
SEVENTH FRAMEWORK PROGRAMME

CloudSpaces
(FP7-ICT-2011-8)

Open Service Platform for the
Next Generation of Personal Clouds

D5.2 Service Platform reference prototype

Due date of deliverable: 31-10-2014
Actual submission date: 15-10-2014

Start date of project: 01-10-2012 Duration: 36 months

Summary of the document

Document Type Deliverable

Dissemination level Public

State Final

Number of pages 54

WP/Task related to this document WP5

WP/Task responsible EOS

Author(s) Adrián Moreno (URV), Pedro García (URV), Raquel
Sánchez (EOS), Anastasio Illana (NEC), Alberto
Gomez (NEC),

Partner(s) Contributing URV, EOS, NEC, TST

Document ID CLOUDSPACES_D5.2_141015_Public.pdf

Abstract This report includes documentation, tutorials, and
specifications of the interoperability protocol created
by NEC and URV in their respective personal cloud
solutions (i.e. Cloud Storage and StackSync). As well
as proof-of-concept tools created by EyeOS and Tis-
sat that make use of the service platform created in
StackSync.

Keywords Cloud storage, synchronization, sharing, interoper-
ability, Personal Cloud

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Table of Contents

1 Executive summary 1

2 StackSync 2

2.1 Introduction . 2

2.2 Sharing . 2

2.3 Interoperability . 5

2.4 Elasticity . 7

2.4.1 ObjectMQ . 8

2.4.2 Communication Layer . 10

2.4.3 Communication Primitives . 11

2.4.4 Programmatic Elasticity Framework . 12

2.4.5 Elastic File Synchronization . 13

2.4.6 Conclussions . 15

3 NEC 16

3.1 Introduction . 16

3.2 Interoperability . 16

3.2.1 User invitation . 16

3.2.2 Invitation acceptance . 18

3.2.3 Access credentials . 19

3.3 Sequence diagram . 20

4 EyeOS 23

4.1 Introduction . 23

4.2 Authentication . 23

4.3 Integrated File Management . 32

4.4 Storage . 35

4.5 Persistence . 36

4.5.1 Implementing OAuth . 37

i

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

4.5.2 Integrating Persistence in eyeOS Calendar 39

4.5.3 Integrating Persistence in eyeOS Comments Tool 40

4.6 Share . 43

5 Tissat 46

5.1 Migrating from Keystone v2.0 to v3 . 46

5.2 Secure our Stacksync platform with SSL . 46

5.3 Development of group-based membership for Stacksync users 47

5.4 Development of a group-based quota web application 48

5.5 Migrate web interface back-end from PHP to Python 49

5.6 Refactoring of Stacksync web client . 50

5.7 StackSync support for ownCloud . 51

5.8 Development of StackSync iOS app . 52

ii

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

1 Executive summary

This report includes documentation, tutorials, and specifications of the interoperability pro-
tocol created by NEC and URV in their respective personal cloud solutions (i.e. Cloud Stor-
age and StackSync). As well as proof-of-concept tools created by EyeOS and Tissat that make
use of the service platform created in StackSync.

First, the URV introduces StackSync and details the requirements to be able to comply
with the interoperability protocol. Prior to implementing the interoperability protocol to
allow sharing resources between heterogeneous personal clouds, StackSync needs to imple-
ment the sharing mechanism and be able to share files and folders among its own users.
Afterwards, the URV details how StackSync has been modified to implement the proto-
col. Moreover, they present a novel architecture for file synchronization to tackle the issues
present in synchronization services like StackSync.

Then, NEC presents a detailed guide about the interoperability protocol of CloudSpaces
in NEC’s personal cloud called Cloud Storage. It also describes the interoperability pro-
cess through screenshots, examples and all necessary calls with its parameters for its proper
operation.

EyeOS presents a set of tools that make use of the service platform created by StackSync.
First, they detail the authentication protocol so that users can link their EyeOS accounts
with StackSync. Then, it is shown how StackSync file system is integrated into EyeOS’s
virtual desktop, being able to seamlessly navigate between files and folder independently of
their source (i.e. EyeOS or StackSync). EyeOS also shows two tools that use the persistence
services: eyeOS comments, and eyeOS calendar. Both tools are synchronized using a U1DB
service that incorporate value-added features to their platform. Finally, EyeOS details how
they have integrated StackSync’s sharing functionality into their application, allowing users
to share folders with others.

Finally, Tissat presents its contributions to the CloudSpaces service platform which in-
cludes the management interface to enable administrators to set up quotas and have com-
plete control over users. They also worked on security issues related to Keystone and de-
ploying StackSync with SSL. Among other tasks, they developed and published the native
StackSync application for iOS, leveraging iPhone users to access the platform.

Page 1 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

2 StackSync

2.1 Introduction

StackSync is a scalable open source Personal Cloud that implements the basic components
to create a synchronization tool. The StackSync framework is compounded by three main
components: a synchronization server, OpenStack Swift, and desktop / mobile clients.

While synchronization servers are in charge of processing metadata and provide the
logic, OpenStack Swift is focused on storing the raw chunked data. Users are able to keep
their files synced by using the StackSync clients available for the main desktop and mobile
operating systems.

StackSync is based on an advanced synchronization technology, similar to Dropbox, with
data optimizations (chunking, compression and push mechanisms) that allows it to scale to
thousands of users with an efficient use of cloud resources. It also provides data-sharing
mechanisms to groups of users. A RESTful API has been built as a Swift module living at
the proxies to allow the StackSync mobile apps and other third-party apps to interact with
the available resources.

The separation between data and metadata allows StackSync to be deployed in differ-
ent configurations depending on the needs. Using the private configuration, organizations
can deploy it on-premise, as both OpenStack Swift and StackSync Server run on their fa-
cilities. The public configuration may be suitable for Cloud providers willing to offer a
public synchronization service to their customers. Whereas the Hybrid configuration al-
lows organizations to keep their metadata on-premise while storing the raw data at a public
Cloud provider, retaining control over their information. Finally, as an open-source project,
StackSync welcomes and encourages any kind of collaboration from the community.

2.2 Sharing

Prior to implementing the interoperability protocol to allow sharing resources between het-
erogeneous personal clouds, StackSync needs to be able to share files and folders among
its own users. As seen in figure 1, each user in StackSync is assigned a logical workspace,
which represents the relation between files and users. The workspace approach facilitates
authorization of users, in contrast to a per-file authorization, and enables us to directly map
workspaces into OpenStack Swift containers.

Workspace 2

Shared workspace

Workspace 1

Container 2

Shared container

Container 1

O
p

e
n

Stack Sw
ift

User 1

User 2

Figure 1: StackSync workspace / container relation

Page 2 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

To guarantee that only the owner can access its physical data, we set up an access control
list (ACL) in each OpenStack Swift container by using the X-Container-Read and X-Container
-Write parameters. This solution works fine for users just wanting to synchronize and
backup files across their devices, but limitations arise when it comes to sharing.

If we keep shared resources in the same workspace and container, we would need a fine-
grained access control to ensure that only the right users access the information. In other
words, a user may be allowed to access only a subset of files inside a container, complicat-
ing permission-handling tasks. Consequently, we would lose the coarse granularity offered
by workspaces and containers that guaranteed us that if a user has access to a particular
workspace/container, then it will also has access to all resource contained inside.

In order to keep the benefits of our permission model, we proposed an approach that
consisted in addressing shared folders as independent workspaces and containers. In fig-
ure 1 we observe that when a user shares a folder, a new workspace is created and the folder
and its content are moved to the new workspace. This new workspace will be accessible by
the user that originated the order (owner) and users that were explicitly given access to the
shared folder (invitees).

