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1 Executive summary

The purpose of the present CloudSpaces project’s deliverable D2.4 (Reference implementa-
tion of architectural building blocks) is twofold. Firstly, we describe the final architecture of
StackSync. Secondly, we present an analysis of the Ubuntu One (U1) trace.

In Section 3, we explain in detail all the basic components of the final StackSync architec-
ture released. During the project, StackSync has been used to validate essential contributions
such as the Personal Cloud interoperability between StackSync and NEC, the privacy-aware
data sharing developed by EPFL or the adaptative personal storage created by Institute Eu-
recom. In this section we also review the changes that we introduce in the architecture
during the project.

In Section 4 there is a complete guide to install the basic components of StackSync, while
in Section 5 we explain how to install and configure the StackSync website and the REST
API.

Finally, the analysis of the U1 trace is described in Section 7. In this section, we first
explain in detail the U1 architecture. Next, we deeply analyse the storage workload, the
users’ behaviour and the metadata back-end performance.
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2 Introduction

In the last few years, we have seen how the market of cloud storage is growing rapidly.
Despite the rush to simplify our digital lives, many of the commercial Personal Clouds in
operation today like Dropbox are proprietary, and rely on algorithms that are invisible to the
research community, and what is even worse, existing open source alternatives fall short of
addressing all the requirements of the Personal Cloud. Next we discuss the existing open
source solutions for the Personal Cloud, namely SparkleShare, ownCloud and Syncany.

SparkleShare1 is built on top of Git, using it as both its storage and syncing back-end.
SparkleShare clients use push notification to receive changes, and maintain a direct connec-
tion with the server over SSH to exchange file data. When a client is started, it connects to
a notification server. The notification server tells the other clients subscribed to that folder
that they can pull new changes from the repository after a user change.

Using Git as the storage back-end is a double-edged sword. While Git implements an
efficient request method to download changes from the server (git pull command), avoiding
massive metadata exchanges between server and clients, it is not prepared to process large
binary files. Also, this architecture tied to the Git protocol is also difficult to scale and deploy
in cloud environments.

ownCloud2 is the most famous open source Personal Cloud and they have an active
community. We refer here to the Community Edition of ownCloud, since their enterprise
edition is not available to the public. In ownCloud, clients communicate with the server
following a pull strategy, i.e. clients ask periodically to the server for new changes. There are
two types of data traffic: data and metadata. For data exchange, ownCloud uses a REST API;
however, metadata traffic is transferred using the WebDAV protocol. Because both types of
traffic are processed by the same server, data and metadata traffic are completely coupled.

Unfortunately, ownCloud is not an extensible and modular framework like StackSync. In
this line, the ownCloud developer community is mainly working around the web front-end.
Although we will devote a subsection to ownCloud in the validation, we can advance that
their inefficient pull strategy with massive control overheads is not scalable. Furthermore,
their sync flows and data flows are tightly coupled, and they do not even provide basic
chunking or deduplication mechanisms.

Syncany3 is an open source Personal Cloud developed by Philip Heckel in Java. It is
a client-side Java application that can synchronise against a variety of storage back-ends
thanks to their extensible plugin model. They also provide extensible mechanisms for chunk-
ing and their architecture is elegant, clean and modular.

Although we give much credit to Syncany, it presents a number of drawbacks that made
us evolve towards the current StackSync architecture. The major shortcoming is the lack of
scalability of Syncany due to its heavy pull strategy with metadata and data flows heavily
coupled. To support versioning and resolve conflicts, Syncany relies on a metadata file that
contains the complete history of each individual file, and that is stored in the storage back-
end as a regular file. To determine the most recent version of a file, the Syncany client needs

1http://sparkleshare.org
2http://owncloud.org
3http://syncany.org
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first to download this metadata file, which grows with each new file modification, severely
limiting scalability.

For these reasons, we decided to create StackSync, an open framework for Personal
Cloud systems. Its architecture is highly modular, with each module represented by a
well-defined API, allowing third parties to replace components for innovation in version-
ing, deduplication, live synchronization or continuous reconciliation, among other relevant
topics. StackSync will be used in the CloudSpaces to design, implement, and validate essen-
tial contributions of the project such as Personal Cloud interoperability, privacy-aware data
sharing or achieving an adaptive personal storage.

Page 3 of 65
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3 StackSync reference architecture

In general terms, StackSync can be divided into five main blocks: clients, synchronization
service, quota service, storage back-end, and communication middleware. An overview
of the architecture with the main components and their interaction is shown in Figure 1.
The StackSync client and the sync service interact through the communication middleware
called ObjectMQ. The sync service interacts with the metadata database. The StackSync
client directly interacts with the storage back-end to upload and download files.

Figure 1: StackSync architecture overview

As we can see in the figure above, the storage back-end is separated from the rest of the
architecture by a line. This means that StackSync can be used with external storage back-
ends such as Amazon S3 or RackSpace. This enables StackSync to fit different organization
requirements and be offered in three different configurations:

• Public Cloud. Data and metadata is stored in a public storage provider such as Ama-
zon or Rackspace.

• Private Cloud. StackSync is installed on-premise. Data and metadata is stored on the
company’s infrastructure.

• Hybrid Cloud. Data is stored in a public storage provider and metadata is kept inside
the company’s infrastructure. This allows organizations that sensible information is
stored on-premise, while raw data is stored encrypted on a third-party storage service.

3.1 Storage back-end: OpenStack Swift

Decoupling metadata from raw data allows us to use different storage back-end solutions.
For our reference architecture we decided to use OpenStack Swift, an open-source highly
available and scalable object storage.

Swift architecture is composed of proxies and storage nodes. The Proxy Server is respon-
sible for tying together the rest of the Swift architecture. For each request, it will look up the
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location of the object in the ring and route the request accordingly. The Storage nodes are
responsible for running the object, container and account servers.

Object server The Object Server is a very simple blob storage server that can store, re-
trieve and delete objects stored on local devices. Objects are stored as binary files on the
filesystem with metadata stored in the file’s extended attributes (xattrs). This requires that
the underlying filesystem choice for object servers support xattrs on files.

Container server The Container Server’s primary job is to handle listings of objects. It
doesn’t know where those object’s are, just what objects are in a specific container. The
listings are stored as sqlite database files, and replicated across the cluster similar to how
objects are. Statistics are also tracked that include the total number of objects, and total
storage usage for that container.

Account server The Account Server is very similar to the Container Server, excepting
that it is responsible for listings of containers rather than objects.

Figure 2: OpenStack Swift architecture

As we can observe in Figure 2, the proxy node is the entry point to Swift, so it is responsi-
ble of handling all incoming requests. Once the proxy receives a request it has to contact the
Ring, which is the responsible for determining where data should reside inside the cluster
of Storage nodes. The proxy also coordinates responses, handles failures and coordinates
timestamps. A minimum of two proxies are recommended for redundancy, so in case of one
server fails, the other one will take over.

The Ring represents a mapping between the names of entities stored on disk and their
physical location. When other components need to perform any operation they need to
interact with the Ring to determine its location in the cluster. Each partition in the ring is
replicated, by default, 3 times across the cluster. When a new storage node is added or
removed from the ring it has to redistribute the load between the available storage nodes,
ensuring that partitions are equally divided among them.

The Storage nodes are responsible for actually storing the data objects. It can perform
operations to store, retrieve and delete objects on their local devices.
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3.2 Synchronization server

The synchronization service, namely SyncService, is the most important and critical part
of the synchronization architecture. It is in charge of managing the metadata in order to
achieve data synchronization. Desktop clients communicate with the SyncService for two
main reasons: to obtain the changes occurred when they were offline; and to commit new
versions of files.

When a client connects to the system, the first thing it does is to ask the SyncService for
changes that were made during the offline time period. This is very common situation for
users working with two different computers, e.g., home and work. Assuming the home
computer is off, if the user modifies some files while at work, the home computer will not
become aware of these changes until the user turns on the computer. At this time, the client
will ask the SyncService and update to apply the changes made at work.

When the server receives a commit operation of a file, it must first check that the meta-
data received is consistent. If the metadata is correct, it proceeds to save it to a database.
Afterwards, a notification is sent to all devices owned by the user reporting the file update.
This provides StackSync with real-time notifications and all devices are always synchro-
nized. However, if the metadata is incorrect, a notification is sent to the client to fix the
error.

3.2.1 Metadata persistence

All metadata is stored in a database. We have created the following models:

• User. It corresponds to a user in the StackSync system. It contains information related
to accounts: email, storage quota, etc.

• Device. A physical device owned by a user in which StackSync has been installed. A
user may have more than one device, e.g., the home and work computers, a laptop, a
mobile phone etc.

• Workspace. By default, each user has one workspace, which corresponds with the root
synchronized folder. When a user shares a folder with other users, a new workspace
is created in the scope of the shared folder.

• Object. A folder or a file. A workspace contains objects. It contains information such
as the file name, path, type.

• Version. An object has different versions that are created as users modify files and
folders. Versions are submitted by devices. It contains information about the specific
version such as the size, checksum, modification date.

• Chunk. A version is composed by a set of chunks that form a specific object. A version
will have one or more chunks if it is a file, or none if it is a folder.

With this information we have created the database model observed in Figure 3.
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Figure 3: SyncService database model.

To access or modify values stored in the database from the code we implemented the
design pattern DAO (Data Access Object). With this pattern we are able to create a common
interface between the application and the database. Furthermore, it also creates a factory in
which we specify what kind of database we want to use (e.g., PostgreSQL, MySQL). This
provides us with a modular persistence system, in which we can add different databases
just implementing the DAO interfaces without modifying the code.

In Figure 4 we can observe the class diagram that corresponds to the database DAO.

com.stacksync.syncservice.db

<<interface>>

DatabaseDAO

+getObject(id:Long): Object

+getDevice(id:long): Device

+getChunk(id:long): Chunk

DAOFactory

+getDatabaseDAO(type:String): DatabaseDAO

com.stacksync.syncservice.db.postgresql

PostgresqlDatabaseDAO

+getObject(id:Long): Object

+getDevice(id:long): Device

+getChunk(id:long): Chunk

Figure 4: Class diagram of the database DAO in the SyncService.
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3.2.2 Metadata processing

When the SyncService receives a commit operation, it must process the received metadata in
order to check if the version is correct and there is no conflict. Algorithm 1 reports the pseu-
docode of the commitRequest operation. When a commitRequest message is received in the
global request queue, the ObjectMQ middleware will invoke the appropriate commitRequest
method in the SyncService.

Algorithm 1 Pseudocode of the commitRequest function in the SyncService
1: function COMMITREQUEST(workspace, List < ObjectMetadata > objects_changed)
2: commit_event← new instance of CommitEvent
3: for new_object in objects_changed do
4: server_object← metadata_backend.get_current_version(new_object.id)
5: if not exists server_object then . To commit the first version of the new object
6: metadata_backend.store_new_object(new_object)
7: commit_event.add(new_object, confirmed = True)
8: else if server_object.version precedes new_object.version then
9: . No conflict, committing the new version

10: metadata_backend.store_new_version(new_object)
11: commit_event.add(new_object, confirmed = True)
12: else
13: . Conflict detected, the current object metadata is returned
14: commit_event.add(new_object, confirmed = False, server_object)
15: end if
16: end for
17: trigger_event(workspace, commit_event)
18: end function

This method then receives a proposed list of change operations in a concrete Workspace.
For every change operation, it will then check if the current version of the object in the
Metadata backend precedes the change proposed by the client. In this case, the changes
are (transactionally) stored in the Metadata backend and confirmed in the CommitEvent. If
there is a conflict with versions, the commitRequest is set as failed and information about
the current object version is added to the CommitEvent. The reason for adding the current
object version to the CommitEvent is to piggyback the information about the “differences”
between the two versions, such that the “losing” client can identify the missing chunks and
reconstruct the object to the current version. As usual, in StackSync, a conflict occurs when
two users change a file at the same time. This implies that the two clients will propose a list
of changes over the same version of the file. The first commitRequest to be processed will
increase the version number by one, but the second commitRequest will inevitably propose
a list of changes over a preceding version, resulting in a conflict.

To resolve the conflict, the SyncService adopts the simplest policy in this case, which is
to consider as the “winner” the client whose commitRequest was processed first. This way,
the SyncService avoids rolling back any update to the Metadata back-end, saving time and
increasing scalability. At the client, the conflict is resolved by renaming the “losing” version
of the file to “...(Conflicted copy)”.

In Figure 5 we can observe a conflict scenario. In this case, two different users try to
upload a different version of the same file. The SyncService sequentially receives their
commitRequest and returns a positive response to the first processed request (User 2) and
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Figure 5: File conflict

a negative response to the second (User 1). User 1 will have to rename its version and
download the correct one from the server.

Finally, the CommitEvent will be triggered to the Workspace AMQP Exchange, and it will
be received by all interested devices in their incoming event queues.

As just elaborated above, note that the CommitRequest is an important operation in the
sync service since it has to provide scalable request processing, consistency, and scalable change
notification. Scalable request processing is achieved because the method is asynchronous and
stateless. Multiple SyncService instances can listen from the global request queue and the
message broker will transparently balance their load. Consistency is achieved using the
transactional ACID model of the underlying Metadata back-end. Finally, scalable change
notification to the interested parties is achieved using one-to-many push notifications (@event).

The SyncService interacts with the database using an extensible DAO explained in the
previous section. Our reference implementation is based on a relational database although
the system is modular and may be replaced easily.

