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1 Executive summary

This document is a report on the software developed and final results obtained through the
research carried out in the context of the Cloudspaces project.

First, it describes AWE (Asynchronous Wait-free Erasure-coded storage protocol), a novel
approach to solve the issues related to erasure coded storage over distributed and unstrusted
stores. Along this line of research on practical solutions cloud storage inherent issues, we
also present Hybris. Hybris is a multi-cloud storage library we developed and released1, in
conjunction with its integration as backend of the StackSync prototype2.

Finally, we present also our proposal for the adaptive management of the cloud’s band-
width resources. The key idea is to use a peer-to-peer protocol (BitTorrent) instead of HTTP
when the load on the cloud becomes high. This approach can be easily integrated with
StackSync and two algorithms are proposed to manage the download protocols and to de-
fine the bandwidth allocation strategy.

1see: https://github.com/pviotti/hybris
2see https://github.com/pviotti/stacksync-desktop
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2 Introduction

In this deliverable we provide a practical and detailed description about some technical
results obtained by the research of the different contributors of the CloudSpaces project.

We will analyse the use of erasure coding (to minimize the storage consumption), in a so-
lution to handle untrusted and heterogeneous cloud repositories. Further, we will tackle the
problem of untrusted storage from another perspective: the challenging integration between
private and public clouds, and the related trade-offs on consistency and fault tolerance.

Namely, we present:

• AWE , the first erasure-coded distributed implementation of a multi-writer multi-reader
read/write storage object that is, at the same time: (1) asynchronous, (2) wait-free,
(3) atomic, (4) amnesic, (i.e., where nodes store a bounded number of values), and (5)
Byzantine fault-tolerant (BFT), i.e., tolerating untrusted nodes, using the optimal num-
ber of nodes. AWE maintains metadata separately from bulk data, which is encoded
into fragments with a k-out-of-n erasure code and stored on dedicated data nodes that
support only simple reads and writes. Furthermore, AWE is the first BFT storage pro-
tocol that uses only n = 2t + k data nodes to tolerate t Byzantine faults, for any k ≥ 1.
AWE is efficient and uses only lightweight cryptographic hash functions. We present
further details of AWE in Section 3.

• Hybris, an advanced version of our initial system described in D3.1, augmented with
support for transactional writes, tunable consistency and erasure coding, following
the guidelines behind AWE. Hybris is a multi-cloud storage backend that orchestrates
heterogeneous public clouds. It provides a robust and efficient storage abstraction
over multiple clouds that can be used as Personal Cloud backend in CloudSpaces.
Prototyped and designed by EUR, Hybris is described in Section 4.

In Section 5, we will present another case of study on cloud storage. While AWE and
Hybris approached cloud storage issues from the users’ point of view, this work focuses on
the techniques to exploit peer-to-peer technologies to offload cloud providers and ease files
distribution. These contributions can be summarized as follows:

• Comparative study between BitTorrent and HTTP: It is commonly believed that Bit-
Torrent is not convenient for the distribution of small files. But, to our knowledge,
there is no proof of such assumption. Wei et al. noticed in [1] that, in their specific
experimental settings, BitTorrent outperforms the FTP protocol only when the file size
is greater than 20 MB. However, in practice, we found that BitTorrent can be efficient
for small files [2] which confutes the general statement that BitTorrent is not effective
for small files based on a real experimental study.
In [2], we propose an analytic estimation of the distribution time in BitTorrent that
takes into account the overheads related to the nature of the protocol. In addition,
we introduce two general metrics to decide when it is better to use one protocol with
respect to the other: the gain and the offload ratios. The gain measures the degree
of improvement in download time of BitTorrent relative to HTTP. The offload ratio
quantifies the amount of data that can be offloaded if the peers adopt BitTorrent. We
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validate in [2] all the proposed formulas with focus on small files.