From the data point of view, a new container is created and all chunks belonging to
the shared content are moved to the new location. OpenStack Swift provides a request to
avoid downloading and reuploading the content to the new container, instead, we copy the
objects using the X-Copy-From request, which does not incur in any data transference. After
a successful copy operation, old chunks are deleted from the origin container.

Syncing protocol upgrade

Whenever the desktop client is ordered to share a folder, it sends a “createSharePro-
posal” to the SyncService, providing the folder to be shared and a list of emails belonging to
the invited users. This is a synchronous call that will return whether the sharing proposal
was created successfully or not. Invitees will receive an email and an instant push notifica-
tion informing them about the proposal. Once accepted, invitees will be added to the new
workspace and will receive all future events related to the shared folder. Furthermore, they
will be incorporated to the container ACL so that they can download and upload content.

API upgrade

In order to allow the sharing functionality on mobile devices, we upgraded the API by
adding three new actions on the folder resource. First, the actions “share” and “unshare” let
applications to create a sharing proposal and remove users from it. Moreover, applications
can also list the members of a shared folder by using the “members” action on a folder. It
will return all active participants that are granted access to a particular folder.

Share folder

An application can share a folder with other users by issuing an HTTP POST request to
the URL that represents the folder resource (e.g. /folder/214874/share) . The app must
provide a JSON object that represents the users that will be invited to the folder.

The request body must include an element "share_to" which will contain an array of
emails representing the users that will be invited to the shared folder.

Page 3 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 2: Sharing functionality in StackSync’s Android app

Unshare folder

An application can stop sharing a folder at any time just issuing an HTTP POST request
to the URL that represents the folder resource (e.g. /folder/214874/unshare). This action
does not require a payload and will remove the authenticated user from the shared folder.
However, if a payload is provided and the authenticated user is the owner of the shared
folder, the request body may include an element "unshare_to" which will remove the given
users from the shared folder.

Get folder members

To retrieve information about the users that have access to a folder, an application sub-
mits an HTTP GET request to the folder resource that represents the folder (e.g.
/folder/214874/members).

The response body contains a JSON array enclosing dictionaries with the following keys:

Element Description
name The name of the user
email The email of the user
joined_at The date the user joined the folder
is_owner Whether the user is the owner of the folder

or not. Options are True or False

Page 4 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

2.3 Interoperability

Now that StackSync enables to share folders among its users it is time to implement the
interoperability protocol.

The interoperability protocol defines three endpoints: one to receive share proposals
from external personal clouds; another to receive cancellations of already-established shar-
ing agreements; and the last one to receive access credentials for accepted sharing proposals.
To this end, we created a Django module implementing the interoperability protocol. This
new module can be located either with the synchronization service or in an independent
server.

The next figure shows how the module interacts with the rest of the architecture,

External
personal cloud

Interoperability
module StackSync userStorage API

Sends sharing proposal Processes proposal and displays to user

Accepts proposal

Returns proposal result

Sends access credentials
Notifies user

API request on shared folder

Request w/ given

credentials

Response

Response

Figure 3: Interoperability protocol sequence diagram

The sequence above depicts a scenario where StackSync receives an external sharing pro-
posal from a personal cloud that already implements the interoperability protocol. The entry
point for the request is the interoperability module. It will receive the sharing proposal and
check that it is well formed. Afterwards, the invitee, which is a StackSync user, will be

Page 5 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

shown the proposal details like shown in figure 4, where she will either accept it or decline
it.

Figure 4: StackSync’s share proposal permission screen

The result is then forwarded to the source personal cloud, which will reply with the ac-
cess credentials in case the user accepted the proposal. These credentials are assigned to the
recently shared folder and saved into the database. At this time, the interoperability process
is completed and the StackSync user is notified about its newly shared folder. Whenever
the user is to retrieve or upload data to the shared folder, the API will seamlessly detect the
special condition of the folder and forward the request to the origin personal cloud with the
given credentials. This process is performed in a fully transparent manner for the user.

Page 6 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

External
personal cloud

Interoperability
moduleStackSync user Storage API External user

Share folder
Sends email to non-StackSync users

Selects personal cloud

Sends sharing proposal

Returns proposal result to callback

Creates credentials and sends them

API request on shared folder

Figure 5: Interoperability protocol sequence diagram

Oppositely, when a sharing proposal is generated by a user in StackSync, the API re-
ceives the request and sends an email to the invitee, which is a user belonging to an external
personal that also implements the interoperability protocol. The invitee is forwarded to a
website located in StackSync where she will select her personal cloud from a list of all com-
patible services.

Once selected, she will be redirected to a website located on her personal cloud where she
will be show the details of the folder and will be requested to accept or deny the proposal.
StackSync will get notified of the user’s choice and will hand the access credentials (OAuth
tokens) to the other personal cloud. Afterwards, whenever the invitee wants to access to the
shared folder, the StackSync API will receive the request and process it as any other API call.

2.4 Elasticity

In the last years, we have witnessed a rush of Personal Cloud Storage services offering file
synchronization to millions of users. In this line, Dropbox [1] has achieved massive scalabil-
ity thanks to a decoupled architecture that separates control flows (Dropbox sync servers)
from data flows (Amazon S3 Object Storage).

While the elasticity of Cloud Object Storage Services like Amazon S3 is ensured, the de-
sign of elastic and scalable file synchronization protocols is complex [2]. Among the major
challenges, we outline the following two issues: fine-grained programmable elasticity and effi-
cient change notification to millions of users.

The first challenge is related to the observation that scaling up some types of cloud appli-
cations is not straightforward using traditional VM resource utilization metrics (CPU, RAM,

Page 7 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

etc.) [3], because, for instance, they are not CPU or memory intensive, but I/O bound, as is
the case for file synchronization [2]. In those cases, it is better to rely on metrics such as the
average and message handling response times exhibited by VM instances to cope with the
varying demand. This implies that fine-grained elasticity management components must be
built for the synchronization service as argued in the paper.

The other challenge is that the high read-write ratio of file syncing services makes it
more suitable to make use of one-to-many push communication for rapid notification. Anal-
ogously, to efficiently maintain the consistency of files, any change performed elsewhere
must be advertised as soon as they occur to reduce conflicts [1], in particular, when a file is
susceptible to be modified by more than one client at the same time. This requires the file
syncing service to operate as quickly as possible to commit changes, along with an efficient
notification service to inform clients about file mutations.

To face the above challenges, we propose a novel architecture for elastic file synchroniza-
tion. The major contributions of our work are:

1. ObjectMQ: a lightweight framework for providing programmatic elasticity to distributed
objects using message queues as their underlying communication middleware. The
efficient use of indirect communication in our middleware removes the need for pre-
processing client stubs for scaling out and down, it provides transparent load balanc-
ing mechanisms based on queues, it simplifies one-to-many communications, and it
enables flexible programmatic elasticity based on queue message processing.

2. StackSync: an elastic file synchronization architecture decoupling metadata and data
flows in structured and object storage services. StackSync implements predictive and
reactive provisioning policies on top of ObjectMQ that adapt to real traces from the
Ubuntu One service. Furthermore, the ObjectMQ unicast and multicast communica-
tion primitives have considerably simplified the code of the synchronization protocol.
It also enables efficient change notification in a transparent way on top of the underly-
ing messaging service.

3. StackSync has been extensively tested using real traces from the Ubuntu One system to
validate its elasticity and efficient use of resources. Furthermore, we extended an open
benchmark [4] for Personal Clouds which provides trace generators and test scripts.
Using this benchmark, we compared our service with Dropbox, Box, OneDrive, and
Google Drive. StackSync is a stable open source project after two years of development
that is being used in several public institutions and data centers.