3.2.3 Communication: ObjectMQ

An important design decision of our reference implementation was to rely on a messaging
middleware for communication. Since Personal Cloud storage services exhibit significant
read-write ratios [1], we decided that the sync engine should support persistent client connec-
tions, push-based notifications, and asynchronous and stateless interactions. A message-oriented
middleware fits well with these requirements, because of its support to loosely coupled com-
munication among distributed components thanks to asynchronous message-passing.

The communication system must guarantee safety, speed, and above all, scalability, be-
cause the server must attend many requests. For this reason, we design a message-oriented
middleware called ObjectMQ. ObjectMQ is a lightweight remote object layer constructed on
top of a messaging middleware compatible with AMQP. In our case, it is running on top of
RabbitMQ.

ObjectMQ is using a global request queue for the SyncService, a response queue for
each device (SyncService Proxy), and a fan-out Exchange for each workspace. Each device
will bind its request queue to the appropriate workspace Exchange to receive notification
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changes in this workspace. In any case, queue message programming is abstracted thanks
to ObjectMQ, so that the protocol will be defined in terms of RPCs or method calls.

@RemoteInterface
public interface SyncService extends Remote {

@SyncMethod(retry = 5, timeout = 1500)
public List<ObjectMetadata> getChanges(Workspace workspace) ;

@SyncMethod(retry = 5, timeout = 1500)
public List<Workspace> getWorkspaces() ;

@AsyncMethod
public void commitRequest(Workspace workspace, List<ObjectMetadata> objectsChanged);

}
@event
public interface CommitEvent extends Event {

public List<ObjectMetadata> objectsChanged getChanges() ;
}

Figure 6: SyncService interface

In Fig. 6 we can see the interface definition of the SyncService. Clients can request the
list of Workspaces they have access to with the getWorkspaces operation. Once the client
obtains the list of Workspaces, it can then perform two main operations: getChanges and
commitRequest. Furthermore, the client will be notified of changes by means of the event
CommitEvent.

getChanges is a synchronous operation (@sync) that StackSync clients perform on startup.
This is a costly operation for the SyncService as it returns the current state of a Workspace.
Once the client receives this information, it registers its interest in receiving committed up-
dates, i.e., CommitEvents (@event) for this Workspace. From that point on, any change oc-
curring on this Workspace will be notified to the client in a push style.

commitRequest is an asynchronous operation (@async) that clients employ to inform the
SyncService about detected file changes in their Workspaces. This is a costly operation since
it must guarantee the consistency of data after the new changes.

CommitEvent is triggered by the SyncService in an asynchronous one-to-many opera-
tion (@event) to all out-of-sync devices in the specified Workspace. This operation is only
launched by the SyncService once the changes has been correctly stored in the Metadata
back-end.

3.3 Communication middleware

Clients are in constant communication with both, the metadata and storage services. Com-
munication with the metadata service is bidirectional, that is, clients notify updates about
local file changes to the server at any time, and receive events about remote modifications.

In order for the clients to keep updated, they need to be aware of all changes made in
their remote repository. This can be achieved in two different ways: periodically asking
the metadata service if there is any change (i.e., Pull strategy); or the metadata service to
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notify clients when there is a change (i.e., Push strategy). These two strategies have been
compared in many research reports [2, 3, 4]. Next, we will provide a brief description of
their advantages and disadvantages.

• Pull. In this strategy, the information is available on the server and clients are asking
periodically for changes. If there were many clients connected simultaneously, the
server could collapse when receiving too many requests. It would create many request
that most times would be unnecessary. Thus, as we pretend to create a scalable system
to be able to accommodate a large number of users, this strategy is not suitable.

• Push. It is the opposite case, clients are kept waiting for the server to notify them about
changes, saving many request to the server. But has the drawback that clients have to
maintain an open connection to receive notifications.

As we prioritized the server bandwidth and load, we opted for a push-based communi-
cation between desktop clients and servers.

Clients can perform two types of server calls: synchronous and asynchronous.

Synchronous calls

There are some requests that clients must perform in order for them to be initialized.
These type of calls are blocking, i.e., when the client makes the request, it is blocked until
the server responds.

Each time a client is started, it needs to apply all changes made since the last time it was
running. As notifications follow a push strategy, if they are not processed by the time the
server sends them, they are lost. Therefore, clients must ask the server for the current state
of the files to check themselves what changes have occurred.

The fact that these type of calls are blocking makes the time to process it a critical issue. I
the server does not respond within a time period, more request could accumulate, specially
at peak hours.

Asynchronous calls

On the other hand, some other requests require significant processing time to ensure data
consistency or are not time-dependent. Decoupling the request from the response in these
scenarios is vital to ensure the system’s scalability.

An example of asynchronous call is when the client wants to upload the metadata of a
new version. When the client finishes uploading a file to the data server, it sends a request
to provide the metadata with all the necessary information. The server, after analyzing the
data consistency, sends an event to all interested devices.

From the time the message is sent to the server, until notification is received, the client
can perform other tasks.
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3.4 Quota server

The quota server is responsible to manage StackSync users’ quota. When creating a new
user, the administrator decides a storage quota limit. This quota delimits the maximum
amount of storage that the user can use in the storage back-end.

The quota server is composed by two parts: the Swift module and a standalone server.
Swift module intercepts the requests from the StackSync clients and checks if they have
enough free storage in order to process them or not. Swift module communicates with the
quota server to update and get quota values. Finally, quota changes are persisted in the
StackSync metadata database.

If a user reaches the storage limit, he or she won’t be able to upload new data until some
files are removed and some storage is freed.

3.5 Storage API

Including an API to StackSync will provide us with many benefits. Otherwise, the access
to the StackSync system would be limited to our only desktop client. The only way a user
could access their content is installing our application on its computer and synchronize its
whole repository, which could take some time depending on the amount of files.

By creating an API we pretend to have a wider reach and allow a third-parties to create
new presentation layers like an application, a website, or a widget that interacts with the
StackSync system. Therefore, an API is meant to distribute services and information to new
audiences that can be customized to provide a new user experience.

Furthermore, an API would also allow StackSync content to be integrated or embedded
with other services or applications. Thus, ensuring a smooth and integrated user experi-
ence, and relevant and up-to-date information, for the user. The information is delivered
wherever it can be useful to them. In addition, as everything is changing so quickly, an
API would help us to support unanticipated future uses. Making data available via API can
support faster and easier data migration and improved data quality review and cleanup.
All in all, an API provides a set of benefits, some of them are not even expected, that would
increase the value of our product.

Next we will provide explain how the API should be built and what requirements have
to be met.

3.5.1 Design

Following the REST principles, the API will be organized by resources [5]. Therefore we
needed to identify what kind of entities should be represented in the API. The most impor-
tant entity in our system are Objects, which can represent files and folders. Each Object will
have a unique identifier that can be used to access through the API.

We will make a differentiation between data and metadata. Depending on the scenario,
we may need to display the information of a file (e.g. file name, size, type) or the actual file
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content (i.e. a byte array). Because of this, we require to create two different resources called
Metadata and Content.

We have identified the following resources:

• Account. A user resource represents information about a StackSync user.

• Metadata. A Metadata resource represents the information of a specific file or folder.
It will contain the following fields:

– Content. A Content resource represents the data in a specific file, that is, the
actual bytes in the file.

– Version. A Versions resource represents a specific version of a file. A file version
contains the same fields as specified in the Metadata resource.

Depending on the resource and the HTTP method, we can perform a series of actions. In
Figure 7 we observe a use case diagram representing the actions that a user can make to the
API.

Figure 7: Storage API use cases diagram

Now that we have defined the API it is time to study how can it be integrated with
StackSync. Considering the StackSync’s architecture we realize that the API can be placed
either on the Metadata side or on the Data side. Therefore, we are going to examine the pros
and cons of each one.

On one hand, integrating the API on the Metadata side would imply to create a new
service. This new service would have to handle all requests to the API, so in order not to be
a bottleneck for the system we would have to provide some tools to allow scalability, adding
an extra cost for hardware and maintenance. In addition, as the API has to handle not only
metadata, but data as well, communication between Swift and the API would be very costly,
increasing the bandwidth usage and probably congesting the network.

On the other hand, integrating the API on OpenStack Swift would allow us to include it
as a plugin and add it to the Swift’s pipeline. Including the API as a plugin to OpenStack
Swift would give us some benefits. First, as it is integrated with Swift, we don’t need any
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extra hardware, Swift will take care of our plugin and it will scale if it is necessary. Second,
data send to the API will not be redirected anywhere else because the API is already inside
Swift, saving important bandwidth. However, metadata needs still to be transmitted to the
synchronization service. But as metadata is negligible compared to the data itself and the
synchronization service relies on a queuing system which allows it to scale, we finally opt
for including the API as a plugin on OpenStack Swift.

In OpenStack Swift, modules can be added as plugins in the Proxy node’s pipeline. The
pipeline is a list of middleware modules that filter the request before it is processed by Swift.
By default, Swift comes with modules to provide services like basic authentication, data
cache and logging. Each module can modify the request (e.g. adding a flag to indicate that
the request is authenticated) and decide whether the request can continue its way to the next
module or not, before it even gets to the Proxy.

[ p i p e l i n e : main ]
p i p e l i n e = [ . . . ] tempauth proxy−logging cache proxy−server

In our particular case, integrating our Storage API as a Swift module fulfills all require-
ments and facilitates the task of integrating it to StackSync.

3.6 Desktop client

The main StackSync client is a application that monitors local folders and synchronizes them
with a remote repository. The StackSync client interacts with both the synchronization and
storage services. The first one handles metadata communication, such as time stamps or file
names, and the second one is in charge of raw data.

This decoupling of sync control flows from data flows implies a user-centric design
where the client directly controls its digital locker or storage container. The synchronization
protocol have been designed to put the load in the client side, whereas the synchroniza-
tion service just checks if the change is consistent, and then applies all changes proposed by
clients.

The desktop client must meet some essential requirements:

• Detect file changes. Every time a user modifies a file inside the synchronized folder,
the client must be aware of the event and process it in order to be synchronized with
StackSync.

• Handle conflicts. Conflicts may occur on StackSync due to offline or concurrent oper-
ations from different locations. For instance, two users sharing a folder may edit the
same file at the same time, so the client must be prepared to handle file conflicts.

• Visual information. The application must be integrated with the operating system
shell to show information about the state of files. This information will be displayed
to users in the form of an overlay icon that will change from one icon to another de-
pending on the state. In Figure 8 we observe the icons that will be displayed when a
file is being synchronized, is already synchronized, or cannot be synchronized due to
an exceeded quota or other errors.
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Figure 8: Overlay icons.

As the client is mostly developed in Java, it can be easily executed in multiple OS. How-
ever, there are some parts that are slightly different in each operating system, as it is the case
of the overlays. Overlay icons are drawn in file explorers, and each file explorer has its own
way to show them. For this propose, we rely on third party libraries and integrate them with
the StackSync client. At this moment we have installers for the three major OS: Windows 7
(Explorer), Debian (Nautilus) and MacOS X (Finder).

3.6.1 File processing

The desktop client must integrate with the system in the sense that, when there is a change
in the synchronized folder, the application receives a notification to process the event. Once
the application identifies which file or files have been modified or created, it will proceed to
store it in StackSync.

First, it will extract all needed metadata about the file (e.g. file name, size, modification
date, etc.). Next, it will store it in a database that will be used to keep the information
about different version of files. Finally, the file will be split into small pieces called chunks.
Each chunk is treated independently and is identified by its hash value. To reconstruct the
original file, chunks must be joined in the correct order.

The chunking provides StackSync with the following advantages:

1. Optimize the bandwidth usage. When a file is modified, it is processed again and
new chunks are generated. But only those parts of the file that have been modified
will generate different chunks compared to the previous version. The client will be
aware of this and will only send the chunks that differ from the previous version.

2. Optimize the storage usage. Without chunking, the smallest modification of a file
would force the client to upload the file again, and therefore, using more storage space.
Using chunking we significantly reduce the storage usage.

3. Improve transfers of big files. Syncing a 3GB file is a costly operation for both the
client and the server. Chunks normally use much less space (between 32KB and 1MB),
so they can be transferred faster. In addition, if the connection is lost while synchro-
nizing, the client may resume the process from the last uploaded chunk and avoid
uploading the entire file again.

When the chunking process finishes, the client proceeds to upload the chunks to the
storage service, storing the chunks in the user’s private space.

Once the unique chunks are successfully submitted to the Storage back-end, the Indexer
will communicate with the SyncService to commit the changes to the Metadata back-end,
which is the component responsible for keeping versioning information. The Metadata
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Device 1 Indexer Chunker Device 2 Device 3 Sync Service Metadata backend Storage backend

index(changes)

get_chunks(changes)

new_chunks

new_chunks

upload(new_chunks

commit(changes)

try_commit(changes)

OK

on_commit(changes)

update_index(changes)

on_commit(changes)

on_commit(changes)

download(chunks)

chunks

download(chunks)

chunks

Figure 9: Interaction between the components of sync engine for a Personal Cloud.

back-end may be a relational database like MySQL or a non-relational data store like Cassan-
dra4 or Riak5, now frequently called NoSQL databases. Irrespective of the chosen database
technology, the SyncService needs to provide a consistent view of the synced files. Allow-
ing new commit requests to see uncommitted changes may result in unwanted conflicts. As
soon as more than one user works with the same file, there is a good chance that they acci-
dentally update their local working copies at the same time. It is therefore critical that meta-
data is consistent at all times to establish not only the most recent version of each individual
file but to record its (entire) version history. Although relational databases process data
slower than NoSQL databases, NoSQL databases do not natively support ACID transac-
tions, which could compromise consistency, unless additional complex programming is per-
formed. Since the nature of the metadata back-end strongly determines both the scalability
and complexity of the synchronization logic, an open modular architecture like StackSync
can reduce the cost of innovation, adding a great flexibility to meet changing needs.