• Switching algorithm: We propose a dynamic algorithm which uses simple parame-
ters that can be collected by the system and evaluates the efficacy of using HTTP and
BitTorrent as a distribution protocol for each requested file. Based on the load of the
seed and the predefined switching constraints, the algorithms decides the most suit-
able protocol for each case and provides the corresponding bandwidth allocations at
the swarm level.
The algorithm is validated later using a real trace of the Ubuntu One System [3]. We
measure the amount of data that can be offloaded based on different time constraints.
We notice that the overall offloaded data volume exceeds 16% of the total amount of
data exchanged. From an economic point of view, this corresponds to savings of the
order of hundreds to thousands of dollars per month.

• Bandwidth allocation algorithm: The bandwidth allocation algorithm aims to mini-
mize the usage of the cloud’s bandwidth, while respecting the QoS constraint. It ex-
tends the switching algorithm and takes advantage of the bandwidth estimation for-
mulas to define the cloud’s bandwidth allocations at the swarm level.
To validate the algorithm, we develop two simulators. The first one simulates the de-
fault behavior of the seed where each download operation is treated individually and
the content is delivered using HTTP. The second simulator simulates the bandwidth
distribution and switching algorithm where BT can be used along with HTTP to dis-
tribute content. We validate both approaches using a real trace of the Ubuntu One
system: We vary the switching constrains and the cloud upload speed limits and mea-
sure the degree of improvement in download time of the involved clients using our
algorithm (BT and HTTP together) compared to the use of HTTP alone. The results
show important improvements in the download time experienced by the peers.

All the aforementioned research contributions have been devised to match the practical
requirements of a real-life Personal Cloud system, such as the StackSync prototype.
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3 Erasure-Coded Storage with Separate Metadata

Besides well-known benefits, commodity cloud storage also raises concerns that include
security, reliability, and economical costs. Erasure coding is a key technique aimed at saving
space and retaining robustness against faults in distributed storage systems. In short, an
erasure code splits a large data value into n fragments such that from any k of them the input
value can be reconstructed. Erasure coding is used by several large-scale storage systems [4,
5] that offer large capacity, high throughput, resilience to faults, and efficient use of storage
space.

Whereas the storage systems in production use today only tolerate crashes or outages,
storage systems in the Byzantine failure model (BFT) survive also more severe faults, rang-
ing from arbitrary state corruption to malicious attacks on processes. In general, the BFT
models untrusted data repositories. Here, we consider a model where multiple clients con-
currently access a storage service provided by a distributed set of nodes , where t out of n
nodes may be Byzantine. We model the storage service as an abstract read/write register
object.

Although BFT erasure-coded distributed storage systems have received some attention
in the literature [6, 7, 8, 9, 10], our understanding of their properties is not mature. The
role of different quorums, the semantics of concurrent access, the latency of protocols, and
the processing capabilities of the nodes have been investigated thoroughly for protocols
based on replication [11, 12]; in contrast, our understanding of erasure-coded distributed
storage lies far behind. In fact, the existing BFT erasure-coded storage protocols suffer from
multiple drawbacks: some require nodes to store an unbounded number of values [6] or
rely on node-to-node communication [7], others need computationally expensive public-key
cryptography [7, 8] or may block clients due to concurrent operations of other clients [8].

We introduce AWE, the first erasure-coded distributed implementation of a multi-reader
multi-writer (MRMW) register that is, at the same time, (1) asynchronous, (2) wait-free, (3)
atomic, (4) amnesic, (5) tolerates the optimal number of Byzantine nodes, and (6) does not
use public-key cryptography. Although different subsets of these robustness properties have
been demonstrated so far, they have never been achieved together for erasure-coded storage,
as explained later. Combining these properties, that we describe in the following, has been
a longstanding open problem [6].

More specifically, AWE is an asynchronous protocol that provides the strongest live-
ness and safety properties, namely wait-freedom [13] and atomicity (or linearizability) [14].
Roughly, wait-free liveness means that any correct client operation terminates irrespective
of the behavior of the faulty nodes and clients, whereas atomicity means that all operations
appear to take effect instantaneously. Moreover, protocol AWE is amnesic [15] in the sense
that nodes store a bounded number of values and erase obsolete data.

