would be to also consider the contributed bandwidth of users as our threshold to
switch from HTTP to a swarm based distribution of content. We are currently developing
and evaluating a variety of adapter pluggable policies for HTTP to BT switching and vice
versa.

Another key aspect that needs further investigation is the bandwidth allocation in a
multi-swarm scenario. Since the outgoing bandwidth in a data center fabric is finite, one
important question is how to achieve the shortest possible download times across multiple
swarms given a bandwidth budget. Finding the optimal allocation of bandwidth among the
managed swarms is not trivial, because requires developing heuristics that take into account
factors such as the file size, the size of swarms and the nature of clients that make up each
swarm. This is clearly an issue that we are currently evaluating as could potentially save
a vast amount of bandwidth resources on the data center side at no perceptible cost to the
end-user.

4.4 Deployment and management of the Adaptive cloud platform testbed

In this section we explain the different efforts to deploy a massive testbed for the first user
trials and distributed testing experiments. As explained in D2.2, two partners deployed
cloud platform testbeds for the CloudSpaces project: TISSAT and URV. Both testbeds include
a complete OpenStack Swift installation (version 1.8.0) enabling massive real user tests in

Page 18 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

this platform. Furthermore, both platforms include the last version of StackSync adaptive
server components.

To test the platform in real settings a number of components have been deployed like:
software update, log server, monitoring service and an integrated bittorrent service.

4.4.1 Log server

As StackSync is not a final release, it is necessary to obtain as much information as possible
to solve bugs and improve its performance. For this reason it has been developed a log
server that will receive, process and store the errors that StackSync clients throw.

Each time that the client has an exception, it will send a report to the server using a well
defined REST API. The request body contains the information in plain text but compressed
to save as much bandwidth as possible. The information is stored in a StackSync log folder
in the server-side.

Periodically, another program which runs in the server will process the logs. First of all,
it will decompress them and parse all the information in different fields (time, thread that
throws the exception and filename, among others). After that, it will map this information in
a PostgreSQL database to have the information accessible to a further review. Finally, once
the log is processed, it is moved into another folder.

If, for any reason, it is impossible for the client to send the reports, the client will try to
send them later.

All the information that is used does not contain user personal information. It contains
the necessary information for the developer to fix the bug.

4.4.2 Software update

As a complement of the log server, we have developed a software updater for the desk-
top clients. The aim is to solve bugs using the clients reports and release new versions of
StackSync without them using this software.

All the update process will be transparent for the user. To achieve this, StackSync has a
thread running in background that checks periodically if there is a newer version ready. In
the current implementation, it is pulling the server using a REST API, but in a future it could
be improved using a push strategy and a notification system such as ObjectMQ (see D2.2).

When a new version is released, it is downloaded from the server and the old one is
replaced. With this method we ensure that all the clients are running the last version of our
software.

4.4.3 Monitoring service

Nowadays it is almost impossible to obtain real traces from private Personals Clouds, pri-
vate companies do not make this information public. Even the companies involved in the

Page 19 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

project (Canonical and eyeOS) had legal and technical problems to share their traces with
the rest of partners. For this reason we have created a monitoring service that will create
traces of our StackSync system.

The fact that real users are using StackSync, allows us to create real traces. These traces
will help us to understand users behaviours and possible patterns, which will be very inter-
esting for a future use in research.

All these traces are generated in the server-side without disclosing personal user infor-
mation of any type. For example, instead of using a username it will be used a random
identifier which will identify this user in the system. The traces follow the format specified
in the deliverable D2.2.

In the first year of the project small tests have been performed in both testbeds. But as
planned in the project, the first open trials for early adopters will begin in October/Novem-
ber 2013. We aim to create as soon as possible a user community that may provide feedback
for the CloudSpaces project.

4.5 Proximity-aware services

We outline two main scenarios where Personal Clouds can benefit from proximity services:
(i) performance improvements in content distribution and (ii) discovery of close-by services.

In the first scenario, synchronization clients can reduce their traffic with Cloud storage
services if the content can be obtained from close-by clients. The classical example is the
LAN sync protocol included in Dropbox that connects directly clients in the same LAN.
The protocol accelerates synchronization traffic thanks to fast local connectivity while also
reducing communication with the remote cloud services.

Another promising example for proximity-aware performance improvements can be the
integration of P2P protocols with Personal Cloud services to benefit from the bandwidth
resources of peers. In this case, proximity can be considered in terms of network proximity
or locality. A good example of this trend is the adaptive content distribution technique
presented in the previous section. In this project, we are integrating BitTorrent technologies
with Personal Clouds to reduce bandwidth consumption in the data center.