4http://cassandra.apache.org/
5http://basho.com/riak/
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Finally, when the SyncService finishes the commit operation, it will then notify of the
last changes to all out-of-sync devices. The device that originally modified the local work-
ing copy of the file will just update the Indexer upon the arrival of the confirmation from
the SyncService. The other devices will both update their local databases and download
the new chunks from the Storage back-end. Here we are assuming that an efficient com-
munication middleware mediates between devices and the SyncService. This middleware
should support efficient marshaling and message compression to reduce traffic overhead.
Very importantly, it should support scalable change notification to a high number of enti-
ties, using either pull or push strategies. To deduplicate files and offer continuous recon-
ciliation [6], recall that the local database at the Indexer must be in sync with the Metadata
back-end, for which notification must be performed fast.

Figure 9 illustrates the interaction between all the components of a file sync engine. Ob-
serve that not all the different components described in this section are present in the archi-
tecture of a Personal Cloud. In some architectures, our overall model could be simplified
and one component could be responsible for many tasks. Some architectures can even lack
some components. For example, ownCloud does not provide deduplication and chunking.

3.6.2 Conflicts

As in any Personal Cloud system, synchronization conflicts are likely to occur. As it not
possible to avoid these errors, we need to implement a strategy to deal with and resolve
them. For example, it can happen in a situation where two or more users modify the same
file simultaneously.

It can happen that, while working with a file, we lose the Internet connection. Clients
must be prepared to handle these situations. While the client has no Internet connection, it
cannot notify any updates to the server, so the client must keep all changes in the internal
database until the connection is reestablished and they can be submitted to the server.

Imagine a user that modified some files in his personal computer with no Internet con-
nection, i.e., changes were not committed to the server. Afterwards, he went to work and
modified the same files. Changes were successfully send to the server. Then, when he re-
turns to his personal computer, now connected to Internet, first of all StackSync will retrieve
the remote changes and will realize that some remote files are in conflict with the local ones.
StackSync will rename the local files adding “Conflicted copy” to the name and treating
them as new files, letting the user decide which file is the correct one.

3.6.3 Architecture

In Figure 10 we can observe the architecture of the desktop client. Next, we will detail each
element and explain the relation between them.

• Watcher. Receives modification events suffered by files located in the synchronization
folder. Any action performed by the user (e.g., create a file or folder, delete them, etc.)
is captured by the Watcher and notified to the Indexer.
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Figure 10: Desktop client architecture.

• Indexer. It must process all events received from the Watcher. It updates the internal
database and creates the chunks from the modified file.

• Uploader. It is charge of communicating with OpenStack Swift and the SyncService.
First, it uploads the chunks to Swift through the TransferManager interface. Then, it
notifies the SyncService about the committed operation.

• EventListener. It awaits events from the SyncService. When receiving events, it
queues them in order for the ChangeManager to sequentially process them.

• ChangeManager. Processes all events coming from the SyncService. It contains the
synchronization algorithm that ensures consistency in the client side, which can be
observed in Algorithm 2.

Algorithm 2 Pseudocode of the synchronization algorithm
1: function PROCESSEVENT(event)
2: f ile_metadata = event.get_ f ile_metadata
3: if f ile_ID_in_DB( f ile_metadata) then
4: if correct_version then
5: apply_update
6: else
7: apply_con f lict
8: end if
9: else

10: if exist_ f ile_locally then
11: apply_con f lict
12: else
13: apply_new
14: end if
15: end if
16: end function
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3.6.4 Chunking

In the early versions of StackSync, the client implemented a static chunking algorithm,
which works well for a system with a small number of users. But as we want to create a
truly scalable system, we were forced to use a dynamic chunking.

A content-based dynamic chunking can significantly reduce the amount of space used
by users in the storage service. Unlike the static chunking, when the user modifies a file,
the chunking algorithm detects what parts of the file have not been modified and do not
transfer them again. On the other hand, the computational cost of applying this algorithm
is higher. But as it is not a time-critical operation and the storage savings are significant, we
implemented it.

The content-based chunking to be implemented was the TTTD (Two Thresholds Two
Divisors) [7]. This algorithm must specify the minimum and maximum sizes of chunks
(two limits). From the first byte of the file, the algorithm reads byte by byte until it reaches
the minimum size of the chunk. Then, it computes the hash of the chunk and calculates the
module of the hash with a main and a secondary value (two dividers). If the result is equal
to the first divisor, it means that the chunk must begin there.

Figure 11 we can see the worst case scenario for a static chunking. Add a byte to the
beginning of the file will cause all chunks to be different from the previous version. In
contrast to the dynamic chunking, the only chunk that would be affected would be the first
one, once you find the intersection point with the divisors, all other chunks will be the same
and will not upload them.

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5

Figure 11: Static chunking example.

In the Algorithm 3 we provide the pseudocode for the TTTD content-based chunking.
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Algorithm 3 Pseudocode of the TTTD content-based chunking
1: function TTTD(input)
2: p = 0
3: l = 0
4: backupBreak = 0
5: while not EOF(input) do
6: c = getNextByte(input)
7: hash = updateHash(c)
8:
9: if p− 1 < Tmin then

10: //Not at minimum size yet
11: continue
12: end if
13:
14: if (hash%Ddash) == (Ddash− 1) then
15: //Possible backup break
16: backupBreak = p
17: end if
18:
19: if (hash%D) == (D− 1) then
20: //Found a breakpoint
21: //before the maximum threshold
22: addBreakpoint(p)
23: backupBreak = 0
24: l = p
25: continue
26: end if
27: if (p− 1) < Tmax then
28: //Fail to find a breakpoint,
29: //but we are not at the maximum yet
30: continue
31: end if
32:
33: //When we reach here, we have not found a breakpoint with
34: //the main divisor, and we are at the threshold. If there
35: //is a backup breakpoint use it. Otherwise impose a hard threshold.
36: if backupBreak! = 0 then
37: addBreakpoint(backupBreak)
38: l = backupBreak
39: backupBreak = 0
40: else
41: addBreakpoint(p)
42: l = p
43: backupBreak = 0
44: end if
45: p = p + 1
46: end while
47: end function
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3.6.5 Internal database

The client has to maintain internal database to keep track of the files and versions it has in
the local repository. In Figure 12 we can observe the database model used in the desktop
client.

Figure 12: Database model of the StackSync desktop client

To achieve the data persistence we use JPA (Java Persistence API), so that classes are
directly mapped into the database.

• CloneChunk. It keeps track of the chunks created by the client. The path indicates the
location in the file system and the checksum is calculated over the chunk data.

• CloneFile. This table contains information about files located in the synchronization
folder, including the path, checksum of the file, internal identifier, size, flag to indicate
if it’s a file or a folder, the synchronization status, etc.

• CloneFile_CloneChunk. This table contains the relation between files and chunks.
We need to know what chunks form each file and their order to be able to recover the
file later.

• Workspace. It contains information about the workspaces which the user is allowed
to access.
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3.7 Mobile clients

Nowadays people are on the move and almost everyone has a smartphone with Internet
connection capable of accessing any kind of information from anywhere. That’s why mobile
apps are so important in today’s market, and before releasing StackSync we need to provide
a mobile app at least for one platform.

Unlike the desktop client, the mobile app will not synchronize a local folder into a remote
repository. Synchronization would require the application to keep a local copy of the reposi-
tory in the local file system, which is not feasible due to the storage and network limitations
present on mobile platforms.

In Figure 13 we observe the interactions between the mobile application and other com-
ponents. First, the application will obtain the Access Token and Token Secret from the au-
thentication service. Afterwards, the application will communicate with the Storage API to
obtain the metadata of the root folder.

3.7.1 Limitations

Mobile platforms come with a new set of interaction patterns and limitations that are not
present when designing an application for PC or the web. Here we list the main limitations
that we have to take into account when designing the mobile application for StackSync.

• Storage space. Although storage space in mobile phones is increasing in the last few
years, it is still very limited if we compare it to a personal computer. StackSync account
quotas are set arbitrarily by administrators. A standard account may have a 5 GB limit
(as of Google Drive’s accounts). Many mobile phones could not have enough free
space to keep a copy of all user’s files, in case the quota is used at 100%. And others
simply may not be willing to dedicate so much space to files that are already safely
stored in StackSync.

• Network. As mobile phones are, by definition, mobile, meaning that network signal
can vary from one extreme to another, or even lose the complete connection, depend-
ing on the location. Moreover, smartphones still have lower network bandwidth as
compared to the typical corporate network and high-speed Internet connections. Fur-
thermore, charges may apply for people using the 3G network connection. For this
reason, bandwidth usage must be as low as possible and the application must over-
come sudden network disconnections and anomalies.

• Performance. Again, computational performance in mobile phones have been in-
creased at a fast pace in the last years. But, as the CPU performance increases, so
does the energy consumption. It is known that intense CPU usage decreases battery
life drastically. Therefore, it is essential that our application makes an efficient use of
the CPU to maximize battery life.

• Screen. A mobile phone screen is way much small than a monitor. This reduced
space must be optimized to show concrete and clear information to the user. Moreover,
elements displayed in the screen must be large enough for the user to reliably touch
the right element.
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3.7.2 Requirements

The application will be only usable by users previously registered in StackSync and having
a valid account. A registered user must be able to introduce its credentials to the application
and start using it. The next time the user opens the application he must not be asked to
introduce his credentials again. The user must be able to log out and unlink the applica-
tion from the device deliberately. By doing this, the application must remove all remaining
information about the user, including files, metadata and any other data.

The application must show a screen containing a list with the user’s files and folders
stored in StackSync. Icons must indicate whether it is a file or a folder. It is also recom-
mended to visually distinguish different file types (e.g. images, music or documents). A
title containing the name of the current folder must be shown on top of the application, this
title will be changing as we move from one folder to another.

When entering a folder, the screen must be cleared and repopulated with the new folder’s
content. To go back, the user only has to push the back button. If a folder has no content, a
text indicating that the folder is empty must be displayed. The user must be able to refresh
the state of a folder on demand.

Users must be able upload their local files, download remote files into the smartphone,
create folders, and delete files and folders. This actions must be done in an intuitive way
and in the less steps as possible.

The application must save the state of visited folders for the user to examine it even if the
device is offline. The user must also choose whether he wants to have a cache to save already
opened files or not. In an affirmative case, he must indicate how many space is allocated to
the cache.

3.7.3 Design

Unlike the desktop client, the mobile app will not synchronize a local folder into a remote
repository. Synchronization would require the application to keep a local copy of the repos-
itory in the local file system, which is not feasible due to the limitations present on mobile
platforms stated in Section 3.7.1.

OpenStack Swift

Mobile client

REST API

StackSync

Auth service

1 2

Figure 13: Mobile client interactions with auth service and storage API.
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The application will make use of the Authentication and Storage APIs documented in
the previous sections in order to interact with StackSync. In Figure 13 we observe the in-
teractions between the mobile application and other components. First, the application will
obtain the Access Token and Token Secret from the authentication service. Afterwards, the
application will communicate with the Storage API to obtain the metadata of the root folder.

Mobile Device Desktop Device REST API Chunker Sync Service Metadata backend Storage backend

put_new_file(file)

get_chunks(file)

chunks

get_new_chunks(chunks)

get_new_chunks(chunks)

new_chunks

new_chunks

upload(new_chunks)

commit(changes)

try_commit(changes)

ok

ok

ok

on_commit(changes)

download(chunks)

chunks

Figure 14: Mobile Client using the Storage Service Cloud.

In Figure 14 we observe an upload request for a new file to the Storage API service. In
this case, the service must replicate some actions that we previously explained in the desktop
client.

The Storage Service must ask the Chunker to split the new file. It must check with the
SyncService for new chunks (user or global level), and it will then upload these new chunks
to the Storage Back-end. It will also communicate with the SyncService to perform the com-
mit operation. And this commit operation will trigger the notification of changes to all in-
terested Desktop devices so that they can download the new chunks and obtain the current
state.

Confidential information such as the user name, tokens or URLs will be stored in the
Shared Preferences, which is used to store private data in key-value pairs. Android guar-
antees that this information is only accessible by the application. This allows the application
not to ask for user credentials on every start. When a user logs out, the Shared Preferences
is cleared.
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The application will use a SQLite database to store information about file metadata re-
ceived from the server. Each time the application downloads a file, whatever the purpose is,
or gets a folder’s metadata, the application will store the metadata in a cache table.

Files and folders will be identified by a node_id. As files and folders can change over
type, we also store the version. In order to retrieve a cached file or metadata, both the
node_id and version must be the same. The metadata field will contain the actual metadata
in JSON format, just like the API returns it. In case the user enables the data cache, the
local_path will contain the path to the downloaded file in the local file system. The size is
used to keep a record on the current cache usage and set limits.

The user will be able to set a limit to the cache to ensure that the cache does not grow
indefinitely. When the user downloads a file and the cache is full, the first cached file is
removed from the cache to make room for the newly downloaded file. If the size of the
downloaded file is bigger than the one removed from the cache, the application will remove
files in a FIFO (First in, first out) order until the file can be fitted in the cache without sur-
passing the limit.

Tasks that require considerable amount of time are performed in asynchronous tasks.
Android has a special class called AsyncTask that will allow us to launch a task and receive
a callback when its done. In Figure 15 we show a class diagram of the tasks that will inherit
from AsyncTask.

Figure 15: AsyncTask inheritance class diagram.