It has been shown that n > 3t nodes are needed for distributed BFT storage [16], and
all known erasure-coded BFT storage protocols actually use n > 3t nodes to store payload
(bulk) data. This dramatically increases the cost of BFT over crash-tolerant storage, where
less than half of the nodes may be faulty. By distinguishing between metadata (short con-
trol information) and bulk data (the erasure-coded stored values) and by introducing two
separate classes of nodes that store metadata and bulk data, respectively, AWE beats this
bound for the class of data nodes (that store bulk data). In particular, with a k-out-of-n era-
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sure code, protocol AWE needs only 2t + k data nodes , for any k ≥ 1. This approach saves
resources in practice, as storage costs for the bulk data often dominate, and it resembles the
separation between agreement and execution for BFT services [17]. The data nodes may be
passive objects that support read and write operations but cannot execute code, as in Disk
Paxos [18]. In practice, such services may be provided by the key-value stores (KVS) popular
in cloud storage.

We formulate AWE in a modular way using an abstract metadata service that stores
control information with an atomic snapshot object. A snapshot object may be realized in
a distributed asynchronous system from simple read/write registers [19]. For making this
implementation fault-tolerant, these registers must still be emulated from n > 3t different
metadata nodes , in order to tolerate t Byzantine nodes.

Finally, AWE uses simple cryptographic hash functions but no expensive public-key op-
erations. To explain the use of cryptography in AWE, we show that separating data from
metadata and reducing the number of data nodes to 3t or less implies the use cryptographic
techniques. This result is interesting in its own right, as it implies that any distributed BFT
storage protocol that uses 3t or fewer nodes for storing bulk data must involve crypto-
graphic hash functions and place a bound on the computational power of the Byzantine
nodes. As all existing BFT erasure-coded storage protocols (including AWE) rely on cryp-
tography, this result does not pose a restriction on practical systems. However, it illustrates
a fundamental limitation that is particularly relevant for k = 1, i.e., for replication-based
BFT storage protocols.

The remaining of this section is composed as follows. The AWE protocol is presented in
Section 3.1. The communication and storage complexities of AWE are compared to those of
existing protocols in Section 3.2.

3.1 Protocol AWE

This subsection introduces the asynchronous wait-free erasure-coded Byzantine distributed
storage protocol (AWE).

3.1.1 Abstractions

Erasure code. An (n, k)-erasure code (EC) with domain V is given by an encoding algo-
rithm, denoted Encode, and a reconstruction algorithm, called Reconstruct. We consider
only maximum-distance separable codes, which achieve the Singleton bound in the follow-
ing sense. Given a (large) value v ∈ V , algorithm Encodek,n(v) produces a vector [ f1, . . . , fn]
of n fragments, which are from a domain F . A fragment is typically much smaller than
the input, and any k fragments contain all information of v, that is, |V| ≈ k|F |. For an
n-vector F ∈

(
F ∪ {⊥}

)n, whose entries are either fragments or the symbol ⊥, algorithm
Reconstructk,n(F) outputs a value v ∈ V or ⊥. An output value of ⊥ means that the re-
construction failed. The completeness property of an erasure code requires that an encoded
value can be reconstructed from any k fragments. In other words, for every v ∈ V , when one
computes F ← Encodek,n(v) and then erases up to n− k entries in F by setting them to ⊥,
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algorithm Reconstructk,n(F) outputs v. For a more general and high level primer on erasure
coding we refer the reader to [20].

Metadata service. The metadata service is implemented by a standard atomic snapshot
object [19], called dir, that serves as a directory. A snapshot object extends the simple storage
function of a register to a service that maintains one value for each client and allows for
better coordination. Like an array of multi-reader single-writer (MRSW) registers, it allows
every client to update its value individually; for reading it supports a scan operation that
returns the vector of the stored values, one for every client. More precisely, the operations
of dir are:

• An Update operation to dir is triggered by an invocation 〈 dir-Update | c, v 〉 by client c
that takes a value v ∈ V as parameter and terminates by generating a response 〈 r-
UpdateAck 〉 with no parameter.