An important insight is that this kind of proximity-aware network aware protocols are
difficult to be standardized with APIs that may be widely adopted. Since synchronization
protocols of different providers are quite heterogeneous and complex, it is very difficult that
they can interoperate at this level. For this reason, we will not devote resources to propose
any standard API for proximity-aware synchronization services.

Another candidate scenario for proximity aware services is the discovery of close-by
spaces. For example, attendants to a conference could discover the conference space created
to promote the collaboration between participants. Another use case could be the inter-
action of clients in a shopping mall with the near-by promotional spaces of the different
shops. Clients could obtain discounts or even become permanent members of some shop-
ping spaces to obtain benefits. These scenarios open new ways of integrating digital spaces
(Personal Clouds) with physical locations and objects.

Page 20 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

In order to discover close-by spaces there a a number of alternatives and protocols that
may be used. From Web Geolocation APIs, to device GPS location APIs, and even the use
of physical tokens to grant controlled access to a space. For example, it is possible to use
technologies such as NFC (Near Field Communication) to create physical tokens granting
access to specific spaces.

But again, it is beyond the scope of this project to standardize a novel location-based
or discovery technology or API. On the contrary, our efforts on storage and interoperable
sharing could then be used in a myriad of location-based scenarios and contexts. As a con-
clusion, regarding proximity services, we will focus in this project in network proximity
improvements thanks to the use of edge resources.

Page 21 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

5 Comparison to related work

Multi-cloud storage systems. Several storage systems (e.g., [36, 37, 38, 7, 8]) have used
multiple clouds in boosting data robustness, notably reliability and availability. Early multi-
cloud systems such as RACS [36] and HAIL [37] assumed immutable data, hence not ad-
dressing any concurrency aspects.

Multi-cloud storage systems closest to HCS are Depsky [7] and ICStore [8]. ICStore is a
robust cloud storage system that models cloud faults as outages and implements wait-free
access to shared data. HCS advantages over ICStore include tolerating malicious clouds and
smaller storage blowup7 while paying a small price in FW-terminating reads (as opposed
to ICStore’s wait-free reads). On the other hand, Depsky considers malicious clouds, yet
requires 3 f + 1 clouds, unlike HCS. Furthermore, Depsky consistency and availability guar-
antees are weaker than those of HCS, even when clouds behave as strongly consistent. As
we already discussed, the distinctive feature of HCS is consistency hardening which guar-
antees HCS atomicity even in presence of eventually consistent clouds, which may harm the
consistency guarantees of both ICStore and Depsky.

Finally, a recent addition to multi-cloud storage systems is SPANStore [38] which seeks
to minimize the cost of use of multi-cloud storage. However, the reliability guarantees of
SPANStore are considerably below those of HCS. Namely, SPANStore is not robust, as it fea-
tures a centralized cloud placement manager component which is a single point of of fail-
ure. In addition, SPANStore considers crash-only clouds and uses leased lock-based writes,
which yield obstruction-free [39] availability at best.

Separating data from metadata. Separating metadata from data is not a novel idea in dis-
tributed systems. For example, in the Hadoop Distributed File System (HDFS), modeled af-
ter the Google File System [40], HDFS NameNode is responsible for maintaining metadata,
while data is stored on HDFS DataNodes. However, the idea of metadata/data separation
particularly excels in our contexts of cloud storage (allowing consistency hardening in HCS)
and in untrusted storage in general.

Namely, in the untrusted storage context, separating metadata from data allows HCS to
tolerate f malicious data repositories using only 2 f + 1 data storage repositories. This is
a capital benefit since all prior robust Byzantine fault tolerant (BFT) storage systems have
used 3 f + 1 data repositories to mask f malicious ones, which made the deployment of
BFT storage systems very expensive. Here, it is very important to notice that, with meta-
data/data separation, the cost related to BFT data replication becomes equal to the cost of
crash-tolerant data replication.8 Indeed, crash-tolerant storage protocols similar to HCS, that
separate metadata from data (e.g., Gnothi [41]), need 2 f + 1 data repositories nevertheless,
and this can be shown optimal.

In a sense, HCS extends the idea of separating control and data planes in BFT systems,
first introduced in [42] in the context of replicated state machines (RSM), to storage. While
the RSM approach of [42] could obviously be used for implementing storage as well, HCS

7Blowup of a given redundancy scheme is defined as the ratio between the total storage size needed to store
redundant copies of a file, over the original unreplicated file size.