These tasks return a response which can vary depending on the nature of the request.
Most of the time we will only need to know whether the request has been completed or
not, but on other cases we will also want to know the reason why it failed. In addition,
other tasks return special values, such as authentication tokens or metadata. In Figure 16
we observe a GenericResponse class which has common attributes present in all responses,
and specific attributes for special responses returned when logging in and listing folder’s
metadata.

Page 25 of 65



FP7-ICT-2011-8 STREP
06-10-2015 CloudSpaces

Figure 16: Response types class diagram.

We have identified three main user interfaces. Each user interface will translate to an
Android Activity, which is focused on a thing that a user can do. An Activity interacts
with the user through a user interface (UI).

As we observe on Figure 17, there will be three main UI. On the left we observe an
Activity whose main focus will be to show the user a login form for him to provide his
credentials.

Figure 17: Design of user interfaces.

On the center, and once the user is logged in, the main Activity will present the user
a list of his files and folders synced with StackSync, entering and leaving folders will not
change the Activity, instead the list will be repopulated to show the new content. Pressing
on a folder will enter the folder. Pressing on a file will download and open the file. Long-
pressing on a folder or file will show a list of additional options (e.g. sharing, exporting and
deleting a file). To go back to the parent folder, the user can either press the back button or
press the arrow on the top left of the screen. For the time being, uploading a file will use an
external application to select the file.

On the right, the last Activity will be used to display and modify the application settings
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such as the cache or the user information.

All three activities will inherit from the Activity class as show in Figure 18.

Figure 18: Activity inheritance class diagram.
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4 StackSync Deployment essentials

In this section we explain how to deploy StackSync from scratch. First, we need a OpenStack
Swift platform for the storage back-end. In this manual we assume that there is an Open-
Stack Swift installation ready to use. If this is not the case, please proceed to the official Swift
documentation to deploy the latest available version.

Once the storage back-end is ready-to-use, it is necessary to decide how many servers
we need to install StackSync. In this tutorial we will install all the services (SyncServer,
QuotaServer, ObjectMQ and the Database) in the same server, but they can be installed in
different servers independently.

4.1 SyncService

4.1.1 Requirements

RabbitMQ

As ObjectMQ is built on top of RabbitMQ, we need a RabbitMQ server. Since this service
has to be accessed by desktop clients, it has to be deployed in a server with, at least, one
public IP. To install it, execute the following command:

$ sudo apt−get i n s t a l l rabbitmq−server

Database initialization

The current version of StackSync uses PostgreSQL as the metadata database. It requires
PostgreSQL version 9.1 or higher.

$ sudo apt−get i n s t a l l p o s t g r e s q l postgresql−c o n t r i b

In order to initialize the database we need to create the database and the user and execute
the script "setup_db.sql" located in "src/main/resources".

Enter in Postgres command line mode with the superuser account:

$ sudo −u postgres psql

Execute the commands below to create a user and the database, and enable de UUID
extension.

postgres=$ c r e a t e database db_name ;
postgres=$ c r e a t e user db_user with password ’ mysecretpwd ’ ;
postgres=$ grant a l l p r i v i l e g e s on database db_name to db_user ;
postgres=$ \connect db_name
postgres=$ CREATE EXTENSION " uuid−ossp " ;
postgres=$ \q

Enter to the database with the user role created. Note that the first parameter is the host,
the second is the database name and the last one is the username:
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$ psql −h l o c a l h o s t db\_name db\_user

Finally, download the setip_db.sql script from https://github.com/stacksync/sync-service/
blob/master/src/main/resources/setup_db.sql and execute it to initialize the database:

postgres=$ \ i PATH_TO_SCRIPT/setup_db . s q l
postgres=$ \q

4.1.2 Installation

The SyncServer has to be installed in any Linux distribution based on Debian. To install
it, we need to download the deb file form https://github.com/stacksync/sync-service/
releases and execute the following command:

$ sudo dpkg − i s tacksync−server_X . X . X_a l l . deb

The StackSync Server has a dependency with the JSVC library, if you experience any
problem while installing run the following command:

$ sudo apt−get −f i n s t a l l

Once the server is installed, you must modify the configuration file located under the
folder /etc/stacksync-server/ to connect with the database, the messaging middleware, and
OpenStack Swift. You need to specify a Keystone user capable of creating users and set up
ACL on containers on the specific container configured in the file.

The init script assumes that you have a “JAVA_HOME” environment variable set up,
if not, it will execute the java located in “/usr/lib/jvm/default-java”. You can change
the Java VM by setting up the “JAVA_HOME” environment or by modifying the script in
/etc/init.d/stacksync-server.

Once configured, just run the server.

$ sudo s e r v i c e stacksync−server s t a r t

If something went wrong, you can check the standard and error log files located in:

/var/log/stacksync-server/

4.2 Quota Server

The Quota Server has two components: the daemon that will run in a server and the Swift
module. First we will install the deb package and later we explain the installation of the
Swift module.

Like the SyncServer, the StackSync Quota Server has to be installed in a Debian-based
Linux distribution. The .deb file can be downloaded from https://github.com/stacksync/
stacksync-quota-server/releases. To install it execute the following command:

$ sudo dpkg − i s tacksync−quota−server_X . X . X_a l l . deb
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After installing it, the configuration file located in /etc/stacksync-quota-server/stacksync-
quota-server.conf has to be modified to connect to the StackSync database.

Finally, start the server:

$ sudo s e r v i c e stacksync−quota−server s t a r t

Now we need to install the Swift module that will control the amount of data uploaded
by users from StackSync. First, download the module from github:

$ g i t c lone ht tps :// github . com/stacksync/swif t−stacksync−quota . g i t

Install it with the following command:

$ cd swif t−stacksync−quota
$ sudo python setup . py i n s t a l l

Modify the /etc/swift/proxy-server.conf file to add the module in the Swift pipeline:

p i p e l i n e = c a t c h _ e r r o r s . . . proxy−logging stacksync_quota_swif t
proxy−server

And add the filter at the end of the file. Take into account that you have to set the IP of
stacksync_quota_host to the host in which you have installed the StackSync Quota Server.

[ f i l t e r : s tacksync_quota_swif t ]
use = egg : stacksync_quota # s t a c k s y n c _ q u o t a
stacksync_quota_host = 1 2 7 . 0 . 0 . 1
stacksync_quota_port = 62345

Finally, restart the proxy:

$ sudo swif t−i n i t proxy r e s t a r t

4.3 Management Interface

Once we have the StackSync platform ready, we have to create users. For this reason we will
need to install the management interface. This web manager allows StackSync administra-
tors to create users and manage their quota.

The management interface is a Django project. It can be downloaded from https://
github.com/stacksync/manager.

Before running the manager, we have to install some dependencies:

$ sudo apt−get i n s t a l l l ibpq−dev
$ sudo apt−get i n s t a l l python−dev
$ pip i n s t a l l −r requirements . t x t

Once the requirements are installed, we have to create database tables for the man-
ager. Before to sync the database, you have to change the settings.py file located https:
//github.com/stacksync/manager/blob/master/stacksync_manager/settings.py. After
that, you just need to run the following command:
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sudo python manage . py syncdb

This command will create necessary tables in the StackSync database. Furthermore, if it
is the first time that you execute it, you will have to create an admin user. This user will be
used to access the manager interface and create other admins/groups.

To run the manager interface you can configure the django project on top of Apache or
you can execute directly the following command:

$ sudo python manage . py runserver 0 . 0 . 0 . 0 : 8 0

When the manager is running, you can access it from the browser with the URL http:
//127.0.0.1:80/admin.

4.4 Desktop clients

We provide installers for all platforms, Windows, MacOS X and Linux. The installers can be
downloaded from https://github.com/stacksync/desktop/releases.
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5 Installing StackSync Web and API

In the previous version we installed the basic components of StackSync to run desktop
clients and synchronize files. In this section we will install the required components to use
StackSync mobile and web clients. To achieve this, we will need to install two modules in the
Swift proxy: StackSync Auth and StackSync storage API. The former is used to authenticate
and authorize API clients, while the second will process the requests from the clients.

5.1 StackSync Auth

5.1.1 Requirements

Before installing the StackSync authentication middleware you first need to install some
requirements. Although they are included in the setup.py, we show you how to install them
one by one.

PostgreSQL client library

First, you have to install the PostgreSQL client library to communicate with the database
backend.

$ sudo apt−get i n s t a l l l ibpq−dev python−dev

Now, you have to install the psycopg2 Python package.

$ sudo e a s y _ i n s t a l l psycopg2

SQLAlchemy

SQLAlchemy is used to map Python objects to the database.

$ sudo e a s y _ i n s t a l l sqlalchemy

Jinja2

Jinja2 is used to render the OAuth’s authorization page so that the user can grant or deny
permissions to applications.

$ sudo e a s y _ i n s t a l l J i n j a 2

StackSync OAuth Python library

This Swift module uses the StackSync OAuth library, which is the OAuth 1.0 implemen-
tation for StackSync. To install it, clone the project from GitHub and execute the following
command:

$ sudo python setup . py i n s t a l l
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5.1.2 Installation

To install the StackSync authentication middleware for Swift you first need to install the
Python package.

$ sudo python setup . py i n s t a l l

This will install the package after checking that the previous requirements are satisfied.

Now we need to modify the proxy configuration. First, we add the filter to tell the proxy
that the middleware should be loaded. Be sure you set up the database with the correct
parameters.

[ f i l t e r : stacksync−auth−s w i f t ]
use = egg : stacksync−auth−s w i f t # s t a c k s y n c _ a u t h _ s w i f t
psql_host = l o c a l h o s t
psql_port = 5432
psql_dbname = stacksync
psql_user = stacksync_user
psql_password = stacksync
tenant = stacksync
keystone_host = l o c a l h o s t
keystone_post = 5000
keystone_vers ion = 2 . 0
templates_path = /home/ s w i f t /stacksync−auth−s w i f t /templates/

Next, we have to add the middleware to the proxy’s pipeline.

p i p e l i n e = c a t c h _ e r r o r s heal thcheck proxy−logging cache bulk s l o r a t e l i m i t
crossdomain authtoken keystoneauth stacksync−auth−s w i f t s ta t i cweb
container−quotas account−quotas proxy−logging proxy−server

Finally, if you use Keystone, you have to delay the auth decision so that it does not
interfere with the StackSync auth middleware.

[ f i l t e r : authtoken ]
paste . f i l t e r _ f a c t o r y = k e y s t o n e c l i e n t . middleware . auth_token : f i l t e r _ f a c t o r y
. . .
de lay_auth_decis ion = t rue

Now you can restart the proxy.

$ sudo swif t−i n i t proxy r e s t a r t

5.2 StackSync API

First, the project has to be downloaded from the StackSync Github repository. Once down-
loaded, to install the module execute the command:

$ sudo python setup . py i n s t a l l
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When the proxy is installed, it is necessary to modify the proxy-server.conf file from Swift
(/etc/swift/proxy-server.conf) to enable the StackSync API module:

[ p i p e l i n e : main ]
p i p e l i n e = heal thcheck cache authtoken keystone stacksync−api proxy−server

Add the WSGI filter:

[ f i l t e r : stacksync−api ]
use = egg : stacksync−api−s w i f t # s t a c k s y n c _ a p i
s tacksync_host = 1 2 7 . 0 . 0 . 1
s tacksync_port = 61234

Finally, restart the proxy:

$ swif t−i n i t proxy r e s t a r t

5.3 Web Client

The web client will make use of the StackSync API and the StackSync Auth modules pre-
viously installed. This client will allow us to interact with our synced files from a browser.
Like the management interface, the web client is a Django project. It can be downloaded
from https://github.com/stacksync/web.
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6 Management of the StackSync platform

6.1 Creating groups and administrators

In a StackSync deployment we can manage different groups. A group can be a company,
institution or university. In this example, we will create the Universtitat Rovira i Virgili
(urv) group.

First of all the administrator of StackSync has to log in into the manager interface. Fig. 19
shows the login interface and the admin menu of the management web.

(a) Login interface. (b) First menu.

Figure 19

Once it is done, the admin has to create the URV group with the necessary permissions:

(a) Panel to add a new group and grant permissions. (b) When the group is created, it will be
listed in the groups list.

Figure 20

Next step is to create an admin user for this new group. In our case, we will create the
urv_admin user. This user will have the rights to create subgroups inside the urv group, i.e.
departments, and create users and set their quota.
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(a) Panel to create an admin user for a
specific group.

(b) Admin user created.

Figure 21

It is also necessary to set the permissions to that admin user. It is important to select only
the urv as the group to administrate. Otherwise, this user will have access to others groups
in the platform.

Figure 22: Grant permissions to the group.
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6.2 Create subgroups and StackSync users

In the following images we will show how this admin user can create subgroups in the urv
group. We can understand this groups as departments of a company.

(a) Panel to create StackSync subgroup. (b) Created groups.

Figure 23

As you can see in Fig. 23, the admin has to specify a total quota for that group. Next, we
are going to create a user in this group.

Figure 24: Panel to create a new user.
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7 Analysis of U1 traces

7.1 Introduction

To optimize StackSync, we need to understand the nature of a real Personal Cloud work-
load in the wild. Unfortunately, due to the proprietary nature of these systems, very little
is known about their performance and characteristics, including the workload they have to
handle daily. And indeed, the few available studies have to rely on the so-called ”black-
box” approach, where traces are collected from a single or a limited number of measure-
ment points, in order to infer their properties. This was the approach followed by the most
complete analysis of a Personal Cloud to date, the measurement of Dropbox conducted by
Drago et al. [9]. Although this work describes the overall service architecture, it provides
no insights on the operation and infrastructure of the Dropbox’s back-end. And also, it has
the additional flaw that it only focuses on small and specific communities, like university
campuses, which may breed false generalizations.