• A Scan operation on dir is triggered by an invocation 〈 dir-Scan 〉 with no parameter;
the snapshot object returns a vector V of m = |C| values to c as the parameter in the
response 〈 r-ScanResp | V 〉, with V[c] ∈ V for c ∈ C.

The sequential specification of the snapshot object follows directly from the specification of
an array of m MRSW registers (hence, the snapshot initially stores the special symbol ⊥ 6∈ V
in every entry). When accessed concurrently from multiple clients, its operations appear
to take place atomically, i.e., they are linearizable. Snapshot objects are weak — they can
be implemented from read/write registers [19], which, in turn, can be implemented from
a set of a distributed processes subject to Byzantine faults. Wait-free amnesic implementa-
tions of registers with the optimal number of n > 3t processes are possible using existing
constructions [21, 22].

Data nodes. Data nodes provide a simple key-value store interface. We model the state
of data nodes as an array data[ts] ∈ Σ∗, initially ⊥, for ts ∈ Timestamps. Every value is
associated to a timestamp, which consists of a sequence number sn and the identifier c of the
writing client, i.e., ts = (sn, c) ∈ Timestamps = N0× (C ∪ {⊥}); timestamps are initialized to
T0 = (0,⊥). Data node di exports three operations:

• 〈 di-Write | ts, v 〉, which assigns data[ts]← v and returns 〈 di-WriteAck | ts 〉;

• 〈 di-Read | ts 〉, which returns 〈 di-ReadResp | ts, data[ts] 〉; and

• 〈 di-Free | TS 〉, which assigns data[ts]← ⊥ for all ts ∈ TS, and returns 〈 di-FreeAck | TS 〉.

3.1.2 Protocol overview

Protocol AWE uses the metadata directory dir to maintain pointers to the fragments stored
at the data nodes. As in standard implementations of multi-writer distributed storage [23],
every value is associated to a timestamp, which consists of a sequence number sn and the
identifier c of the writing client, i.e., ts = (sn, c) ∈ Timestamps = N0× (C ∪ {⊥}); timestamps
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are initialized to T0 = (0,⊥). The metadata contains the timestamp of the most recently
written value for every client, and readers determine the value to read by retrieving all
timestamps, determining their maximum, and accessing the fragments associated to the
highest timestamp. Comparisons among timestamps use the standard ordering, where ts1 >
ts2 for ts1 = (sn1, c1) and ts2 = (sn2, c2) if and only if sn1 > sn2 ∨ (sn1 = sn2 ∧ c1 > c2).

The directory stores an entry for every writer; it contains the timestamp of its most re-
cently written value, the identities of those nodes that have acknowledged to store a frag-
ment of it, a vector with the hashes of the fragments for ensuring data integrity, and ad-
ditional metadata to support concurrent reads and writes. The linearizable semantics of
protocol AWE are obtained from the atomicity of the metadata directory.

At a high level, the writer first invokes dir-Scan on the metadata to read the highest stored
timestamp, increments it, and uses this as the timestamp of the value to be written. Then
it encodes the value to n fragments and sends one fragment to each data node. The data
nodes store it and acknowledge the write. After the writer has received acknowledgments
from t + k data nodes, it writes their identities (together with the timestamp and the hashes
of the fragments) to the metadata through dir-Update. The reader proceeds accordingly: it
first invokes dir-Scan to obtain the entries of all writers; it determines the highest timestamp
among them and extracts the fragment hashes and the identities of the data nodes; finally,
it contacts the data nodes and reconstructs the value after obtaining k fragments that match
the hashes in the metadata.

Although this simple algorithm achieves atomic semantics, it does not address timely
garbage-collection of obsolete fragments, the main problem to be solved for amnesic erasure-
code distributed storage. If a writer would simply replace the fragments with those of the
value written next, it is easy to see that a concurrent reader may stall.