8As discussed below, the cost of BFT metadata replication remains higher as mandated by the lower bound
of [30].

Page 22 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

proposes a far more scalable and practical solution, while also tolerating pure asynchrony
across data communication links, unlike [42].

Other notable storage systems that separate metadata from data include LDR [43] and
BookKeeper [44]. LDR [43] implements asynchronous multi-writer multi-reader read/write
storage and, like HCS, uses pointers to data storage nodes within its metadata and requires
2t + 1 data storage nodes. However, unlike HCS, LDR considers full-fledged servers as
data storage nodes and tolerates only their crash faults. BookKeeper [44] implements re-
liable single-writer multi-reader shared storage for logs. BookKeeper stores metadata on
Zookeeper servers (bookies) and data (i.e., log entries) in log files (ledgers). Like in HCS
RMDS, bookies point to ledgers, facilitating writes to f + 1 ledgers and reads from a single
ledger in common-case. However, HCS differs significantly from BookKeeper: namely, HCS
supports multiple writers, tolerates malicious faults of data repositories and is designed
with different deployment environment and applications in mind.

Systems based on trusted components. Several systems have used trusted hardware
components to reduce the overhead of BFT replication to 2t + 1 replicas, typically in the
context of RSM (e.g., [45, 46, 47, 48]). Some of these systems, like CheapBFT [47], employ
only t + 1 replicas in the common case.

Conceptually, HCS is similar to these systems in that HCS relies on trusted hardware
and uses 2t + 1 trusted metadata replicas (needed for Zookeeper) and 2 f + 1 (untrusted)
clouds. However, compared to these systems, HCS is novel in several ways. Most impor-
tantly, existing systems typically entail placing a trusted hardware component within an
untrusted process, which raises concerns over practicality of such an approach. In contrast,
HCS trusted hardware (private cloud) exists separately from untrusted processes (public
clouds), with this model (of a hybrid cloud) being in fact inspired by actual practical system
deployments. Moreover, HCS focuses on storage rather than on generic RSM and offers a
practical, deployment-ready solution.

Integrating BitTorrent in the Data center. A number of studies have tried to combine Bit-
Torrent content distribution technologies with Cloud environments. In particular, the effi-
ciency of the BitTorrent protocol makes it especially suitable for massive content distribution
while reducing bandwidth costs in the Cloud. A prominent example is Amazon’s standard
offering for BitTorrent content distribution in the Amazon S3 Storage service. Apart from
the standard REST and SOAP APIs, it is possible to retrieve objects stored in S3 using Bit-
Torrent. Users must explicitly request for a torrent file of a content by appending ?torrent to
the GET request.

In [49], authors evaluate the use of Amazon S3 services for Science Grids. They pay spe-
cial attention to the use of BitTorrent in S3 as a cooperative cache that may reduce costs when
transferring large amounts of data. Their experiments with an Amazon S3 seed and several
external seeds show that S3 contributes a large percentage of the data volume (around 50

Many previous works have focused on reducing download times for large contents using
BitTorrent in Cloud settings. Either for bulk synchronous content distribution or for reduc-
ing transfer times for cloud virtual images [50] [51] BitTorrent proved to be a very efficient
technology that outperforms classical centralized transfer solutions. For example in [52]
authors demonstrate that their BitTorrent-based solution for distributing virtual machines
delivers up to an 30x speedup over traditional remote file system approaches.

Page 23 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

Another related work is [53] where authors present a content distribution system based
on managed swarms. They use a centralized coordinator to monitor the activity of swarms
and assign bandwidth to peers in order to optimize the content distribution. This work is
very related with the problem of bandwidth allocation in a multi-swarm scenario that we
want to address. A clear difference is that we aim to reduce bandwidth consumption in the
data center in scenarios of restricted output bandwidth.

Our approach is novel because it provides transparent and adaptive mechanisms to
switch between traditional HTTP and BitTorrent technologies in Cloud Storage environ-
ments. None of the previous approaches target this transparency or adaptivity. Further-
more, we will demonstrate how our adaptive policies can efficiently handle flash crowds in
OpenStack while reducing transfer costs inside the Cloud.

Page 24 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

References

[1] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. of 1st Workshop on
Economics of Peer-to-Peer Systems, 2003.