Similarly, several Personal Cloud services have been externally probed to infer their op-
erational aspects, such as data reduction and management techniques [10, 11, 12], or even
transfer performance [13, 14]. However, from external vantage points, it is impossible to
fully understand the operation of these systems without fully reverse-engineering them.

We present results of our study of U1: the Personal Cloud of Canonical, integrated by
default in Linux Ubuntu OS. Despite the shutdown of this service on July 2014, the distin-
guishing feature of our analysis is that it has been conducted using data collected by the
provider itself. U1 provided service to several millions of users at the time of the study on
January-February 2014, which constitutes the first complete analysis of the performance of
a Personal Cloud in the wild. Such a unique data set has allowed us to reconfirm results
from prior studies, like that of Drago et al. [9], which paves the way for a general charac-
terization of these systems. But it has also permitted us to expand the knowledge base on
these services, which now represent a considerable volume of the Internet traffic. According
to Drago et al. [9], the total volume of Dropbox traffic accounted for a volume equivalent to
around one third of the YouTube traffic on a campus network. Consequently, we believe that
the results of our study can be useful for both researchers, ISPs and data center designers,
giving hints on how to anticipate the impact of the growing adoption of these services. In
summary, our contributions are the following:

Back-end architecture and operation of U1. This work provides a comprehensive descrip-
tion of the U1 architecture, being the first one to also describe the back-end infrastructure
of a real-world vendor. Similarly to Dropbox [9], U1 decouples the storage of file contents
(data) and their logical representation (metadata). Canonical only owns the infrastructure for
the metadata service, whereas the actual file contents are stored separately in Amazon S3.
Among other insights, we found that U1 API servers are characterized by long tail latencies
and that a sharded database cluster is an effective way of storing metadata in these systems.
Interestingly, these issues may arise in other systems that decouple data and metadata as U1
does [17].

Workload analysis and user behavior in U1. By tracing the U1 servers in the Canonical
datacenter, we provide an extensive analysis of its back-end activity produced by the entire
user population of U1 for one month (587K distinct users). Our analysis confirms already
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Table 7.1a Summary of some of our most important findings and their implications.
UbuntuOne Analisys Finding Implications and Opportunities

Storage Workload (7.5)

90% of files are smaller than 1MByte (P). Object storage services normally used as a cloud ser-
vice are not optimized for managing small files [15].

18.5% of the upload traffic is caused by file up-
dates (C).

Changes in file metadata cause high overhead since
the U1 client does not support delta updates (e.g.
.mp3 tags).

We detected a deduplication ratio of 17% in one
month (C).

File-based cross-user deduplication provides an at-
tractive trade-off between complexity and perfor-
mance [12].

DDoS attacks against U1 are frequent (N). Further research is needed regarding secure pro-
tocols and automatic countermeasures for Personal
Clouds.

User Behavior (7.6)
1% of users generate 65% of the traffic (P). Very active users may be treated in an optimized

manner to reduce storage costs.
Data management operations (e.g., uploads, file
deletions) are normally executed in long se-
quences (C).

This correlated behavior can be exploited by caching
and prefetching mechanisms in the server-side.

User operations are bursty; users transition be-
tween long, idle periods and short, very active
ones (N).

User behavior combined with the user per-shard
data model impacts the metadata back-end load bal-
ancing.

Back-end Performance (7.8)

A 20-node database cluster provided service to
587K users without symptoms of congestion (N).

The user-centric data model of a Personal Cloud makes
relational database clusters a simple yet effective ap-
proach to scale out metadata storage.

RPCs service time distributions accessing the
metadata store exhibit long tails (N).

Several factors at hardware, OS and application-
level are responsible for poor tail latency in RPC
servers [16].

In short time windows, load values of API
servers/DB shards are very far from the mean
value (N).

Further research is needed to achieve better load bal-
ancing under this type of workload.

C: Confirms previous results, P: Partially aligned with previous observations, N: New observation

reported facts, like the execution of user operations in long sequences [9] and the poten-
tial waste that file updates may induce in the system [11, 12]. Moreover, we provide new
observations, such as a taxonomy of files in the system, the modeling of burstiness in user
operations or the detection of attacks to U1, among others. Table 7.1a summarizes some of
our key findings.

Potential improvements to Personal Clouds. We suggest that a Personal Cloud should be
aware of the behavior of users to optimize its operation. Given that, we discuss the implica-
tions of our findings to the operation of U1. For instance, despite U1 was frequently used
for editing files, file updates were responsible for 18.5% of upload traffic mainly due to the
lack of delta updates in the desktop client. Furthermore, we detected 3 DDoS attacks in
one month, motivating the need for further research in automatic attack countermeasures
in secure and dependable storage protocols. Although our observations may not apply to
all existing services, we believe that our analysis can help to improve the next generation of
Personal Clouds [17, 11].

Publicly available dataset. We contribute our dataset (773GB) to the community and it
is available at http://cloudspaces.eu/datasets/u1_measurement. To our knowledge, this
is the first dataset that contains the back-end activity of a large-scale Personal Cloud. We
hope that our dataset provides new opportunities to researchers in further understanding
the internal operation of Personal Clouds, promoting research and experimentation in this
field.
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Table 7.1b Description of the most relevant U1 API operations.
API Operation Related RPC Description
ListVolumes dal.list_volumes This operation is normally performed at the beginning of a session and lists all the vol-

umes of a user (root, user-defined, shared).
ListShares dal.list_shares This operation lists all the volumes of a user that are of type shared. In this operation,

ther field shared by is the owner of the volume and shared to is the user to which that
volume was shared with. In this operation, the field shares represents the number of
volumes type shared of this user.

(Put/Get)Content see A These operations are the actual file uploads and downloads, respectively. The notification
goes to the U1 back-end but the actual data is stored in a separate service (Amazon S3).
A special process is created to forward the data to Amazon S3. Since the upload man-
agement in U1 is complex, we refer the reader to A for a description in depth of upload
transfers.

Make dal.make_dir
dal.make_file

This operation is equivalent to a “touch” operation in the U1 back-end. Basically, it creates
a file node entry in the metadata store and normally precedes a file upload.

Unlink dal.unlink_node Delete a file or a directory from a volume.
Move dal.move Moves a file from one directory to another.
CreateUDF dal.create_udf Creates a user-defined volume.
DeleteVolume dal.delete_volumeDeletes a volume and the contained nodes.
GetDelta dal.get_delta Get the differences between the server volume and the local one (generations).
Authenticate auth.get_user_id_

from_token
Operations managed by the servers to create sessions for users.

7.2 Background

A Personal Cloud can be loosely defined as a unified digital locker for users’ personal data,
offering at least three key services: file storage, synchronization and sharing [18]. Numerous
services such as Dropbox, U1 and Box fall under this definition.

From an architectural viewpoint, a Personal Cloud exhibits a 3-tier architecture consist-
ing of: (i) clients, (ii) synchronization or metadata service and (iii) data store [9, 17]. Thus, these
systems explicitly decouple the management of file contents (data) and their logical repre-
sentation (metadata). Companies like Dropbox and Canonical only own the infrastructure
for the metadata service, which processes requests that affect the virtual organization of files
in user volumes. The contents of file transfers are stored separately in Amazon S3. An ad-
vantage of this model is that the Personal Cloud can easily scale out storage capacity thanks
to the “pay-as-you-go” cloud payment model, avoiding costly investments in storage re-
sources.

In general, Personal Clouds provide clients with 3 main types of access to their service:
Web/mobile access, Representational State Transfer (REST) APIs [14, 19] and desktop clients.
Our measurements focus on the desktop client interactions with U1. Personal Cloud desktop
clients are very popular among users since they provide automatic synchronization of user
files across several devices (see Section 7.3.3). To achieve this, desktop clients and the server-
side infrastructure communicate via a storage protocol. In most popular Personal Cloud ser-
vices (e.g., Dropbox), such protocols are proprietary.

U1 Personal Cloud was a suite of online services offered by Canonical that enabled
users to store and sync files online and between computers, as well as to share files/folders
with others using file synchronization. Until the service was discontinued in July 2014, U1
provided desktop and mobile clients and a Web front-end. U1 was integrated with other
Ubuntu services, like Tomboy for notes and U1 Music Store for music streaming.
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7.3 The U1 Personal Cloud

In this section, we first describe the U1 storage protocol used for communication between
clients and the server-side infrastructure (Sec. 7.3.1). This will facilitate the understanding
of the system architecture (Sec. 7.3.2). We then discuss the details of a U1 desktop client
(Sec. 7.3.3). Finally, we give details behind the core component of U1, its metadata back-end
(Sec. 7.3.4).

7.3.1 U1 Storage Protocol

U1 uses its own protocol (ubuntuone-storageprotocol) based on TCP and Google Protocol
Buffers6. In contrast to most commercial solutions, the protocol specifications and client-
side implementation are publicly available7. Here, we describe the protocol in the context
of its entities and operations. Operations can be seen as end-user actions intended to manage
one/many entities, such as a file or a directory.

Protocol Entities

In the following, we define the main entities in the protocol. Note that in our analysis,
we characterize and identify the role of these entities in the operation of U1.

Node: Files and directories are nodes in U1. For files, U1 decouples their logical representa-
tion from their actual contents. Drawing a comparison to a file system, the inodes are stored
in the metadata service and the extents are stored in Amazon S3. The protocol supports
CRUD operations on nodes (e.g. list, delete, etc.). The protocol assigns Universal Unique
Identifiers (UUIDs) to both node objects and their contents, which are generated in the back-
end.

Volume: A volume is a container of node objects. During the installation of the U1 client, the
client creates an initial volume to store files with id=0 (root). There are 3 types of volumes:
i) root/predefined, ii) user defined folder (UDF), which is a volume created by the user, and iii)
shared (sub-volume of another user to which the current user has access).

Session: A user interacts with the server in the context of a U1 storage protocol session (not
HTTP or any other session type). This session is used to identify the requests of a single
user during the session lifetime. Usually, sessions do not expire automatically. A client may
disconnect, or a server process may go down, and that will end the session. For this reason,
in parallel with a session, a user establishes a TCP connection with U1 that is used to detect
these events. To create a new session, an OAuth [20] token is used to authenticate clients
against U1. Tokens are stored separately in the Canonical authentication service (see 7.3.4).

API Operations

The U1 storage protocol offers an API consisting of the data management and metadata
operations that can be executed by a client. Metadata operations are those operations that
do not involve transfers to/from the data store (i.e., Amazon S3), such as listing or deleting

6https://wiki.ubuntu.com/UbuntuOne
7https://launchpad.net/ubuntuone-storage-protocol
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files, and are entirely managed by the synchronization service. On the contrary, uploads and
downloads are, for instance, typical examples of data management operations.

In Table 7.1b we describe the most important protocol operations between users and the
server-side infrastructure. We traced these operations to quantify the system’s workload
and the behavior of users.

7.3.2 Architecture Overview

As mentioned before, U1 has a 3-tier architecture consisting of clients, synchronization service
and the data/metadata store. Similarly to Dropbox [9], U1 decouples the storage of file contents
(data) and their logical representation (metadata). Canonical only owns the infrastructure for
the metadata service, which processes requests that affect the virtual organization of files in
user volumes. The actual contents of file transfers are stored separately in Amazon S3.

However, U1 treats client requests differently from Dropbox. Namely, Dropbox enables
clients to send requests either to the metadata or storage service depending on the request
type. Therefore, the Dropbox infrastructure only processes metadata/control operations.
The cloud storage service manages data transfers, which are normally orchestrated by com-
puting instances (e.g. EC2).

In contrast, U1 receives both metadata requests and data transfers of clients. Internally,
the U1 service discriminates client requests and redirects them either to the metadata store
or the storage service, respectively. For each upload and download request, a new process
is instantiated to manage the transfer between the client and S3 (see A). Therefore, the U1
model is simpler from a design perspective, yet this comes at the cost of delegating the
responsibility of processing data transfers to the metadata back-end.

U1 Operation Workflow. Imagine a user that initiates the U1 desktop client (7.3.3). At
this point, the client sends an Authenticate API call (see Table 7.1b) to U1, in order to es-
tablish a new session. An API server receives the request and contacts to the Canonical
authentication service to verify the validity of that client (7.3.4). Once the client has been
authenticated, a persistent TCP connection is established between the client and U1. Then,
the client may send other management requests on user files and directories.

To understand the synchronization workflow, let us assume that two clients are online
and work on a shared folder. Then, a client sends an Unlink API call to delete a file from the
shared folder. Again, an API server receives this request, which is forwarded in form of RPC
call to a RPC server (7.3.4). As we will see, RPC servers translate RPC calls into database
query statements to access the correct metadata store shard (PostgreSQL cluster). Thus, the
RPC server deletes the entry for that file from the metadata store.

When the query finishes, the result is sent back from the RPC server to the API server that
responds to the client that performed the request. Moreover, the API server that handled the
Unlink notifies the other API servers about this event that, in turn, is detected by the API
server to which the second user is connected. This API server notifies via push to the second
client, which deletes that file locally.

Next, we describe in depth the different elements involved in this example of operation:
The desktop client, the U1 back-end infrastructure and other key back-end services to the
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Figure 25: Architecture of U1 back-end.

operation of U1 (authentication and notifications).

7.3.3 U1 Desktop Client

U1 provides a user friendly desktop client, implemented in Python (GPLv3), with a graph-
ical interface that enables users to manage files. It runs a daemon in the background that
exposes a message bus (DBus) interface to handle events in U1 folders and make server
notifications visible to the user through OS desktop. This daemon also does the work of
deciding what to synchronize and in which direction to do so.