Protocol AWE uses two mechanisms to address this: first, the writer retains those values
that may be accessed concurrently and exempts them from garbage collection so that their
fragments remain intact for concurrent readers, which gives the reader enough time to re-
trieve its fragments. Secondly, some of the retained values may also be frozen in response
to concurrent reads; this forces a concurrent read to retrieve a value that is guaranteed to
exist at the data nodes rather than simply the newest value, thereby effectively limiting the
amount of stored values. A similar freezing method has been used for wait-free atomic stor-
age with replicated data [21, 22], but it must be changed for erasure-coded storage with sep-
arated metadata. The retention technique together with the separation of metadata appears
novel. More specifically, metadata separation prevents straightforward applications of ex-
isting “freezing” techniques, whereas storage that is simultaneously wait-free and amnesic
requires garbage collection method that we devised as part of the research of CloudSpaces.

For the two mechanisms, i.e., retention and freezing, every reader maintains a reader
index, both in its local variable readindex and in its metadata. The reader index serves for
coordination between the reader and the writers. The reader increments its index whenever
it starts a new r-Read and immediately writes it to dir, thereby announcing its intent to
read. Writers access the reader indices after updating the metadata for a write and before
(potentially) erasing obsolete fragments. Every writer w maintains a table frozenindex with
its most recent recollection of all reader indices. When the newly obtained index of a reader
c has changed, then w detects that c has started a new operation at some time after the last
write of w.
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When w detects a new operation of c, it does not know whether c has retrieved the time-
stamp from dir before or after the dir-Update of the current write. The reader may access
either value; the writer therefore retains both the current and the preceding value for c by
storing a pointer to them in frozenptrlist and in reservedptrlist. Clearly, both values have to be
excluded from garbage collection by w in order to guarantee that the reader completes.

However, the operation of the reader c may access dir after the dir-Update of one or more
subsequent write operation by w, which means that the nodes would have to retain every
value subsequently written by w as well. To prevent this from happening and to limit the
number of stored values, w freezes the currently written timestamp (as well as the value) and
forces c to read this timestamp when it accesses dir within the same operation. In particular,
the writer stores the current timestamp in frozenptrlist at index c and updates the reader
index of c in frozenindex; then, the writer pushes both tables, frozenindex and frozenptrlist, to
the metadata service during its next r-Write. The values designated by frozenptrlist (they are
called frozen) and reservedptrlist (they are called reserved) are retained and excluded from
garbage collection until w detects the next read of c, i.e., the reader index of c increases. Thus,
the current read may span many concurrent writes of w and the fragments remain available
until c finishes reading.

On the other hand, a reader must consider frozen values. When a slow read operation
spans multiple concurrent writes, the reader c learns that it should retrieve the frozen value
through its entry in the frozenindex table of the writer.

The protocol is amnesic because each writer retains at most two values per reader, a
frozen value and a reserved value. Every data node therefore stores at most two fragments
for every reader-writer pair plus the fragment from the currently written value. The combi-
nation of freezing and retentions ensures wait-freedom.

Protocol details are available in the Technical Report [24].

Remarks. AWE does not rely on a majority of correct data nodes for correctness, as this
is encapsulated in the directory service. For liveness, though, the protocol needs responses
from t + k data nodes during write operations, which is only possible if n ≥ 2t + k. Further-
more, several optimizations may reduce the storage overhead in practice, e.g., readers can
clean up values that are no longer needed by anyone.

3.2 Complexity comparison

This section compares the communication and storage complexities of AWE to existing
erasure-coded distributed storage solutions, in a setting with n data nodes and m clients.
We denote the size of each stored value v ∈ V by ` = dlog2 |V|e. In line with the intended
deployment scenarios, we assume that ` is much larger (by several orders of magnitude)
than n2 and m2 , i.e., `� n2 and `� m2.

We examine the worst-case communication and storage costs incurred by a client in pro-
tocol AWE and distinguish metadata operations (on dir) from operations on the data nodes.
The metadata of one value written to dir consists of a pointer, containing the cross checksum
with n hash values, the t + k identities of the data nodes that store a data fragment, and a
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Table 3.2a Comparison of the communication and space complexities of erasure-coded dis-
tributed storage solutions. There are m clients, n data nodes, the erasure code parameter is
k = n− 2t, and the data values are of size ` bits. An asterisk (*) denotes optimal properties.