2.4.1 ObjectMQ

ObjectMQ is a framework which provides programmatic elasticity to distributed objects us-
ing a message queue system. In figure 6, we can see the basic architecture of our middleware,
from left to right:

• Client Stub: It allows to call a remote object by utilizing the MOM communication
layer. To make a remote call, the stub sends a message to a queue where the remote
object is subscribed. Further, every stub has its own queue to receive responses from
the server side.

Page 8 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

• MOM System: It is the communication layer between stubs and skeletons. Every stub
has its own queue to receive replies from remote objects. Figure 6 shows the two types
of queues a remote object is subscribed to. Specifically, the uppermost queue is a global
queue shared among all the different remote objects. The lower queues correspond to
the private queues where each individual object is listening to incoming calls.

• Remote Objects: They are remote objects that listen to the queues and execute RPCs.
To add a remote object instance into the system, our middleware provides the method:
bind(oid, remoteObject), which binds a particular object instance with the identifier oid.
Internally, ObjectMQ will create a queue called oid where the remoteObject will be able
to listen for new RPCs. If the queue already exists, the new instance will be simply
subscribed to the queue. This binding mechanism will help scale out the system by dy-
namically creating new objects and subscribe them to a particular named queue, with
the MOM system providing automatic load-balancing to all the objects subscribed to
the queue. Due to the fact that only one of the subscribed remote objects can consume a
specific message, i.e., the same message is not delivered to any other object, a separate
private queue for every object is needed to support multicast.

Figure 6: ObjectMQ architecture.

Figure 6 also illustrates the two types of remote invocations supported by ObjectMQ:
unicast and multicast. Unicast invocations, issued by Client1 and Client2 in this example,
are processed through the global queue. For this type of call, the MOM system will deliver
the RPC to the first remote object that is idle. In multicast invocations, issued by Client3 in
this example, the same RPC will be sent to all the private queues bound with the same oid,
i.e., Multi(N queues, 1 object per queue). More technically, as our current implementation
of ObjectMQ is built over the AMQP protocol [5], we simply use a type of exchange1 called
fanout exchange to support multicast. This type of exchange broadcasts all the messages it
receives to all the queues that have been bound to a specified name oid.

The major building blocks of our architecture are: (i) a lightweight communication layer
with small stubs and skeleton; (ii) novel communication primitives offering stateless one-
to-one and one-to-many synchronous and asynchronous invocations, and (iii) an extensible
provisioning model enabling third parties to create their own policies controlling the size of
server object pools.

1In the AQMP parlance, an exchange can be viewed as a mailbox, distributing copies of the message to one
or more queues according to specified bindings.

Page 9 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

2.4.2 Communication Layer

Our major aim is to create a minimalist communication layer delegating complex commu-
nications to the messaging services. The programming model must be simple and it must
completely hide queue and message management from developers. Our middleware avoids
any stub compilation or preprocessing phase thanks to the use of dynamic stubs. Although
we are inspired in Java RMI, we decided to create our own naming service and method
decorators in order to simplify the overall communication model.

Our middleware delegates as much responsibilities as it can to the underlying MOM sys-
tem. The underlying MOM system will be the responsible for balancing load while avoiding
the loss of messages. Further, it will help us implement a naming service for the objects. In-
spired by Java RMI, ObjectMQ also provides the methods bind, to bind a remote object to a
specified name, and lookup, to return the remote reference bound to a given name. However,
instead of using a centralized naming registry, we will use the queues to bind objects with
their identifiers. As a result, whenever a stub wants to interact with a remote object, it will
not need to look up the registry. Instead, it will suffice to know the name of the queue where
it wants to send a message. Let us explain these functions specified in the omq.Broker class:

• Broker.bind(oid, remoteObject): A call to this method binds a remote object with the iden-
tifier oid. Once done, the object will be ready to receive RPC requests. If necessary, a
queue named oid will be created to receive unicast invocations. It will also create a
unique private queue to receive multicast requests.

• Broker.lookup(oid, aClass): An invocation to this primitive will generate a Proxy object
for the class aClass. This Proxy will be used to submit messages to the queue named
oid and receive responses in the private queue of the client.

Observe that binding more than one object with the same identifier also means that the
load from the clients will be evenly distributed among multiple remote objects. This will
help us to scale up and down the service by adding and removing remote object instances
dynamically. In this case, there is no need to modify client stubs and they do not need to be
aware of changes in the pool of remote objects offering a service.

Let us show a simple HelloWorld example:

@RemoteInterface
public interface HelloWorld extends Remote {

@AsyncMethod
public void helloWorld() ;

}

Broker broker = new Broker(environment) ;
helloServer = broker.bind("hello" , new HelloServer()) ;

helloClient = broker.lookup("hello") ;
helloClient.helloWorld() ;

Figure 7: ObjectMQ HelloWorld example.

Page 10 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

As shown in the figure, developing remote objects using ObjectMQ is very simple. We
omitted here the connection parameters of the Broker object referring to the location of the
messaging service.

Since we aim to create a robust but very lightweight middleware, we do not provide
shared state or consistency mechanisms between distributed objects. If many servers with
the same identifier want to maintain consistent shared state, they should rely on a database
or consistent data store. We consider that consistency is not responsibility of our middleware
and that other services are ideally suited to this end. We also want to avoid any implicit or
transparent state between servers and prefer to bet on a simple stateless model.

2.4.3 Communication Primitives

In the development of our communication abstractions, we decided to treat the local and
remote entities separately, following the well known recommendation of Waldo et al. [6].
In ObjectMQ, remote object transparency is not desirable, because developers should be
aware of when they are using remote or local entities to program in a way that reflects the
indeterminacy and concurrency constraints inherent in the use of remote objects. For this
reason, ObjectMQ offers explicit mechanisms using method decorators to define method in-
vocation primitives. In particular, we offer three main invocation abstractions: asynchronous,
synchronous, and multi-calls. Let us define the three calls:

• @AsyncMethod: This is an asynchronous non-blocking one-way invocation where the
client publishes a message in the target object request Queue (QRequest). By default,
the client expects to receive no response and it is even not notified if the message was
handled correctly.

• @SyncMethod: This is a synchronous blocking remote call where the client publishes
a message in the target object request Queue (QRequest), blocking until a response is
received in its own client response queue (QResponse). This call can be configured with
a timeout and a number of retries to trigger the exception if the result does not arrive.

• @MultiMethod: This is a one-to-many invocation from one client to many servers. This
call can also be combined with @AsyncMethod or @SyncMethod. The former produces
a non-blocking multiple invocation to many servers, whereas the latter produces a
blocking multiple invocation that collects the results received from many servers in a
determined timeout.

On the one hand, asynchronous invocations fit seamlessly with the underlying asyn-
chronous messaging layer. They reduce the burden of handling messages and queues and
do not impose additional overhead in the communication. On the other hand, synchronous
invocation imply that the proxy will block during a timeout to wait for the result. Syn-
chronous calls in our model must traverse an intermediary (messaging server) that is not
needed in direct client-server models like Java RMI. This may impose a small communica-
tion overhead since messages must travel through the queues of server and client objects.
The benefit is that we delegate communication to the messaging layer, so the server object in
ObjectMQ cannot be saturated like in Java RMI, because our server layer only handles the
messages the server can process.

Page 11 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

<<abstract>>
Provisioner

supervisor : Supervisor

startProvisioner() : void
calculateAllocation() : void

PredictiveProvisioner

historicalWorkload : file[]

<<override>> startProvisioner()
<<override>> calculateAllocation()

ReactiveProvisioner

historicalWorkload : file[]

<<override>> startProvisioner()
<<override>> calculateAllocation()

Figure 8: Class diagram of the provisioning framework.