[2] VMware Professional Services, “The Snowden Leak: A Windfall
for Hybrid Cloud?” http://blogs.vmware.com/consulting/2013/09/
the-snowden-leak-a-windfall-for-hybrid-cloud.html.

[3] “EMC: Transform to a Hybrid Cloud,” http://www.emc.com/campaign/global/
hybridcloud/index.htm.

[4] “IBM Hybrid Cloud Solution,” http://www-01.ibm.com/software/tivoli/products/
hybrid-cloud/.

[5] “Egnyte: Hybrid Cloud for NetApp,” http://www.egnyte.com/hybrid-cloud/
hybrid-cloud-for-netapp.html.

[6] “Microsoft lures punters to hybrid storage cloud with free storage arrays,”
http://www.theregister.co.uk/2013/09/24/microsoft_lures_punters_to_hybrid_
storage_cloud_with_free_storage_arrays/.

[7] A. N. Bessani, M. P. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky: dependable
and secure storage in a cloud-of-clouds,” in EuroSys, 2011, pp. 31–46.

[8] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti, M. Vukolić, and I. Zachevsky,
“Robust data sharing with key-value stores,” in Proceedings of DSN, 2012, pp. 1–12.

[9] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha, “Cspan: cost-
effective geo-replicated storage spanning multiple cloud services,” in SIGCOMM, 2013,
pp. 545–546.

[10] C. Cachin, R. Haas, and M. Vukolić, “Dependable storage in the Intercloud,” IBM Re-
search, Tech. Rep. RZ 3783, 2010.

[11] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent
Objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, 1990.

[12] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1, pp. 40–44, 2009.

[13] P. Bailis and A. Ghodsi, “Eventual consistency today: limitations, extensions, and be-
yond,” Commun. ACM, vol. 56, no. 5, pp. 55–63, 2013.

[14] “Apache Zookeeper,” http://zookeeper.apache.org/.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free coordination
for internet-scale systems,” in Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, ser. USENIX ATC’10. Berkeley, CA, USA: USENIX Asso-
ciation, 2010, pp. 11–11.

[16] “memcached,” http://memcached.org/.

[17] “Amazon S3,” http://aws.amazon.com/s3/.

Page 25 of 28

http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.html
http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.html
http://www.emc.com/campaign/global/hybridcloud/index.htm
http://www.emc.com/campaign/global/hybridcloud/index.htm
http://www-01.ibm.com/software/tivoli/products/hybrid-cloud/
http://www-01.ibm.com/software/tivoli/products/hybrid-cloud/
http://www.egnyte.com/hybrid-cloud/hybrid-cloud-for-netapp.html
http://www.egnyte.com/hybrid-cloud/hybrid-cloud-for-netapp.html
http://www.theregister.co.uk/2013/09/24/microsoft_lures_punters_to_hybrid_storage_cloud_with_free_storage_arrays/
http://www.theregister.co.uk/2013/09/24/microsoft_lures_punters_to_hybrid_storage_cloud_with_free_storage_arrays/
http://zookeeper.apache.org/
http://memcached.org/
http://aws.amazon.com/s3/

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

[18] “OpenStack Swift,” http://docs.openstack.org/developer/swift/.

[19] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, no. 2, pp.
133–169, 1998.

[20] P. M. Thambidurai and Y.-K. Park, “Interactive consistency with multiple failure
modes,” in SRDS, 1988, pp. 93–100.

[21] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,”
J. ACM, vol. 27, no. 2, 1980.

[22] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial syn-
chrony,” J. ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988.

[23] L. Lamport, “On Interprocess Communication.” Distributed Computing, vol. 1, no. 2,
pp. 77–101, 1986.

[24] M. Herlihy, “Wait-Free Synchronization,” ACM Trans. Program. Lang. Syst., vol. 13,
no. 1, 1991.

[25] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, “Byzantine Disk Paxos: Optimal
Resilience with Byzantine Shared Memory,” Distributed Computing, vol. 18, no. 5, pp.
387–408, 2006.

[26] N. A. Lynch and A. A. Shvartsman, “RAMBO: A Reconfigurable Atomic Memory Ser-
vice for Dynamic Networks,” in Proceedings of DISC, 2002, pp. 173–190.

[27] “Apache JClouds,” http://jclouds.incubator.apache.org/.

[28] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive recovery,”
ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, 2002.

[29] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals problem,” ACM
Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[30] J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal Byzantine Storage,” in Proceedings of
DISC, 2002, pp. 311–325.