Protocol Communication cost Storage cost
Write Read

ORCAS-A [9] (1 + m)n` 2n` n`
ORCAS-B [9] (1 + m)n`/k 2n`/k mn`/k
CASGC [25] n`/k * ∞ mn`/k
CT [7] (n + m)n`/(k + t) ` * n`/(k + t) *
HGR [8] n`/k * ∞ mn`/k
M-PoWerStore [26] n`/k * n`/k ∞
DepSky [10] n`/k * n`/k ∞
AWE (Sec. 4.3) n`/k * (t + k)`/k 2m2n`/k

timestamp. Moreover, the metadata entry of one writer contains also the list of m pointers to
frozen values, the m indices relating to the frozen values, and the writer’s reader index. As-
suming a collision-resistant hash function with output size λ bits and timestamps no larger
than λ bits, the total size of the metadata is O(m2nλ).

In the remainder of this section, the size of the metadata is considered to be negligible
and is ignored, though it would incur in practice.

According to the above assumption, the complexity of AWE is dominated by the data
itself. When writing a value v ∈ V , the writer sends a fragment of size `/k and a timestamp
of size λ to each of the n data nodes. Assuming further that ` � λ, the total storage space
occupied by v at the data nodes amounts to n`/k bits. Similarly, a read operation incurs a
communication cost of (t + k)k/` bits. With respect to storage complexity, protocol AWE
freezes and reserves two timestamps and their fragments for each writer-reader pair, and
additionally stores the fragments of the last written value for each writer. This means that
the storage cost is at most 2m2n`/k bits in total.

Table 3.2a shows the communication and storage costs of protocol AWE and the related
protocols. Observe that in CASGC [25] and HGR [8], a read operation concurrent with an
unbounded number of writes may not terminate, hence we state their cost as ∞. Moreover,
in contrast to AWE, DepSky [10] is neither wait-free nor amnesic and M-PoWerStore [26] is
not amnesic. It is easy to see that the communication complexity of AWE is lower than that
of most storage solutions.
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4 Hybris: Efficient and Robust Hybrid Cloud Storage

4.1 Introduction

Hybrid cloud storage entails storing data on private premises as well as on one (or more)
remote, public cloud storage providers. To enterprises, such hybrid design brings the best of
both worlds: the benefits of public cloud storage (e.g., elasticity, flexible payment schemes
and disaster-safe durability) as well as the control over enterprise data. For example, an
enterprise can keep the sensitive data on premises while storing less sensitive data at poten-
tially untrusted public clouds. In a sense, hybrid cloud eliminates to a large extent various
security concerns that companies have with entrusting their data to commercial clouds 3

— as a result, enterprise-class hybrid cloud storage solutions are booming with all leading
storage providers, such as EMC4, IBM5, Microsoft6 and others, offering their proprietary
solutions.

That said, cloud storage concerns do not end with security and trust. Other potential
issues with commodity cloud storage are related to provider reliability, availability and per-
formance, vendor lock-in concerns, as well as consistency, as cloud storage services are noto-
rious for providing only eventual consistency [27]. To this end, several research works (e.g.,
[28, 29, 30, 31]) considered storing data robustly into public clouds, by leveraging multiple
commodity cloud providers. In short, the idea behind these multi-cloud storage systems
such as DepSky [28], ICStore [29] and SPANStore [30] and SCFS [31] is to leverage multi-
ple public cloud providers with the goals of distributing the trust across clouds, increasing
reliability, availability and consistency guarantees, and/or optimizing the cost of using the
cloud. A significant advantage of the multi-cloud approach (that makes it also interesting
for SMEs) is that it is typically based on client libraries that share data accessing commodity
clouds, and as such, demands no big investments into proprietary storage solutions.