We also offer a new one-to-many communication primitive (@MultiMethod). In our
case, when many servers listen in the same identifier (queue) they can receive group calls
in a Multi queue. Since we rely on the one-to-many communication services of the mes-
saging layer, the system is very efficient and achieves good performance numbers (the
ones provided by the messaging layer). This abstraction has proven to be very useful for
group communication and it can be combined very easily with the previous abstractions
(@AsyncMethod, @SyncMethod).

Finally, an interesting advantage of one-to-many communications is the invocation of
methods in a dynamic group of servers that can grow or shrink due to elasticity decisions.
Let us explain how our middleware handles programmatic elasticity.

2.4.4 Programmatic Elasticity Framework

We have created an extensible framework that allows third-parties to create their own pro-
visioning policies of server object pools. Our model follows a Master/Slave architecture
where the Supervisor represents the centralized Master entity that takes care of enforc-
ing Provisioner’s policies by launching or removing server objects in RemoteBroker Slave
servers.

The Provisioner interface is the hotspot or extensible hook in our framework that must
be inherited to offer a new provisioning policy. For example, in figure 8, we can see the
predictive and reactive provisioners that we will explain in the next section. A Provisioner
may use information from the HasObjectInfo introspection class to take decisions on server
object provisioning. For example, it can observe that messages are not being processed at
the adequate speed and ask for another server instance. Or decide that one server is idle and
decide to suppress it.

In general, a provisioner will propose a number of server objects required to handle the
demand. The Supervisor is the responsible entity of enforcing the provisioning policy. It

Page 12 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

will launch (spawn) or remove (delete) server objects in RemoteBrokers.
RemoteBrokers are ObjectMQ servers that can launch or shutdown remote object servers.
The Supervisor uses multi call abstractions with RemoteBrokers for fault tolerance and in-
trospection information. It periodically ask them about the state of their object servers and it
maintains this information updated in HashObjectInfo object for provisioners. If the Super-
visor detects that one server failed or that the number of servers is not the one required by
the supervisor, it will then spawn or shutdown object servers. Of course, other technologies
may be used to spawn or shutdown available servers such as Apache Mesos.

One interesting advantage of our framework is that adhoc policies can be designed de-
pending on the target application. This offers a more fine-grained approach than the tradi-
tional coarse grained elasticity offered by cloud providers. We could also use variable like
CPU load or memory, but we can also adapt to message processing time in queues offered
by our middleware. If we want to enforce a determined processing time per server in an
application, we can easily design an adhoc provisioner to this end.

2.4.5 Elastic File Synchronization

Here we show how an application developer can tap into ObjectMQ to enable elastic scaling
in file synchronization. Existing commercial Cloud solutions typically fall back on observ-
able resource utilization metrics such as CPU and RAM to drive scaling decisions. For a
Personal Cloud system, however, these metrics are ill-suited, as one of the main driving
forces behind “live” file synchronization is to guarantee a maximum synchronization time.
This requires handling elasticity at the application level by exploiting the knowledge of the
application workload, so that it can be utilized a more versatile set of scaling mechanisms.

In what follows, we show how a Personal Cloud system can benefit from the simple pro-
gramming model of ObjectMQ to achieve elasticity in the file syncing protocol. Particularly,
we adopt the model of Urgaonkar et al. [7] for dynamic resource provisioning, though many
others could be chosen. The advantage of this model is that it makes use of both a predic-
tive and reactive approach, allowing us to prove the versatility of ObjectMQ. The goal of
the predictive method is to allocate resources on large time scales, of the order of days and
hours, while the reactive approach is used for shorter time scales, such as seconds and min-
utes. This allows the system to correct prediction mistakes made by the predictive model,
such as unpredictable “flash crowd” patterns. Actually, the predictive method is very use-
ful for online file synchronization. As reported by several independent studies [1, 8, 9] ,
Personal Cloud systems exhibit strong diurnal and weekly patterns. This allows the predic-
tive provisioning method to allocate servers well ahead of the expected workload peak, and
dramatically reduce the odds for clients to experience degraded performance. Indeed, the
effectiveness of predictive provisioning will be shown to be very high in our trace-driven
experiments with the UB1 cloud-based file syncing service, confirming our intuition that
predictive resource provisioning is ideally suited for Personal Cloud systems.

As we set out to enable elasticity for control flows in this work, we assume that the
SLA is specified in terms of a suitable high percentile of the response time distribution. We
denote this value as d. For instance, a SLA may specify that 95% of the commit requests
should incur an end-to-end response time of no more than 5 seconds. As in [7], we assume
that all the different instances of the SyncService run in homogeneous machines and model

Page 13 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

each synchronization server as a G/G/1 queuing system, to allow for an arbitrary arrival
distribution and arbitrary service times. This enables our elastic scaling scheme to adapt
gracefully to changes in the workload intensity caused by time-of-day effects, or even time-
of-hour effects. By well-known formulae, the rate δ at which a synchronization server can
process commit requests can be simply computed as:

δ ≥
[

s +
σ2

a + σ2
b

2(d − s)

]−1

, (1)

where s is the average service time for a commit request, and σ2
a and σ2

b are the variance
of interarrival time and the variance of service time, respectively.

Observe that d is known, while s as well as the variance of interarrival and service time σ2
a

and σ2
b can be monitored online and adjusted correspondingly. By substituting these values

into (1), we can obtain a lower bound on the request rate δ that can be serviced by a single
server. Once the capacity of a single server is known, the number of required instances η to
service a peak request rate of λ can be simply obtained as:

η =

⌈
λ

δ

⌉
. (2)

Depending on the value of η and the current number of instances of the SyncService, the
Supervisor will decide to add or remove instances to preserve the performance in response
to varying workloads. In practice, the decision of scaling up and down will be performed
periodically, once every t time units, to avoid unnecessary oscillations. We will denote by
λobs(t) the actual arrival rate seen during the time interval t. Note that the value of λobs(t)
can be obtained very easily in our file-sync architecture, since all the commits are queued in
a single request queue, as shown in figure. 9.

Figure 9: Message broker communication flow.

Predictive Provisioning

This technique uses a workload predictor to anticipate the peak demand over the next
time period, and then uses (2) to determine the number of instances that are needed to meet
this peak demand. Concretely, the predictor estimates the peak demand that will be seen
over the next period of T time units, at the beginning of each period. To do so, it maintains a
history of the observed arrival rate for each time period t of duration T over the past several

Page 14 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

days. From the history, the predictor then derives the probability distribution of the arrival
rate for that time period. The peak workload λpred(t) for a particular period t is finally
estimated as a high percentile of the arrival distribution for that period.

Reactive Provisioning

Even in the case that predictive provisioning was perfect, sudden spikes or “flash crowds"
are unpredictable phenomena. To react to unforeseen events, reactive provisioning acts on
shorter time scale to handle short term fluctuations. Basically, it compares the current ob-
served arrival rate λobs(t) over the past few minutes to the predicted rate λpred(t). Specifi-

cally if λobs(t)
λpred(t)

> τ1 or drop rate τ2, then corrective action is necessary. In this case, it recom-
putes the number of instances by invoking (2).

2.4.6 Conclussions

A core contribution of our architecture is to rely on a lightweight communication frame-
work for providing programmatic elasticity to distributed objects using message queues as
their underlying communication middleware. StackSync implements predictive and reac-
tive provisioning policies on top of ObjectMQ that adapt to real traces from the Ubuntu One
service. Also, the ObjectMQ unicast and multicast communication primitives have consid-
erably simplified the code of the synchronization protocol. It also enables efficient change
notification in a transparent way on top of the underlying messaging service.