By default, one folder labeled ∼/Ubuntu One/ is automatically created and configured
for mirroring (root volume) during the client installation. Changes to this folder (and any
others added) are watched using inotify. Synchronization metadata about directories be-
ing mirrored is stored in∼/.cache/ubuntuone. When remote content changes, the client acts
on the incoming unsolicited notification (push) sent by U1 service and starts the download.
Push notifications are possible since clients establish a TCP connection with the metadata
service that remains open while online.

In terms of data management, Dropbox desktop clients deduplicate data at chunk level [9].
In contrast, U1 resorts to file-based cross-user deduplication to reduce the waste of storing
repeated files [12]. Thus, to detect duplicated files, U1 desktop clients provide to the server
the SHA-1 hash of a file prior to the content upload. Subsequently, the system checks if the
file to be uploaded already exists or not. In the affirmative case, the new file is logically linked
to the existing content, and the client does not need to transfer data.

Finally, as observed in [12], the U1 client applies compression to uploaded files to opti-
mize transfers. However, it does not perform advanced techniques, such as file bundling8,
delta updates and sync deferment, to buffer frequent changes to the same file, leading to
potential inefficiencies.

8Li et al. [12] suggest that U1 may group small files together for upload (i.e. bundling), since they observed
high efficiency uploading sets of small files. However, U1 does not bundle small files together. Instead, clients
establish a TCP connection with the server that remains open during the session, avoiding the overhead of
creating new connections.
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7.3.4 U1 Metadata Back-end

The entire U1 back-end is all inside a single datacenter and its objective is to manage the
metadata service. The back-end architecture appears in Fig. 25 and consists of metadata
servers (API/RPC), metadata store and data store.

System gateway. The gateway to the back-end servers is the load balancer. The load bal-
ancer (HAProxy, ssl, etc.) is the visible endpoint for users and it is composed of two racked
servers.

Metadata store. U1 stores metadata in a PostgreSQL database cluster composed of 20 large
Dell racked servers, configured in 10 shards (master-slave). Internally, the system routes
operations by user identifier to the appropriate shard. Thus, metadata of a user’s files and
folders reside always in the same shard. This data model effectively exploits sharding, since
normally there is no need to lock more than one shard per operation (i.e. lockless). Only
operations related to shared files/folders may require to involve more than one shard in the
cluster.

API/RPC servers. Beyond the load balancer we find the API and RPC database processes
that run on 6 separate racked servers. API servers receive commands from the user, per-
form authentication, and translate the commands into RPC calls. In turn, RPC database
workers translate these RPC calls into database queries and route queries to the appropriate
database shards. API/RPC processes are more numerous than physical machines (normally
8− 16 processes per physical machine), so that they can migrate among machines for load
balancing. Internally, API and RPC servers, the load balancer and the metadata store are
connected though a switched 1Gbit Ethernet network.

Data storage. Like other popular Personal Clouds, such as Dropbox or SugarSync, U1 stores
user files in a separate cloud service. Concretely, U1 resorts to Amazon S3 (us-east) to store
user data. This solution enables a service to rapidly scale out without a heavy investment
in storage hardware. In its latests months of operation, U1 had a ≈ 20, 000$ monthly bill in
storage resources, being the most important Amazon S3 client in Europe.

With this infrastructure, U1 scaled up to 4 million registered users (587 thousand were
traced in this measurement).

Authentication Service

The authentication service of U1 is shared with other Canonical services within the same
datacenter and it is based on OAuth [20]. The first time a user interacts with U1, the desktop
client requires him to introduce his credentials (email, password). The API server that han-
dles the authentication request contacts the authentication service to generate a new token
for this client. The created token is associated in the authentication service with a new user
identifier. The desktop client also stores this token locally in order to avoid exposing user
credentials in the future.

In the subsequent connections of that user, the authentication procedure is easier. Basi-
cally, the desktop client sends a connection request with the token to be authenticated. The
U1 API server responsible for that requests asks the authentication service if the token does
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Figure 26: Macroscopic storage workload metrics of U1.

exist and has not expired. In the affirmative case, the authentication service retrieves the
associated user identifier, and a new session is established. During the session, the token of
that client is cached to avoid overloading the authentication service.

The authentication infrastructure consists of 1 database server with hot failover and 2
application servers configured with crossed stacks of Apache/Squid/HAProxy.

Notifications

Clients detect changes in their volumes by comparing their local state with the server
side on every connection (generation point). However, if two related clients are online and
their changes affect each other (e.g. updates to shares, new shares), API servers notify them
directly (push). To this end, API servers resort to the TCP connection that clients establish
with U1 in every session.

Internally, the system needs a way of notifying changes to API servers that are relevant
to simultaneously connected clients. Concretely, U1 resorts to RabbitMQ (1 server) for com-
municating events between API servers9, which are subscribed in the queue system to send
and receive new events to be communicated to clients.

Next, we describe our measurement methodology to create the dataset used in our anal-
ysis.

7.4 Data Collection

We present a study of the U1 service back-end. In contrast to other Personal Cloud measure-
ments [9, 14, 12], we did not deploy vantage points to analyze the service externally. Instead,
we inspected directly the U1 metadata servers to measure the system. This has been done
in collaboration with Canonical in the context of the FP7 CloudSpaces10 project. Canonical
anonimyzed sensitive information to build the trace, following strict ethical guidelines.

The traces are taken at both API and RPC server stages. In the former stage we collected
important information about the storage workload and user behavior, whereas the second
stage provided us with valuable information about the requests’ life-cycle and the metadata
store performance.

We built the trace capturing a series of service logfiles. Each logfile corresponds to the

9If connected clients are handled by the same API process, their notifications are sent immediately, i.e. there
is no need for inter-process communication with RabbitMQ.

10http://cloudspaces.eu
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Table 7.4a Summary of the trace.
Trace duration 30 days (01/11 - 02/10)
Trace size 773 GB (3, 391M lines)
Back-end servers traced 6 servers (all)
Unique user IDs 587, 602
Unique files 137.63M
User sessions 42.5M
Transfer operations 194.3M
Total upload traffic 105TB
Total download traffic 120TB

entire activity of a single API/RPC process in a machine for a period of time. Each logfile
is within itself strictly sequential and timestamped. Thus, causal ordering is ensured for oper-
ations done for the same user. However, the timestamp between servers is not dependable,
even though machines are synchronized with NTP (clock drift may be in the order of ms).

To gain better understanding on this, consider a line in the trace with this logname:
production-whitecurrant-23-20140128. They will all be production, because we only
looked at production servers. After that prefix is the name of the physical machine, fol-
lowed by the number of the server process. The mapping between services and servers is
dynamic within the time frame of analyzed logs, since they can migrate between servers to
balance load. In any case, the identifier of the process is unique within a machine. After that
is the date the logfile was “cut” (there is one log file per server/service and day).

Database sharding is in the metadata store back-end, so it is behind the point where
traces were taken. This means that in these traces any combination of server/process can
handle any user. To have a strictly sequential notion of the activity of a user we should take
into account the U1 session and sort the trace by timestamp (a user may have more than one
parallel connection). A session starts in the least loaded machine and lives in the same node
until it finishes, making user events strictly sequential. Thanks to this information we can
estimate system and user service times.

Approximately 1% of traces are not analyzed due to failures parsing of the logs.

7.4.1 Dataset

The trace is the result of merging all the logfiles (773GB of .csv text) of the U1 servers for 30
days (see Table 7.4a).

The trace contains the API operations (request type storage/storage_done) and their
translation into RPC calls (request type rpc), as well as the session management of users (re-
quest type session). This provides different sources of valuable information. For instance,
we can analyze the storage workload supported by a real-world cloud service (users, files,
operations). Since we captured file properties such as file size and hash, we can study the
storage system in high detail (contents are not disclosed).

Dataset limitations. We mentioned that timestamps among servers are not dependable
since they may be different (in order of ms). Also, the dataset only includes events originat-
ing from desktop clients. Other sources, namely the web front-end and the mobile clients,
are not included. This is because the different client types are handled by different software
stacks that were not logged. Finally, we detected that sharing among users is limited.

Page 46 of 65



FP7-ICT-2011-8 STREP
06-10-2015 CloudSpaces

0.1s 1s 60s 1h 8h 1d 1w 1m
0

0.2

0.4

0.6

0.8

1

Inter-operation times

C
D

F

Total inter-operation times: 73.17M

WAW depen. (44%) 

RAW depen. (30%) 

DAW depen. (26%) 

(a) X-after-Write inter-arrival
times.

0.1s 1s 60s 1h 8h 1d 1w 1m
0

0.2

0.4

0.6

0.8

1

Inter-operation times

C
D

F

Total inter-operation times: 33.84M

WAR depen. (10%)

RAR depen. (66%)

DAR depen. (24%)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Downloads per file

C
D

F

(b) X-after-Read inter-arrival times.

2 4 6 8 10 12 14 16 18 20 22 24 26 28

0,05

0,10

0,15

0,20

0,25

0,30

Time (Days)

C
D

F

 

 

0.1s 1s 1m 10m 1h 8h 1d
0

0.05

0.1

0.15

0.2

Time (Days)

C
D

F

 

 

File lifetime Directory lifetime

(c) File/directory lifetime.

Figure 27: Usage and behavior of files in U1.
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Figure 28: Characterization of files in U1.

7.5 Storage Workload

First, we quantify the storage workload supported by U1 for one month. Moreover, we pay
special attention to the behavior of files in the system, to infer potential improvements.

7.5.1 Macroscopic Daily Usage

Storage traffic and operations. Fig. 26(a) provides a time-series view of the upload/down-
load traffic of U1. We observe in Fig. 26(a) that U1 exhibits important daily patterns. To wit,
the volume of uploaded GBytes per hour can be up to 10x higher in the central day hours
compared to the nights. This observation is aligned with previous works, that detected
time-based variability in both the usage and performance of Personal Cloud services [9, 14].
This effect is probably related to the working habits of users, since U1 desktop clients are by
default initiated automatically when users turn on their machines.

Another aspect to explore is the relationship between file size and its impact in terms
of upload/download traffic. To do so, in Fig. 26(b), we depict in relative terms the frac-
tion of transferred data and storage operations for distinct file sizes. As can be observed, a
very small amount of large files (> 25MBytes) capitalizes 79.3% and 88.2% of upload and
download traffic, respectively. Conversely, 84.3% and 89.0% of upload and download oper-
ations are related to small files (< 0.5MBytes). As reported in other domains [21, 22, 23], we
conclude that in U1 the workload in terms of storage operations is dominated by small files,
whereas a small number of large files generate most of the network traffic.

For uploads, we found that 10.05% of total upload operations are updates, that is, an
upload of an existing file that has distinct hash/size. However, in terms of traffic, file up-
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dates represent 18.47% of the U1 upload traffic. This can be partly explained by the lack of
delta updates in the U1 client and the heavy file-editing usage that many users exhibited
(e.g., code developers). Particularly for media files, U1 engineers found that applications
that modify the metadata of files (e.g., tagging .mp3 songs) induced high upload traffic since
the U1 client uploads again files upon metadata changes, as they are interpreted as regular
updates.

To summarize, Personal Clouds tend to exhibit daily traffic patterns, and most of this
traffic is caused by a small number of large files. Moreover, desktop clients should efficiently
handle file updates to minimize traffic overhead.

R/W ratio. The read/write (R/W) ratio represents the relationship between the down-
loaded and uploaded data in the system for a certain period of time. Here we examine
the variability of the R/W ratio in U1 (1-hour bins). The boxplot in Fig. 26(c) shows that
the R/W ratio variability can be important, exhibiting differences of 8x within the same day.
Moreover, the median (1.14) and mean (1.17) values of the R/W ratio distribution point out
that the U1 workload is slightly read-dominated, but not as much as it has been observed in
Dropbox [9]. This indicates that users mainly use U1 as a storage service, rather than for
sharing content.

We also want to explore if the R/W ratios present patterns or dependencies along time
due to the working habits of users. To verify whether R/W ratios are independent along
time, we calculated the autocorrelation function (ACF) for each 1-hour sample (see Fig.
26(c)). To interpret Fig. 26(c), if R/W ratios are completely uncorrelated, the sample ACF is
approximately normally distributed with mean 0 and variance 1/N, where N is the number
of samples. The 95% confidence limits for ACF can then be approximated to ±2/

√
N.

As shown in Fig. 26(c), R/W ratios are not independent, since most lags are outside 95%
confidence intervals, which indicates long-term correlation with alternating positive and
negative ACF trends. This evidences that the R/W ratios of U1 workload are not random
and follow a pattern also guided by the working habits of users.

Concretely, averaging R/W ratios for the same hour along the whole trace, we found
that from 6am to 3pm the R/W ratio shows a linear decay. This means that users download
more content when they start the U1 client, whereas uploads are more frequent during the
common working hours. For evenings and nights we found no clear R/W ratio trends.

We conclude that different Personal Clouds may exhibit disparate R/W ratios, mainly
depending on the purpose and strengths of the service (e.g., sharing, content distribution).
Moreover, R/W ratios exhibit patterns along time, which can be predicted in the server-side
to optimize the service.