However, the existing robust multi-cloud storage systems suffer from serious limitations.
Often, the robustness of these systems is limited to tolerating cloud outages, but not arbi-
trary or malicious behavior in clouds (e.g., data corruptions) — this is the case with ICStore
[29] and SPANStore [30]. Other multi-cloud systems that do address malice in systems (e.g.,
DepSky [28] and SCFS [31]) require prohibitive cost of relying on 3 f + 1 clouds to mask f
faulty ones. This is a major overhead with respect to tolerating only cloud outages, which
makes these systems expensive to use in practice. Moreover, all existing multi-cloud storage
systems scatter storage metadata across public clouds increasing the difficulty of storage
management and impacting performance.

We unify the hybrid cloud approach with that of robust multi-cloud storage and present
Hybris, the first robust hybrid cloud storage system. Hybris effectively brings together the
best of both worlds, increasing security, reliability and consistency. At the same time, the
novel design of Hybris allows for the first time to tolerate potentially malicious clouds at the
price of tolerating only cloud outages.

Hybris exposes the de-facto standard key-value store API and is designed to seamlessly

3See e.g., http://vmw.re/1Ja4fvI.
4http://www.emc.com/campaign/global/hybridcloud/.
5http://www.ibm.com/software/tivoli/products/hybrid-cloud/.
6http://www.storsimple.com/.
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replace services such as Amazon S3 as the storage back-end of modern cloud applications.
The key idea behind Hybris is that it keeps all storage metadata on private premises, even
when those metadata pertain to data outsourced to public clouds. This approach not only
allows more control over the data scattered around different public clouds, but also allows
Hybris to significantly outperform existing robust public multi-cloud storage systems, both
in terms of system performance (e.g., latency) and storage cost, while providing strong con-
sistency guarantees. The salient features of Hybris are as follows:

• Tolerating untrusted clouds at the price of outages. Hybris puts no trust in any given
public cloud provider; namely, Hybris can mask arbitrary (including malicious) faults
of up to f public clouds. Interestingly, Hybris replicates data on as few as f + 1 clouds in
the common case (when the system is synchronous and without faults), using up to f
additional clouds in the worst case (e.g., network partitions, cloud inconsistencies and
faults). This is in sharp contrast to existing multi-cloud storage systems that involve
up to 3 f + 1 clouds to mask f malicious ones (e.g., [28, 31]).

• Efficiency. Hybris is efficient and incurs low cost. In common case, a Hybris write in-
volves as few as f + 1 public clouds, whereas reads involve only a single cloud, despite
the fact that clouds are untrusted. Hybris achieves this without relying on expensive
cryptographic primitives; indeed, in masking malicious faults, Hybris relies solely on
cryptographic hashes. Besides, by storing metadata locally on private cloud premises,
Hybris avoids expensive round-trips for metadata operations that plagued previous
multi-cloud storage systems. Finally, to reduce replication overhead, Hybris option-
ally supports erasure coding, along the guidelines developed with protocol AWE (Sec-
tion 3).

• Scalability. The potential pitfall of using private cloud in combination with public
clouds is in incurring a scalability bottleneck at a private cloud. Hybris avoids this
pitfall by keeping the metadata very small. As an illustration, the replicated variant of
Hybris maintains about 50 bytes of metadata per key, which is an order of magnitude
less than comparable systems [28]. As a result, Hybris metadata service residing on a
small commodity private cloud, can easily support up to 30k write ops/s and nearly
200k read ops/s, despite being fully replicated for metadata fault-tolerance.

Indeed, for Hybris to be truly robust, it has to replicate metadata reliably. Given inherent
trust in private premises, we assume faults within private premises that can affect Hybris
metadata to be crash-only. To maintain the Hybris footprint small and to facilitate its adop-
tion, we chose to replicate Hybris metadata layering Hybris on top of Apache ZooKeeper coor-
dination service [32]. Hybris clients act simply as ZooKeeper clients — our system does not
entail any modifications to ZooKeeper, hence facilitating Hybris deployment. In addition,
we designed Hybris metadata service to be easily portable to SQL-based replicated RDBMS
as well as NoSQL data stores that export conditional update operation (e.g., HBase or Mon-
goDB), which can then serve as alternatives to ZooKeeper.