[31] R. Rodrigues and B. Liskov, “High availability in DHTs: Erasure coding vs. replica-
tion,” in IPTPS, 2005, pp. 226–239.

[32] R. Chaabouni, P. G. Lopez, M. S. Artigas, S. F. Celma, and C. Cebrian., “Boosting content
delivery with bittorrent in online cloud storage services,” in Proceedings of IEEE P2P
2013, 2013.

[33] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon s3 for science
grids: a viable solution?” in Proc. of DADC’08, 2008, pp. 55–64.

[34] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun.
ACM, vol. 53, no. 4, pp. 50–58, 2010.

[35] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and improving a bittorrent
networks performance mechanisms,” in Proc. of IEEE INFOCOM 2006, 2006, pp. 1–12.

Page 26 of 28

http://docs.openstack.org/developer/swift/
http://jclouds.incubator.apache.org/

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

[36] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: a case for cloud storage
diversity,” in SoCC, 2010, pp. 229–240.

[37] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: a high-availability and integrity layer for
cloud storage,” in ACM Conference on Computer and Communications Security, 2009,
pp. 187–198.

[38] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha, “Spanstore:
cost-effective geo-replicated storage spanning multiple cloud services,” in SOSP, 2013.

[39] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-Free Synchronization: Double-
Ended Queues as an Example,” in Proceedings of ICDCS, 2003.

[40] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in SOSP, 2003, pp.
29–43.

[41] Y. Wang, L. Alvisi, and M. Dahlin, “Gnothi: separating data and metadata for efficient
and available storage replication,” in Proceedings of the 2012 USENIX conference on
Annual Technical Conference, ser. USENIX ATC’12. Berkeley, CA, USA: USENIX As-
sociation, 2012, pp. 38–38.

[42] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Separating agreement
from execution for byzantine fault tolerant services,” in SOSP, 2003, pp. 253–267.

[43] R. Fan and N. Lynch, “Efficient Replication of Large Data Objects,” in Proceedings of
DISC, 2003, pp. 75–91.

[44] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,” Operating Systems
Review, vol. 47, no. 1, pp. 9–15, 2013.

[45] M. Correia, N. F. Neves, and P. Veríssimo, “How to tolerate half less one Byzantine
nodes in practical distributed systems,” in SRDS, 2004, pp. 174–183.

[46] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested append-only mem-
ory: making adversaries stick to their word,” in SOSP, 2007, pp. 189–204.

[47] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W. Schröder-
Preikschat, and K. Stengel, “CheapBFT: resource-efficient Byzantine fault tolerance,” in
EuroSys, 2012, pp. 295–308.

[48] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veríssimo, “Efficient byzan-
tine fault-tolerance,” IEEE Trans. Computers, vol. 62, no. 1, pp. 16–30, 2013.

[49] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon s3 for sci-
ence grids: a viable solution?” in Proceedings of the 2008 international workshop on
Data-aware distributed computing. ACM, 2008, pp. 55–64.

[50] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, and U. Schwickerath,
“Image distribution mechanisms in large scale cloud providers,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference on.
IEEE, 2010, pp. 112–117.

Page 27 of 28

FP7-ICT-2011-8 STREP
12-11-2013 CloudSpaces

[51] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben, “Efficient distribution of
virtual machines for cloud computing,” in Parallel, Distributed and Network-Based
Processing (PDP), 2010 18th Euromicro International Conference on. IEEE, 2010, pp.
567–574.

[52] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh, and D. Rubenstein, “Vm-
torrent: virtual appliances on-demand,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 453–454, 2010.

[53] R. Peterson and E. G. Sirer, “Antfarm: Efficient content distribution with managed
swarms.” in NSDI, vol. 9, 2009, pp. 107–122.

Page 28 of 28

	Executive summary
	Introduction
	Early prototype of Hybrid Cloud Storage
	Motivation for Hybrid Cloud Storage
	HCS Architecture
	Overview
	System Model
	Data model and semantics

	HCS Protocol
	Overview
	put Protocol
	get in the common case
	Garbage Collection
	get in the worst-case: Consistency Hardening
	delete and list
	Confidentiality

	HCS implementation
	Overview
	RMDS implementation over Zookeeper
	Optimizations

	HCS extensions in Year 2

	Early prototype of the Adaptive edge platform
	Goals
	Operation
	Current Challenges
	Deployment and management of the Adaptive cloud platform testbed
	Log server
	Software update
	Monitoring service

	Proximity-aware services

	Comparison to related work