7.5.2 File-based Workload Analysis

File operation dependencies. Essentially, in U1 a file can be downloaded (or read) and up-
loaded (or written) multiple times, until it is eventually deleted. Next, we aim at inspecting the
dependencies among file operations [24, 25], which can be RAW (Read-after-Write), WAW
(Write-after-Write) or DAW (Delete-after-Write). Analogously, we have WAR, RAR and DAR
for operations executed after a read.
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First, we inspect file operations that occur after a write (Fig. 27(a)). We see that WAW
dependencies are the most common ones (30.1% of 170.01M in total). This can be due to
the fact that users regularly update synchronized files, such as documents of code files. This
result is consistent with the results in [24] for personal workstations where block updates
are common, but differs from other organizational storage systems in which files are almost
immutable [25]. Furthermore, the 80% of WAW times are shorter than 1 hour, which seems
reasonable since users may update a single text-like file various times within a short time
lapse.

In this sense, Fig. 27(a) shows that RAW dependencies are also relevant. Two events
can lead to this situation: (i) the system synchronizes a file to another device right after its
creation, and (ii) downloads that occur after every file update. For the latter case, reads
after successive writes can be optimized with sync deferment to reduce network overhead
caused by synchronizing intermediate versions to multiple devices [12]. This has not been
implemented in U1.

Second, we inspect the behavior of X-after-Read dependencies (Fig. 27(b)). As a conse-
quence of active update patterns (i.e., write-to-write) and the absence of sync deferment, we
see in Fig. 27(b) that WAR transitions also occur within reduced time frames compared to
other transitions. Anyway, this dependency is the least popular one yielding that files that
are read tend not to be updated again.

In Fig. 27(b), 40% of RAR times fall within 1 day. RAR times are shorter than the ones
reported in [25], which can motivate the introduction of caching mechanisms in the U1 back-
end. Caching seems specially interesting observing the inner plot of Fig. 27(b) that reveals a
long tail in the distributions of reads per file. This means that a small fraction of files is very
popular and may be effectively cached.

By inspecting the Delete-after-X dependencies, we detected that around 12.5M files in
U1 were completely unused for more than 1 day before their deletion (9.1% of all files). This
simple observation on dying files evidences that warm and/or cold data exists in a Personal
Cloud, which may motivate the involvement of warm/cold data systems in these services
(e.g., Amazon Glacier, f4 [26]). To efficiently managing warm files in these services is object
of current work.

Node lifetime. Now we focus on the lifetime of user files and directories (i.e., nodes).
As shown in Fig. 27(c), 28.9% of the new files and and 31.5% of the recently created direc-
tories are deleted within one month. We also note that the lifetime distributions of files and
directories are very similar, which can be explained by the fact that deleting a directory in U1
triggers the deletion of all the files it contains.

This figure also unveils that a large fraction of nodes are deleted within few hours after
their creation, especially for files. Concretely, users delete 17.1% of files and 12.9% of directo-
ries within 8 hours after their creation time.

All in all, in U1 files exhibit similar lifetimes than files in local file systems. For instance,
Agrawal et al. in [22] analyzed the lifetimes of files in corporative desktop computers for
five years. They reported that around 20% to 30% of files (depending on the year) in desk-
top computers present a lifetime of one month, which agrees with our observations. This
suggests that users behave similarly deleting files either in synchronized or local folders.
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7.5.3 File Deduplication, Sizes and Types

File-based deduplication. The deduplication ratio (dr) is a metric to quantify the proportion
of duplicated data. It takes real values in the interval [0, 1), with 0 signaling no file dedupli-
cation at all, and 1 meaning full deduplication. It is expressed as dr = 1− (Dunique/Dtotal),
where Dunique is the amount of unique data, and Dtotal is equal to the total storage consump-
tion.

We detected a dr of 0.171, meaning that the 17% of files in the trace can be deduplicated.
This is slightly better than the deduplication ratio reported by Canonical (≈ 11%), and sim-
ilar (18%) to that given by the recent work of Li et al. [12]. This suggests that file-based
cross-user deduplication could be a practical approach to reduce storage costs in U1.

Moreover, Fig. 28(a) demonstrates that the distribution of file objects w.r.t unique con-
tents exhibits a long tail. This means that a small number of files accounts for a very large
number of duplicates (e.g., popular songs), whereas 80% files present no duplicates. Hence,
files with many duplicates represent a hot spot for the deduplication system, since a large
number of logical links point to a single content.

File size distribution. The inner plot of Fig. 28(b) illustrates the file size distribution
of transferred files in the system. At first glance, we realize that the vast majority of files are
small [21, 22, 23]. To wit, 90% of files are smaller than 1MByte. In our view, this can have
important implications on the performance of the back-end storage system. The reason is
that Personal Clouds like U1 use object storage services offered by cloud providers as data
store, which has not been designed for storing very small files [15].

In this sense, Fig. 28(b) shows the file size distribution of the most popular file extensions
in U1. Non-surprisingly, the distributions are very disparate, which can be used to model
realistic workloads in Personal Cloud benchmarks [10]. It is worth to note that in general,
incompressible files like zipped files or compressed media are larger than compressible files
(docs, code). This observation indicates that compressing files does not provide much benefits
in many cases.

File types: number vs storage space. We classified files belonging to the 55 most popular
file extensions into 7 categories: Pics (.jpg, .png, .gif, etc.), Code (.php, .c, .js, etc.), Docs
(.pdf, .txt, .doc, etc.), Audio/Video (.mp3, .wav, .ogg, etc.), Application/Binary (.o, .msf,
.jar, etc.) and Compressed (.gz, .zip, etc.). Then, for each category, we calculated the ratio
of the number of files to the total in the system. We did the same for the storage space. This
captures the relative importance of each content type.

Fig. 28(c) reveals that Audio/Video category is one of the most relevant types of files
regarding the share of consumed storage, despite the fraction of files belonging to this class
is low. The reason is that U1 users stored .mp3 files, which are usually larger than other
popular text-based file types.

Further, the Code category contains the highest fraction of files, indicating that many
U1 users are code developers who frequently update such files, despite the storage space
required for this category is minimal. Docs are also popular (10.1%), subject to updates and
hold 6.9% of the storage share. Since the U1 desktop client lacks delta updates and deferred
sync, such frequent updates suppose a high stress for desktop clients and induce significant
network overhead [12].
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Figure 29: User requests and consumed traffic in U1 for one month.
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7.6 Understanding User Behavior

Understanding the behavior of users is a key source of information to optimize large-scale
systems. This section provides several insights about the behavior of users in U1.

7.7 Distinguishing Online from Active Users

Online and active users. We consider a user as online if his desktop client exhibits any form
of interaction with the server. This includes automatic client requests involved in mainte-
nance or notification tasks, for which the user is not responsible. Moreover, we consider a
user as active if he performs data management operations on his volumes, such as uploading
a file or creating a new directory.

Fig. 30 offers a time-series view of the number of online and active users in the system
per hour. Clearly, online users are more numerous than active users: The percentage of active
users ranges from 3.49% to 16.25% at any moment in the trace. This observation reveals that
the actual storage workload that U1 supports is light compared to the potential usage of its
user population, and gives a sense on the scale and costs of these services with respect to
their popularity.

Frequency of user operations. Here we examine how frequent the protocol operations
are in order to identify the hottest ones. Fig. 29(a) depicts the absolute number of each oper-
ation type. As shown in this figure, the most frequent operations correspond to data manage-
ment operations, and in particular, those operations that relate to the download, upload and
deletion of files.

This result is very interesting, because it proves that the U1 protocol scales well, since the
operations that users issue to manage their sessions and are typically part of the session start
up such as ListVolumes are significantly less frequent. And consequently, the major part of
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Figure 31: Desktop client transition graph through API operations. Global transition proba-
bilities are provided for main edges.

the processing burden comes from active users as desired. This is essentially explained by
the fact that the U1 desktop client does not need to regularly poll the server during idle
times, thereby limiting the number of requests not linked to data management.

As we will see in 7.8, the frequency of API operations will have an immediate impact on
the back-end performance.

Traffic distribution across users. Now, we turn our attention to the distribution of con-
sumed traffic across users. In Fig. 29(b) we observe an interesting fact: in one month, only
14% of users downloaded data from U1, while uploads represented 25%. This indicates that
a minority of users are responsible for the storage workload of U1.

To better understand this, we measure how (un)equal the traffic distribution across active
users is. To do so, we resort to the Lorenz curve and the Gini coefficient11 as indicators of
inequality. The Gini coefficient varies between 0, which reflects complete equality, and 1,
which indicates complete inequality (i.e., only one user consumes all the traffic). The Lorenz
curve plots the proportion of the total income of the population (y axis) that is cumulatively
earned by the bottom x% of the population. The line at 45 degrees thus represents perfect
equality of incomes.

Fig. 29(c) reports that the consumed traffic across active users is very unequal. That
is, the Lorenz curve is very far from the diagonal line and the Gini coefficient is close to 1.
The reason for this inequality is clear: 1% of users account for the 65.6% of the total traffic
(147.52TB). Providers may benefit from this fact by identifying and treating these users more
efficiently.

Types of user activity. To study the activity of users, we used the same user classification
than Drago et al. in [9]. So we distinguished among occasional, download/upload only and
heavy users. A user is occasional if he transfers less than 10KB of data. Users that exhibit
more than three orders of magnitude of difference between upload and download (e.g., 1GB
versus 1MB) traffic are classified as either download-only or upload-only. The rest of users are
in the heavy group.

11http://en.wikipedia.org/wiki/Gini_coefficient
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Figure 32: Time-series user operations inter-arrival times and their approximation to a
power-law.

Given that, we found that 71.95% of users are occasional, 13.94% upload-only, 4.24%
download-only and 9.86% are heavy users. Our results clearly differ from the ones reported
in [9], where users are 30% occasional, 7% upload-only, 26% download-only and 37% heavy.
This may be explained by two reasons: (i) the usage of Dropbox is more extended that the
usage of U1, and (ii) users in a university campus are more active than other types of users
captured in our trace.

7.7.1 Characterizing User Interactions

User-centric request graph. To analyze how users interact with U1, Fig. 31 shows the se-
quence of operations that desktop clients issue to the server in form of a graph. Nodes repre-
sent the different protocol operations executed. And edges describe the transitions from one
operation to another. The width of edges denotes the global frequency of a given transition.
Note that this graph is user-centric, as it aggregates the different sequence of commands that
every user executes, not the sequence of operations as they arrive to the metadata service.

Interestingly, we found that the repetition of certain operations becomes really frequent
across clients. For instance, it is highly probable that when a client transfers a file, the next
operation that he will issue is also another transfer —either upload or download.

This phenomenon can be partially explained by the fact that many times users synchro-
nize data at directory granularity, which involves repeating several data management op-
erations in cascade. File editing can be also a source of recurrent transfer operations. This
behavior can be exploited by predictive data management techniques in the server side (e.g.,
download prefetching).

Other sequences of operations are also highlighted in the graph. For instance, once a
user is authenticated, he usually performs a ListVolumes and ListShares operations. This
is a regular initialization flow for desktop clients. We also observe that Make and Upload
operations are quite mixed, evidencing that for uploading a file the client first needs to
create the metadata entry for this file in U1.

Burstiness in user operations. Next, we analyze interarrival times between consecutive
operations of the same user. We want to verify whether inter-operation times are Poisso-
nian or not, which may have important implications to the back-end performance. To this
end, we followed the same methodology proposed in [27, 28], and obtained a time-series
view of Unlink and Upload inter-operation times and their approximation to a power-law
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distribution in Fig. 32.

Fig. 32(a) exhibits large spikes for both Unlink and Upload operations, corresponding
to very long inter-operation times. This is far from an exponential distribution, where long
inter-operation times are negligible. This shows that the interactions of users with U1 are
not Poissonian [27].

Now, we study if the Unlink and Upload inter-operation times exhibit high variance,
which indicates burstiness. In all cases, while not strictly linear, these distributions show
a downward trend over almost six orders of magnitude. This suggests that high variance
of user inter-arrival operations is present in time scales ranging from seconds to several
hours. Hence, users issue requests in a bursty non-Poissonian way: during a short period a
user sends several operations in quick succession, followed by long periods of inactivity.
A possible explanation to this is that users manage data at the directory granularity, thereby
triggering multiples operations to keep the files inside each directory in sync.

Nevertheless, we cannot confirm the hypothesis that these distributions are heavy-tailed.
Clearly, Fig. 32(b) visually confirms that the empirical distributions of user Unlink and
Upload inter-arrivals can be only approximated with P(x) ≈ x−α, ∀x > θ, 1 < α < 2, for a
central region of the domain.

We also found that metadata operations follow more closely a power-law distribution
than data operations. The reason is that the behavior of metadata inter-operation times are
not affected by the actual data transfers.

In conclusion, we can see that user operations are bursty, which has strong implications
to the operation of the back-end servers (7.8).

7.7.2 Inspecting User Volumes

Volume contents. Fig. 33 illustrates the relationship between files and directories within
user volumes. As usual, files are much more numerous than directories. And we have
that over 60% of volumes have been associated with at least one file. For directories, this
percentage is only of 32%, but there is a strong correlation between the number of files and
directories within a volume: Pearson correlation coefficient is 0.998. What is relevant is,
however, that a small fraction of volumes is heavy loaded: 5% of user volumes contain more
than 1, 000 files.

Shared and user-defined volumes. At this point, we study the distribution of user-
defined/shared volumes across users. As pointed out by Canonical engineers, sharing is not
a popular feature of U1. Fig. 34 shows that only 1.8% of users exhibits at least one shared
volume. On the contrary, we observe that user-defined volumes are much more popular; we
detected user-defined volumes in 58% of users —the rest of users only use the root volume.
This shows that the majority of users have some degree of expertise using U1.

Overall, these observations reveal that U1 was used more as a storage service rather than
for collaborative work.
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7.8 Metadata Back-end Analysis

In this section, we focus on the interactions of RPC servers against the metadata store. We
also quantify the role of the Canonical authentication service in U1.