StackSync provides a reference implementation and useful tools for rapid prototyping
and evaluation. It has been extensively tested using real traces from the Ubuntu One sys-
tem to validate its elasticity and efficient use of resources. Furthermore, extending an open
benchmark [4] of Personal Clouds, we obtained good results comparing our service with
Dropbox, Box, and OneDrive. StackSync is a stable open source project after two years of
development that is being used in several public institutions and data centers.

Finally, an interesting open question is if our model and invocation abstractions can be
generalized for offering programmatic elasticity to cloud applications. Since major cloud
providers already offer scalable messaging services, it could be possible for them to of-
fer equivalent programmable middleware and abstractions on top of their infrastructures.
Messaging services could then become part of the existing load balancing fabric in the data
center.

Page 15 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

3 NEC

3.1 Introduction

This section intends to be a detailed guide about the interoperability protocol of CloudSpaces
in NEC’s personal cloud called Cloud Storage. It also describes the interoperability process
through screenshots, examples and all necessary calls with its parameters for its proper op-
eration.

3.2 Interoperability

The interoperability protocol used by NEC Cloud Storage is divided into three steps ex-
plained below.

• User invitation

• Invitation acceptance

• Access credentials

3.2.1 User invitation

User sends an invitation

A user of NEC Cloud Storage wants to share a file or folder with another user. Therefore,
the user logs into its NEC Cloud Storage account, selects the file or folder he/she wants to
share, and enters the email of the user.

Figure 10: File sharing options

Page 16 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

The invitee will receive an email indicating the intention of the user from NEC Cloud
Storage to share a file or folder with him/her and a link to a website located in NEC Cloud
Storage.

Figure 11: Example of a mail with the sharing proposal

The recipient selects its Personal Cloud

The user who has received the email clicks on the link and is redirected to a NEC Cloud
Storage page (as the sharing proposal was originated by NEC Cloud Storage the link points
to this site), where the user is asked to select a Personal Cloud from a list of services that
have an agreement with NEC Cloud Storage. In this case, as an example, the user will select
StackSync, because it already has an account on this Cloud.

Figure 12: File list screen

In the image above, the user can see the file that someone has shared with him/her. On
the right top of the image, the user will be able to choose the Personal Cloud wished.

Page 17 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 13: Choosing the preferred personal cloud

Creating the interoperability proposal

At this time, NEC Cloud Storage creates the interoperability proposal by sending an
HTTP POST request to StackSync’s share URL (in this example case, another instance of
NEC Cloud Storage) previously established and that we have saved.

POST /AdvancedFeatures/ExternalSharingProposal.aspx

Parameter Type Description
share_id string A unique value that identifies the interoperabil-

ity proposal. This is autogenerated with a GUID
format.

resource_url string An absolute URL to access the shared resource
located in NEC Cloud Storage.

owner_name string The name corresponding to the owner of the
folder.

owner_email string The email corresponding to the owner of the
folder.

resource_name string The name of the folder or file.
permission string Permissions granted to the recipient. Options are

read-only and read-write.
recipient string The email corresponding to the user who the

folder has been shared with.
callback string An absolute URL to which the destination Pri-

vate Cloud (e.g. StackSync) will redirect the user
back when the invitation step is completed.

protocol_version string MUST be set to 1.0. Services MUST assume the
protocol version to be 1.0 if this parameter is not
present.

3.2.2 Invitation acceptance

The user accepts the invitation

StackSync (in this case NEC Cloud Storage) displays the details of the file or folder share
invitation to the recipient and asks for its credentials and explicit permission to accept the

Page 18 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

invitation.

Figure 14: Providing user credentials and accepting/denying the sharing proposal

Returning the proposal response

Once StackSync (2nd instance of NEC Cloud Storage) has obtained approval or denial
from user, StackSync will use the callback obtained from request above to inform NEC Cloud
Storage about the user decision. Then, StackSync uses the callback to construct an HTTP
GET request, and directs the User’s web browser to that URL.

GET /AdvancedFeatures/ExternalSharingProposal.aspx

Parameter Type Description
share_id string A unique value that identifies the interoperabil-

ity proposal.
accepted string A string indicating whether the invitation has

been accepted or denied. true and false are the
only possible values.

3.2.3 Access credentials

Granting access to the service

When NEC Cloud Storage receives the proposal result, firstly it validates these data and
then generates the access credentials. Finally, it sends an HTTP POST request to StackSync
where the resource will be displayed.

NEC Cloud Storage specifies what type of authentication protocol and version must be
used to access the resource. In this case, the authentication protocol used is OAuth 1.0a
and, at this point, NEC Cloud Storage web module initiates a standard OAuth process to
generate the required token that will be sent to the second Personal Cloud. For this purpose
a specific module for processing OAuth authentication mechanism has been included which
provides both consumer and provider implementations.

To this end, the second Personal Cloud must check the auth_protocol and auth_protocol_version

Page 19 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

parameters, and also the specific parameters that will be included in the request. This infor-
mation will be used when user will try to access to the shared resources.

POST /Files.aspx

Parameter Type Description
share_id string A unique value that identifies the interop-

erability proposal.
auth_protocol string The authentication protocol used to access

the shared resource (e.g.oauth).
auth_protocol_version string The version of the authentication protocol

(e.g. 1.0a).

Other authentication-specific parameters are sent together with the above parameters,
these parameters may include values like tokens, timestamps or signatures which will be
necessary to get and perform the actions with the resource depending on the kind of au-
thentication protocol used.

Figure 15: Shared folder appears on user’s file list

In the image above, Stacksync (2nd instance of NEC Cloud Storage) shows the shared
resource. To be able to access to the resource is necessary to use the tokens sent in last step.

3.3 Sequence diagram

Here we can see a complete workflow of the interoperability protocol where a NEC Cloud
Storage user (User A) shares a file or folder with an external Personal Cloud user (User B).

Page 20 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 16: NEC user sharing a folder with an external personal cloud user

Also, we can see an example where an external Personal Cloud user (User A) shares a
resource with a NEC Cloud Storage user (User B).

Page 21 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 17: An external user sharing a folder with a NEC user

Page 22 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

4 EyeOS

4.1 Introduction

eyeOS is a web platform that provides a remote virtual desktop for the end user.

The overall user experience is strongly influenced by the classic desktop design, widely
known thanks to the most popular operating system on the market. eyeOS Personal Web
Desktop includes several features such as: file manager, contacts, groups and other collab-
orative capabilities. eyeOS Personal Web Desktop is a disruptive technology that fits in
perfectly with the CloudSpaces Open Personal Cloud paradigm.

One of the key values that eyeOS provides is the possibility to work directly with files in
the cloud. eyeOS does not require users to manually download any files onto their computer
nor is it necessary to install anything locally, so the experience is totally transparent: users
just log into a website and start working with their files normally.

Furthermore, eyeOS lets you add additional services and applications within the web
desktop, so that all the company or organization’s web resources are available within a
single controlled environment that can be accessed using single sign-on.

By combining eyeOS’ web file management capabilities with Personal Cloud, users can
access their Personal Cloud contents via web, with a user experience very similar to local
desktop environments.

4.2 Authentication

The eyeOS platform uses OAuth authentication in order to interact with the user’s protected
data stored in Personal Cloud. OAuth is an authorization protocol that enables the user
(resource owner) to authorize eyeOS to access the resources on their behalf without giving
eyeOS their authentication credentials i.e. user name and password.

Page 23 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 18: eyeOS authentication

When the eyeOS user accesses the file manager for the first time, a newly developed
plugin is used to get a security token with which the keys required for interacting with user
data stored in Personal Cloud can be obtained. The Access Token and Token Secret keys are
stored in the ‘token’ table of the relational database management system (RDBMS) based on
MySQL. These keys are linked with the user who has logged into the platform, meaning the
system can determine the access token for a given user who attempts to use the service at
any stage.

The communication flow is as follows:

Page 24 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 19: eyeOS OAuth flow

Step 1:

Request from StackSync the consumer key and secret token that identifies eyeOS as the
CloudSpaces resource consumer.This communication is done via email.

Step 2:

Get the request token and provide StackSync with the redirect URL to eyeOS once the
user grants authorization. StackSync responds to the previous request by giving a valid
request token and an authorization URL.

Step 3:

Redirect the user to the authorization URL where the user grants eyeOS access to their
private space. Once StackSync verifies the user, it redirects the user to the eyeOS URL pro-
vided in the previous step.

Step 4:

Get the access token and token secret from StackSync, with which eyeOS will identify
itself when accessing the user’s private space in CloudSpaces.

Authentication is implemented in eyeOS according to the diagram below:

Page 25 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 20: eyeOS authentication implementation

The OAuth Manager and OAuth API functions are given in the GitHub repository 2.

If the user has not previously granted eyeOS access to their CloudSpaces private space,
when they access the file manager, the authentication process is initiated, as shown in the
following screens:

2https://github.com/cloudspaces/eyeos-u1db#implementation-of-stacksync-api-into-eyeos

Page 26 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

• The user is asked if they want to grant eyeOS access to their protected data.

Figure 21: StackSync connect screen

• If the user selects “No”, the eyeOS file structure is shown without the StackSync direc-
tory, which contains the user’s protected data in CloudSpaces.

Figure 22: eyeOS file browser

• If the user selects “Yes” in the first screen of the process, communication is established
with StackSync to get the access token.

Page 27 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 23: StackSync waiting screen

• A new browser window is pops up in which the user is redirected to the authorization
URL received from StackSync. Here the user authorizes eyeOS to access their private
space.

Figure 24: StackSync login website

• Once access has been authorized, StackSync redirects the user to the URL provided by
eyeOS on requesting the request token. This page notifies the user that the process has
been completed successfully and that they can return to the eyeOS desktop.

Page 28 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 25: eyeOS authentication callback

• The access token for the current eyeOS user is saved. From this moment, the user can
access their protected data from the StackSync directory without having to authenti-
cate again.

Figure 26: eyeOS file browser with StackSync folder

During the authentication process, various exceptions may be triggered, which interrupt
the process to get the access token. These errors are described below:

• Communication error. This may occur on sending or receiving data from StackSync.

Page 29 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 27: StackSync communication error

• Timeout exceeded for receiving the user’s authorization to access their private space.
eyeOS establishes a timeout of 1 minute. The process to request the request token can
be restarted or interrupted.

Figure 28: StackSync timeout error

• Access denied as an invalid access token was sent to StackSync. The access token
does not expire and is stored permanently in eyeOS. This error occurs when the users
deletes the access token from the StackSync portal.

Page 30 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 29: StackSync access denied error

Page 31 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

4.3 Integrated File Management

Within the eyeOS Personal Web Desktop, one of the key features of the platform is file man-
agement. eyeOS includes a web file manager developed in JavaScript, HTML and CSS that
enables users to manage all their files directly from their browser, but with an experience
similar to a file manager of any desktop operating system, such as Microsoft Windows™ or
GNU/Linux.

Figure 30: eyeOS file browser

By integrating Personal Cloud services in the eyeOS platform, users can use eyeOS’ web
file manager and all its features with their Personal Cloud files. For example, users can
display online their documents saved in their Personal Cloud, create directories, move files,
share documents, etc.

Users access the files in their Personal Cloud using the StackSync directory. To get the
file and directory structure of Personal Cloud, a call is made to StackSync’s API. This call
returns metadata with all the structural information of the files and directories, which eyeOS
uses to generate a local replica.

The files and directories are created without content. When the user selects an element
and performs an operation on it, i.e. opens, moves or copies it, the element’s contents are
downloaded. By doing this, the system is not overloaded unnecessarily by retrieving infor-
mation that the user will not use at that moment. If the content of a file or directory has
already been retrieved and there are no changes, it will not be updated.

Page 32 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 31: eyeOS StackSync folder

The file manager can retrieve previous versions of a file. It shows a list of all the available
versions of the file, letting the user retrieve the contents of the desired version.

Figure 32: eyeOS file history

If the user makes changes to a previous version, when those changes are saved, a new
version is created in Personal Cloud.

Page 33 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 33: eyeOS retrieve older version

The contents of the current directory are synced with the Personal Cloud directory in a
background process, which sends queries every 10 seconds to check whether there are any
changes. If there are any changes, the current structure is updated.

Figure 34: eyeOS folder updates

Page 34 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

4.4 Storage

To integrate the Personal Cloud storage service within eyeOS, the Storage Manager and the
Storage API have been created. The Storage API communicates with the StackSync API v2,
which manages all the requests made from the file manager.

Storage is implemented in eyeOS according to the diagram below:

Figure 35: eyeOS storage sequence diagram

The user performs an action in the file manager, such as opening a directory. The Stor-
age Manager using the getMetadata function retrieves the user’s access token and id for the
directory in StackSync. These values are sent to the API, which is responsible for requesting
the resource from StackSync using the getMetadata function. The file structure of the direc-
tory is retrieved and stored in the database, and the Manager is notified of the new structure,
which will update the eyeOS interface.

The getMetadata functions of the Storage Manager and the Storage API, as well as the
other actions performed by the file manager,are described in more detail in the GitHub
repository 3.

3https://github.com/cloudspaces/eyeos-u1db#implementation-of-stacksync-api-into-eyeos

Page 35 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

4.5 Persistence

eyeOS Calendar and the comments tool of the file manager store data in a U1DB database.

Figure 36: eyeOS persistence architecture

U1DB is a database API to sync JSON documents that was created by Canonical. It lets
applications store documents and synchronize them between machines and devices. U1DB
is designed to work anywhere, acting as a storage backup for native platform data. This
means it can be implemented on any platform, from different languages, providing backup
and sync services between platforms.

The U1DB API contains three sections: document storage/retrieval, querying and syn-
chronization. A short description of their operation is given below.

Document storage/retrieval

U1DB stores documents, basically any information that can be expressed in JSON.

Document storage and retrieval functions are described in more detail in the GitHub
repository 4.

Querying

Querying in U1DB is done using indexes. To retrieve certain documents from the database
according to specific criteria, first you must create an index and then query this index.

4https://github.com/cloudspaces/eyeos-u1db#storagerecovering-documents

Page 36 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Querying functions are described in more detail in the GitHub repository 5.

Synchronization

U1DB is a syncable database. Any U1DB database can be synced with a U1DB server.
Most U1DB installations can be run as server.

Syncing the server and the client updates both sides so that they contain the same data.
Data is saved in local U1DBs, whether online-offline, and then synchronized when online.

Figure 37: eyeOS persistence communication

Synchronization functions are described in more detail in the GitHub repository 6.

4.5.1 Implementing OAuth

To sync eyeOS Calendar and the comments tool applications, authentication must be done
with the server using the OAuth protocol.

The OAuth server provides access to a unique protected resource, the U1DB server. The
eyeOS platform implements the Credentials.py script, which contains the APIs required for
communicating with the OAuth server.