7.8.1 Performance of Metadata Operations

Here we analyze the performance of RPC operations that involve contacting the metadata
store.

Fig. 35 illustrates the distribution of service times of the different RPC operations. As
shown in the figure, all RPCs exhibit long tails of service time distributions: from 7% to 22% of
RPC service times are very far from the median value. This issue can be caused by several
factors, ranging from interference of background processes to CPU power saving mecha-
nisms, as recently argued by Li et al. in [16].

Also useful is to understand the relationship between the service time and the frequency
of each RPC operation. Fig. 36 presents a scatter plot relating RPC median service times
with their frequency, depending upon whether RPCs are of type read, write/update/delete or
cascade, i.e., whether other operations are involved. This figure confirms that the type of
an RPC strongly determines its performance. First, cascade operations (delete_volume and
get_from_scratch) are the slowest type of RPC —more than one order of magnitude slower
compared to the fastest operation. Fortunately, they are relatively infrequent. Conversely,
read RPCs, such as list_volumes, are the fastest ones. Basically, this is because read RPCs
can exploit lockless and parallel access to the pairs of servers that form database shards.

Write/update/delete operations (e.g. make_content, or make_file) are slower than most
read operations, but exhibiting comparable frequencies. This may represent a performance
barrier for the metadata store in scenarios where users massively update metadata in their
volumes or files.
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Figure 36: We classified all the U1 RPC calls into 3 categories, and every point in the plot
represents a single RPC call. We show the median service time vs frequency of each RPC (1
month).

7.8.2 Load Balancing in U1 Back-end

We are interested in analyzing the internal load balancing of both API servers and shards in
the metadata store. In the former case, we grouped the processed API operations by physical
machine. In the latter, we distributed the RPC calls contacting the metadata store across 10
shards based on the user id, as U1 actually does. Results appear in Fig. 37, where bars are
mean load values and error lines represent the standard deviation of load values across API
servers and shards per hour and minute, respectively.

Fig. 37 shows that server load presents a high variance across servers, which is symptom
of bad load balancing. This effect is present irrespective of the hour of the day and is more
accentuated for the metadata store, for which the time granularity used is smaller. Thus,
this phenomenon is visible in short or moderate periods of time. In the long term, the load
balancing is adequate; the standard deviation across shards is only of 4.9% when the whole
trace is taken.

Three particularities should be understood to explain the poor load balancing. First,
user load is uneven, i.e., a small fraction of users is very active whereas most of them present
low activity. Second, the cost of operations is asymmetric; for instance, there are metadata
operations whose median service time is 10x higher than others. Third, users display a
bursty behavior when interacting with the servers; for instance, they can synchronize an
entire folder. So, operations arrive in a correlated manner.

We conclude that the load balancing in the U1 back-end can be significantly improved,
which is object of future work.
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Figure 37: Load balancing of U1 API servers and metadata store shards.

7.8.3 Authentication Activity & User Sessions

Time-series analysis. Users accessing the U1 service should be authenticated prior to the
establishment of a new session. To this end, U1 API servers should contact a separate and
shared authentication service of Canonical.

Fig. 38 depicts a time-series view of the session management load that API servers sup-
port to create and destroy sessions, along with the corresponding activity of the authentica-
tion subsystem. In this figure, we clearly observe that the authentication and session man-
agement activity is closely related to the habits of users. In fact, daily patterns are evident.
The authentication activity is 50% to 60% higher in the central hours of the day than during
the night periods. This observation is also valid for week periods: on average, the maximum
number of authentication requests is 15% higher on Mondays than on weekends. Moreover,
we found that 2.76% of user authentication requests from API servers to the authentication
service fail.

Session length. Upon a successful authentication process, a user’s desktop client creates
a new U1 session.

U1 sessions exhibit a similar behavior to Dropbox home users in [9] (Fig. 38). Concretely,
97% of sessions are shorter than 8 hours, which suggests a strong correlation with user work-
ing habits. Moreover, we also found that U1 exhibits a high fraction of very short-lived ses-
sions (i.e. 32% shorter than 1s.), probably due to the operation of NAT and firewalls that
normally mediate between clients and servers [29]. Overall, Fig. 38 suggests that domestic
users are more representative than other specific profiles, such as university communities, for
describing the connection habits of an entire Personal Cloud user population.

We are also interested in understanding the data management activity related to U1 ses-
sions. To this end, we differentiate those sessions that exhibited any type of data manage-
ment operation (e.g., upload, download, delete file, etc.) during their lifetime, namely, active
sessions.

First, we observed that the majority of U1 sessions (and, therefore, TCP connections) do
not involve any type of data management. That is, only 5.57% of connections in U1 are
active (2.37M out of 42.5M), which, in turn, tend to be much longer than cold ones. From a
back-end perspective, the unintended consequence is that a fraction of server resources is
wasted keeping alive TCP connections of cold sessions.
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Moreover, similarly to the distribution of user activity, the inner plot of Fig. 38 shows
that 80% of active sessions exhibited at most 92 storage operations, whereas the remaining
20% accounted for 96.7% of all data management operations. Therefore, the are sessions
much more active than others.

A provider may benefit from these observations to optimize session management. That
is, depending on a user’s activity, the provider may wisely decide if a desktop client works
in a pull (cold sessions) or push (active sessions) fashion to limit the number of open TCP
connections [30].

7.9 Related Work

The performance evaluation of cloud storage services is an interesting topic inspiring sev-
eral recent papers. Hill et al. in [31] provide a quantitative analysis of the performance of
the Windows Azure Platform, including storage. Palankar et al. in [32] perform an extensive
measurement against Amazon S3 to elucidate whether cloud storage is suitable for scientific
Grids. Similarly, [33] presents a performance analysis of the Amazon Web Services. Liu et.
al. [25] inspected in depth the workload patterns of users in the context of a storage system
within a university campus. This work concentrates on macroscopic storage workload met-
rics and type of requests, as well as the differences in access patterns of personal and shared
folders. Unfortunately, these papers provide no insights into Personal Clouds.

Perhaps surprisingly, despite their commercial popularity, only few research works have
turned attention to analyze the performance of Personal Cloud storage services [9, 10, 12,
13, 14, 19, 34]. We classify them into two categories:

Active measurements. The first analysis of Personal Cloud storage services we are aware
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is due to Hu et al. [13] that compared Dropbox, Mozy, Carbonite and CrashPlan storage ser-
vices. However, their analysis was rather incomplete; the metrics provided in [13] are only
backup/restore times depending on several types of backup contents. They also discuss
potential privacy and security issues comparing these vendors. The work of Hu et al. [13]
was complemented by Gracia-Tinedo et al. [14] that extensively studied the REST interfaces
provided by three big players in the Personal Cloud arena, analyzing important aspects of
their QoS and potential exploitability [19].

Recently, Drago et al. [10] presented a complete framework to benchmark Personal
Cloud desktop clients. One of their valuable contributions is to set a benchmarking frame-
work addressed to compare the different data reduction techniques implemented in desktop
clients (e.g, file bundling).

Passive measurements. Drago et al. [9] presented an external measurement of Dropbox
in both a university campus and residential networks. They analyzed and characterized the
traffic generated by users, as well as the workflow and architecture of the service. [34] ex-
tended that measurement by modeling the behavior of Dropbox users. However, [9] does
not provide insights on the metadata back-end of Dropbox, since this is not possible from
external vantage points. Moreover, these works [9, 34] study the storage workload and user
behavior on specific communities (e.g., university campus) that may lead to false general-
izations. In contrast, we analyze the entire population of U1.

Furthermore, Li et al. [12] analyzed a group of Personal Cloud users in both university
and corporate environments. Combined with numerous experiments, they studied the ef-
ficiency of file sync protocols, as well as the interplay between data reduction techniques
integrated in desktop clients and users’ workload (update frequency, file compressibility).

Key differences with prior work. The main difference with previous works is that we
study in details the metadata back-end servers of a Personal Cloud, instead of simply measur-
ing it from outside. The unique aspect of our work is that most of our insights could have
been obtained only by taking a perspective from within a data center; this goes, for exam-
ple, for the internal infrastructure of the service, or the performance of the metadata store,
to name a few.

Furthermore and apart from guiding simulations and experiments, we believe that the
present analysis will help researchers and practitioners optimize several aspects of these
services, such as file synchronization [11, 17] and security [35], among others.

7.10 Discussion and Conclusions

We focus on understanding the nature of Personal Cloud services by presenting the inter-
nal structure and measurement study of UbuntuOne (U1). The objectives of our work are
threefold: (i) to unveil the internal operation and infrastructure of a real-world provider,
(ii) to reconfirm, expand and contribute observations on these systems to generalize their
characteristics, and (iii) to propose potential improvements for these systems.

This work unveils several aspects that U1 shares with other large-scale Personal Clouds.
For instance, U1 presents clear similarities with Dropbox regarding the way of decoupling
data and metadata of users, which seems to be a standard design for these systems [17].
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Also, we found characteristics in the U1 workload that reconfirm observations of prior
works [9, 12] regarding the relevance of file updates, the effectiveness of deduplication or the
execution of user operations in long sequences, among other aspects. Therefore, our analysis
and the resulting dataset will enable researchers to get closer to the nature of a real-world
Personal Cloud.

Thanks to the scale and back-end perspective of our study, we expanded and contributed
insights on these services. That is, we observed that the distribution of activity across users
in U1 is even more skewed than in Dropbox [9] or that the behavior of domestic users domi-
nate session lengths in U1 compared to other user types (e.g., university). Among the nov-
elties of this work, we modeled the burstiness of user operations, we analyzed the behavior
of files in U1, we provided evidences of DDoS attacks to this service, and we illustrated the
performance of the U1 metadata back-end.

An orthogonal conclusion that we extract from our study is that understanding the be-
havior of users is essential to adapt the system to its actual demands and reduce costs. In the
following, we relate some of our insights to the running costs of U1 as well as potential
optimizations, which may be of independent interest for other large-scale systems:

Optimizing storage matters. A key problem to the survival of U1 was the growing costs of
outsourcing data storage [36], which is directly related to the data management techniques
integrated in the system. For instance, the fact that file updates were responsible for 18.5%
of upload traffic in U1, mainly due to the lack of delta updates in the desktop client, gives
an idea of the margin of improvement (7.5.1). Actually, we confirmed that a simple opti-
mization like file-based deduplication could readily save 17% of the storage costs. This calls
to further research and the application of advanced data reduction techniques, both at the
client and server sides.

Take care of user activity. This observation is actually very important, as we found that 1% of
U1 users generated 65% of traffic (7.7), showing a weak form of the Pareto Principle. That is,
a very small fraction of the users represented most of the OPEX for U1. A natural response
may be to limit the activity of free accounts, or at least to treat active users in a more cost
effective way. For instance, distributed caching systems like Memcached, data prefetching
techniques, and advanced sync deferment techniques [12] could easily cut the operational
costs down. On the other hand, U1 may benefit from cold/warm storage services (e.g.,
Amazon Glacier, f4 [26]) to limit the costs related to most inactive users.

Security is a big concern. Another source of expense for a Personal Cloud is related to its ex-
ploitation by malicious parties. In fact, we found that DDoS attacks aimed at sharing illegal
content via U1 are indeed frequent. The risk that these attacks represent to U1 is in contrast
to the limited automation of its countermeasures. We believe that further research is needed
to integrate secure storage protocols and automated countermeasures for Personal Clouds.
In fact, understanding the common behavior of users in a Personal Cloud (e.g., storage,
content distribution) may provide clues to automatically detect anomalous activities.
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A Upload Management in U1

The management of file uploads is one of the most complex parts in the U1 architecture12.
Specifically, U1 resorts to the multipart upload API offered by Amazon S313. The lifecycle of
an upload is closely related to this API, where several U1 RPC calls are involved (see Table
7.1b).

Internally, U1 uses a persistent data structure called uploadjob that keeps the state of a
multipart file transfer between the client and Amazon S3. The main objective of multipart
uploads in U1 is to provide user with a way of interrupting/resuming large upload data
transfers. uploadjob data structures are stored in the metadata store during their life-cycle.
RPC operations during the multipart upload process guide the lifecycle of uploadjobs (see
Fig. 40).

Upon the reception of an upload request, U1 first checks if the file content is already
stored in the service, by means of a SHA-1 hash sent by the user. If deduplication is not
applicable to the new file, a new upload begins. The API server that handles the upload
sends an RPC to create an entry for the new file in the metadata store.
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API user upload request
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multipart (>5MB)
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get multipart id from Amazon S3
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complete Amazon S3
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U1 upload state machine

finished not

multipart

Abort upload

in Amazon S3

Figure 40: Upload state machine in U1.

In the case of a multipart upload, the API server creates a new uploadjob data structure
to track the process. Subsequently, the API process requests a multipart id to Amazon S3
that will identify the current upload until its termination. Once the id is assigned to the
uploadjob, the API server uploads to Amazon S3 the chunks of the file transferred by the
user (5MB), updating the state of the uploadjob.

When the upload finishes, the API server deletes the uploadjob data structure from the
metadata store and notifies Amazon S3 about the completion of the transfer.

12Downloads are simpler: API servers only perform a single request to Amazon S3 for forwarding the data
to the client.

13http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRESTAPImpUpload.html
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Finally, U1 also executes a periodic garbage-collection process on uploadjob data struc-
tures. U1 checks if an uploadjob is older than one week (dal.touch_uploadjob). In the
affirmative case, U1 assumes that the user has canceled this multipart upload permanently
and proceeds to delete the associated uploadjob from the metadata store.
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