The communication dialog is as follows:

5https://github.com/cloudspaces/eyeos-u1db#queries
6https://github.com/cloudspaces/eyeos-u1db#synchronization

Page 37 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 38: eyeOS persistence OAuth flow

Step 1:

API getRequestToken() gets the consumer key and consumer secret from the settings. It
then makes a call to the OAuth server using the "request_token" URL.

The OAuth server retrieves the consumer key from the database and compares it with the
consumer key received. If the keys do not match, it returns an error; otherwise, it performs
a new search in the database using the consumer key to get the request token.

The OAuth server responds to the eyeOS call, returning the request token and access
verifier to request the access token.

The eyeOS platform stores the request token and the verifier in the session variables so
that it does not have to repeat the process in subsequent steps.

Step 2:

API getAccesToken(token,verifier) makes a call to the OAuth server through the “ac-
cess_token” URL.

The OAuth server retrieves the consumer key and request token from the database and
compares them with those received from getAccessToken(). If they do not match, it returns
an error; otherwise, it performs a new search in the database with the consumer key and
request token to get the access token. If no data is obtained or the data obtained has expired,
a new access token must be generated and stored in the database, which means that previous
tokens will no longer have access.

The OAuth server responds to the eyeOS call, returning the access token.

Step 3:

API protocol(params) calls the OAuth server via the U1DB synchronization API.

The OAuth server retrieves the access token from the database using the consumer and

Page 38 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

token received. If they do not match, it returns an error; otherwise, it syncs with the U1DB
server.

Step 1 only applies where a request token has not been requested during the eyeOS user
session.

Authentication implemented in both applications is requested for each resource request.
The request process flow is illustrated in the following diagram:

Figure 39: eyeOS persistence sequence diagram

OAuth Manager and OAuth API persistence functions are given in the GitHub reposi-
tory 7.

4.5.2 Integrating Persistence in eyeOS Calendar

Calendar and event sync processes are performed when eyeOS Calendar is opened.

Calendars are synced every 20 seconds. If any changes are detected, the calendar list is
refreshed and the waiting time is reset.

Events are synced every 10 seconds. If any changes are detected, the events of the period
shown on screen are refreshed and the waiting time is reset.

Persistence in implemented in eyeOS according to the diagram below:

7https://github.com/cloudspaces/eyeos-u1db#implementation-of-u1db-into-eyeos-calendar

Page 39 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 40: eyeOS persistence calendar sequence diagram

The user performs an action on the calendar, such as adds an event to a specific calendar.
The Manager uses the insertEvent function to retrieve the user’s credentials. These values
are sent to the API together with the data of the new event. The API is responsible for
requesting the resource from the U1DB server using the insertEvent function.

If everything is correct, the U1DB server updates the server database and subsequently
notifies other clients of the change. The API receives confirmation of the change and applies
it to the client U1DB database. Once the updates have been made, it notifies the Manager,
which modifies the local calendar tables and updates the eyeOS interface.

The insertEvent functions of the Calendar Manager and the Calendar API, as well as
the other actions performed by the calendar, are described in more detail in the GitHub
repository 8, respectively.

4.5.3 Integrating Persistence in eyeOS Comments Tool

The comments tool is only valid in the user’s Personal Cloud because it is a collaboration
resource between StackSync and eyeOS.

The user accesses the comments tool when they select a Personal Cloud file or directory
in the file manager and then clicks the “Comments” tab in the right toolbar (social bar).

8https://github.com/cloudspaces/eyeos-u1db#implementation-of-u1db-into-eyeos-calendar

Page 40 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 41: eyeOS file comments

The comments tool lists all comments inserted for a specific element, both those from the
element’s owner and from other users who have been given privileges to access the element.

The data given in a list comment is:

• name of the user who made the comment

• creation date/time

• text entered.

Example:

User stacksync2
Date / time 04/07/2014 13:02
Text Welcome 3

Other actions that can be performed include insert new comments with the “New” op-
tion or delete existing comments with the “Delete” option. The delete option is restricted;
only comments made by the user in question can be deleted. Users cannot delete comments
made by others.

Page 41 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 42: eyeOS file comments

The comments list is not refreshed, as there is no background process that enables new
comments to be displayed automatically.

Persistence is implemented in the eyeOS comments tool according to the diagram below:

Figure 43: eyeOS comments sequence diagram

The user performs an action, such as inserts a new comment in the list. The Manager
using the createComment function retrieves the user’s credentials. These values are sent to
the API together with the data of the new comment. The API is responsible for requesting
the resource from the U1DB server using the createComment function.

If everything is correct, the U1DB server updates the server database and subsequently
notifies other clients of the change. The API receives confirmation of the change and applies
it to the client U1DB database. Once the updates have been made, it notifies the Manager,
which will update the eyeOS interface.

The createComment functions of the Comment Manager and the Comment API, as well
as the other actions performed by the comments tool.

Page 42 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

4.6 Share

To share folders and their contents among users of the same or different Personal Clouds,
the Share tool is implemented in the file manager.

The user can access the tool by selecting a Personal Cloud directory and then clicking the
“Activity” tab in the right toolbar (social bar).

Figure 44: eyeOS sharing feature

This tab lists all users that can access and manage the active directory. Furthermore it
indicates who is the owner of the directory.

Where the directory is not shared, only the directory owner is displayed.

Figure 45: eyeOS not shared folder

If the user wants to share or add more users to the sharing list, they must right click
on the directory to open a contextual menu and then select the “Share” option. When they

Page 43 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

select this option, a form appears in which they need to enter the email addresses of the
people with whom they want to share the directory. Once the form has been completed, the
data is sent to StackSync. If the operation is done successfully, the form closes. When the
user accesses the “Activity” tab of the directory again, they will see the new users added to
the list.

Figure 46: eyeOS sharing dialog

Figure 47: eyeOS shared folder

The list of users sharing the directory is not refreshed, as there is no background process
that enables new users to be displayed automatically.

Directory sharing is implemented in eyeOS according to the diagram below:

Page 44 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 48: eyeOS sharing sequence diagram

The user performs an action in the file manager, such as lists the users who have access
to the directory. The Manager using the getListUsersShare function retrieves the user’s
access token and the id of the directory in StackSync. These values are sent to the API,
which is responsible for requesting the resource from StackSync using the getListUsersShare
function. It receives the list of users and then it notifies the Manager, which will update the
eyeOS interface.

The getListUsersShare of the Share Manager and the Share API, as well as the other
actions performed by the Share tool.

Page 45 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

5 Tissat

Next, we detail the tasks performed by Tissat, which have allowed us to improve safety,
efficiency and potential by leveraging the proposed solution on OpenStack.

5.1 Migrating from Keystone v2.0 to v3

As Tissat is a cloud provider, we need to be able to grant administrative privileges to our
customers so that they can manage their own resources (i.e. containers, tenants, user ac-
counts).

Unfortunately, on Keystone v2.0, the "admin" role has a global scope that allows a user
with admin privileges on a specific tenant to erase other tenants.

Since Tissat has active customers that need to have admin privileges to create their own
users, we had to overcome this drawback where a customer could delete other customer’s
data. Causing an obvious security concern.

Even though this issue was solved in later releases of the Stacksync Server through a
change in stacksync’s user data mapping scheme. The change involved going from a tuple
"tenant: user" to a "stacksync_tenant:user_container" scheme, where all users have a con-
tainer under the same tenant.

Another challenge that we faced was the fact that system administrators did not want to
grant a "stacksync admin user" with a ResellerAdmin role. This role was necessary in order
to change the quota and other attributes on Stacksync, but it could lead to a situation where
an "stacksync admin user" could actually delete other user’s data.

At that point, we solved the problem by adopting Keystone v3 for our cloud infrastruc-
ture and using a domain-based approach. This way we could differentiate entities where
administrative users could not interfere with other resources belonging to other users/cus-
tomers. So we are currently using Keystone v3 coupled with StackSync Server v0.4.4 on our
main environment.

5.2 Secure our Stacksync platform with SSL

Given the fact Stacksync clients transfers potentially private data, we must ensure that data
is transmitted safely over an insecure network such as the Internet.

We can identify three phases on the Stacksync workflow where data could be sent in
plaintext and therefore exposed to attack. These are: 1) the Keystone authentication process;
2) the Swift file transfer; and 3) the RabbitMQ metadata transfer.

Our solution was to set up SSL on all services that involve data transfers over the Inter-
net. At this moment, we have already configured Keystone and Swift to work over SSL and
guarantee our user’s privacy.

Page 46 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

We are working on the RabbitMQ setup to enable SSL, but it requires some actions to be
taken in StackSync to be able to adapt it to this new scenario.

5.3 Development of group-based membership for Stacksync users

The ability to organize users into groups or departments makes it easier to handle the quota
management, allowing the existence of administrators group, which can manage users and
their available space using StackSync.

For instance, a group URV would manage a limited amount of storage space, and the
organization would have an administrative user that would create and delete users and
assign quotas to their users.

The following use case shown in figure 49 presents a situation where a "Cloud admin"
user creates groups and grants "Group admin" privileges to a certain user.

Figure 49: Group permission

Since StackSync is an evolving platform, we tried to decouple the current user scheme as
much as possible from our group development. In the following diagram, we present the
StackSync group application model.

Page 47 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 50: StackSync group application model

5.4 Development of a group-based quota web application

Because generating administration sites for our group managers is a repetitive work, we
want to provide an easy way to perform these tasks. For that reason, we have chosen the
Django framework to automate the user creation using StackSync through the admin inter-
face.

Our work was mainly focused on restricting that groups could not interfere with other
group users.

For each model class we have implemented the corresponding ModelAdmin class, in order
for the Django admin interface to work properly.

If we go back to our use case where a group/company would use certain amount of
storage space. They could have some administrative user to create and delete users, and
assign quota to their users. We need to follow these steps to complete these task.

• Create a Group Admin with the StackSync permissions

Page 48 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

• Create StackSync Group with a specific quota

• Now the group/customer manager can access as an admin to create his own users,
memberships, and quotas.

In this use case, the manager creates a user, then creates a membership and at last
creates a quota.

5.5 Migrate web interface back-end from PHP to Python

The initial prototype of the web interface was created in PHP because it was considered ap-
propriate to use a single programming language for all development environments, making
it easier for the community by limiting the number of programming languages.

Page 49 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

During our development with PHP we encountered issues when having to interact with
OpenStack products. We had to use 3rd party framework and connectors that were not
widely supported. Therefore, we soon realized that changing the programming language
to Python could boost the development progress by using official OpenStack libraries and
connectors.

As the application was still in an early stage and the development team had already
worked with Python and the Django framework in previous projects, we decided to mi-
grated the application to the new language.

The Django framework enabled us to use a powerful scaffolding system that could help
us develop simple applications in a very easy and rapid way.

In order to interact with StackSync, we developed a web client and an administrative
interface using freely distributed components.

At this moment, we have an easier codebase with lesser dependencies and more testing
since we are using standard and official tools.

5.6 Refactoring of Stacksync web client

In the next figure we show the new user interface, where users can see their storage quota,
in case it has been defined.

Figure 51: StackSync web client

As seen in figure 51, we have also developed a functionality to share a folder through the
web client. A user will be asked to provide the email of the user she wants to invite to the
folder.

Page 50 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 52: StackSync web client share functionality

5.7 StackSync support for ownCloud

We have started the integration studies for sharing between ownCloud and Stacksync plat-
forms.

We have configured an ownCloud server 7.0.2 to use Openstack Swift as storage backend,
we tested it in order to analyze if it worked properly with the CloudSpaces infrastructure,
and it was determined that in order for ownCloud’s synchronization to work properly, we
needed to update its database to a development version (daily build).

When using ownCloud, we first uploaded a file to a web server running ownCloud, and
after that, the server uploaded the file to the Swift container.

When you downloading a file, ownCloud first retrieves the file from Swift, stores it in a
temporary folder in the web server, and then servers it to the user.

In order to create a StackSync implementation, we only need to replace the native up-
load/download/delete /list file operations for the corresponding StackSync calls.

We have chosen to compare with Opencloud Swift, which is the current Openstack li-
brary for OwnCloud. We have documented how to replace regular Swift calls with their
StackSync equivalents.

In the following diagram, we compare the current functionalities of Owncloud, and how
it would look when running on StackSync.

Page 51 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 53: StackSync functionalities

5.8 Development of StackSync iOS app

We have developed and published in the App Store the official StackSync application for
iPhone and iPad. So that users of this platform can securely access to their files.

Page 52 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

Figure 54: StackSync iOS app

This prototype application extends the growth potential of the solution, in addition to
serve as a basis for developing more advanced versions incorporating file sharing and also
new functionalities and advanced services for the platform.

Page 53 of 54

FP7-ICT-2011-8 STREP
15-10-2014 CloudSpaces

References

[1] I. Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and A. Pras, “Inside dropbox:
Understanding personal cloud storage services,” in Proc. of ACM Internet Measurement
Conference (IMC), 2012, pp. 481–494.

[2] “How we have scaled dropbox,” https://www.youtube.com/watch?v=PE4gwstWhmc.

[3] K. Jayaram, “Elastic remote methods,” in ACM/IFIP/USENIX Middleware 2013, 2013,
pp. 143–162.

[4] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking personal cloud
storage,” in Proc. of ACM Internet Measurement Conference (IMC), 2013.

[5] OASIS, “Amqp: Advanced message queueing protocol,” http://www.amqp.org/.

[6] S. C. Kendall, J. Waldo, A. Wollrath, and G. Wyant, “A note on distributed computing,”
Mountain View, CA, USA, Tech. Rep., 1994.

[7] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dynamic pro-
visioning of multi-tier internet applications,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 3, no. 1, pp. 1:1–1:39, 2008.

[8] R. Gracia-Tinedo, M. Sánchez-Artigas, A. Moreno-Martínez, C. Cotes-González, and
P. García-López, “Actively Measuring Personal Cloud Storage,” in Proc. of IEEE
CLOUD’13, 2013, pp. 301–308.

[9] H. F. Songbin Liu, Xiaomeng Huang and G. Yang, “Understanding data characteristics
and access patterns in a cloud storage system,” in Proc. of IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGRID), 2013, pp. 327–334.

Page 54 of 54

https://www.youtube.com/watch?v=PE4gwstWhmc
http://www.amqp.org/

	Executive summary
	StackSync
	Introduction
	Sharing
	Interoperability
	Elasticity
	ObjectMQ
	Communication Layer
	Communication Primitives
	Programmatic Elasticity Framework
	Elastic File Synchronization
	Conclussions

	NEC
	Introduction
	Interoperability
	User invitation
	Invitation acceptance
	Access credentials

	Sequence diagram

	EyeOS
	Introduction
	Authentication
	Integrated File Management
	Storage
	Persistence
	Implementing OAuth
	Integrating Persistence in eyeOS Calendar
	Integrating Persistence in eyeOS Comments Tool

	Share

	Tissat
	Migrating from Keystone v2.0 to v3
	Secure our Stacksync platform with SSL
	Development of group-based membership for Stacksync users
	Development of a group-based quota web application
	Migrate web interface back-end from PHP to Python
	Refactoring of Stacksync web client
	StackSync support for ownCloud
	Development of StackSync iOS app