Hybris offers full fledged per-key multi-writer multi-reader capabilities that guarantees
linearizability (atomicity) [33] of reads and writes even in presence of eventually consistent
public clouds [27]. To achieve this, Hybris relies on strong metadata consistency within a
private cloud to mask potential inconsistencies at public clouds — in fact, Hybris treats cloud
inconsistencies simply as arbitrary cloud fault. Furthermore, our implementation of the
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Hybris metadata service over Apache Zookeeper is interesting in its own right as it uses lock-
free (wait-free [34]) concurrency control that further boosts the scalability of our system with
respect to lock-based systems such as SPANStore [30], DepSky [28] and SCFS [31].

Finally, Hybris optionally supports the following optional features:

• Caching of data stored at public clouds. While different caching solutions can be ap-
plied to Hybris, we chose to interface Hybris with Memcached7 distributed cache, with
Memcached deployed on the same machines that run ZooKeeper servers;

• Symmetric-key encryption for data confidentiality, leveraging trusted Hybris metadata
to store and share cryptographic keys;

• Tunable consistency. In alternative to strong consistency, Hybris can offer improved
performance by relaxing in a controlled and adjustable manner the consistency se-
mantics.

We implemented Hybris in Java8 and evaluated it using both microbenchmarks and the
YCSB [35] macrobenchmark. Our evaluation shows that Hybris significantly outperforms
state-of-the-art robust multi-cloud storage systems, with a fraction of the cost and stronger
consistency.

The rest of the section is organized as follows. In Section 4.2, we present the Hybris archi-
tecture and system model. Then, in Section 4.3, we give the algorithmic aspects of the Hybris
protocol. In Section 4.4 we discuss Hybris implementation and optimizations.

4.2 Hybris overview

Hybris architecture. High-level design of Hybris is given in Figure 1. Hybris mixes two types
of resources: 1) private, trusted resources that consist of computation and (limited) storage
resources and 2) public (and virtually unlimited) untrusted storage resources in the clouds.
Hybris is designed to leverage commodity public cloud storage repositories whose API does
not offer computation, i.e., key-value stores (e.g., Amazon S3).

Hybris stores metadata separately from public cloud data. Metadata is stored within the
key component of Hybris called Reliable MetaData Service (RMDS). RMDS has no single
point of failure and, in our implementation, resides on private premises.

On the other hand, Hybris stores data (mainly) in untrusted public clouds. Data is repli-
cated across multiple cloud storage providers for robustness, i.e., to mask cloud outages and
even malicious faults. In addition to storing data in public clouds, Hybris architecture sup-
ports data caching on private premises. While different caching solutions exist, our Hybris
implementation employs Memcached, the most popular open source distributed caching
system.

Finally, at the heart of the system is the Hybris client, whose library is responsible for
interactions with public clouds, RMDS and the caching service. Hybris clients are also re-

7http://memcached.org/.
8Hybris code is available at https://github.com/pviotti/hybris.
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Figure 1: Hybris architecture. Reused (open-source) components are depicted in grey.

sponsible for encrypting and decrypting data in case data confidentiality is enabled — in
this case, clients leverage RMDS for sharing encryption keys (see Sec. 4.3.8).

In the following, we first specify our system model and assumptions. Then we define
Hybris data model and specify its consistency and liveness semantics.

System model. We assume an unreliable distributed system where any of the components
might fail. In particular, we consider dual fault model, where: (i) the processes on private
premises (i.e., in the private cloud) can fail by crashing, and (ii) we model public clouds as
potentially malicious (i.e., arbitrary-fault prone [36]) processes. Processes that do not fail are
called correct.

Processes on private premises are clients and metadata servers. We assume that any
number of clients and any minority of metadata servers can be (crash) faulty. Moreover,
we allow up to f public clouds to be (arbitrary) faulty; to guarantee Hybris availability, we
require at least 2 f + 1 public clouds in total. However, Hybris consistency is maintained
regardless of the number of public clouds.

Similarly to our fault model, our communication model is dual, with the model bound-
ary coinciding with our trust boundary (see Fig. 1).9 Namely, we assume that the com-
munication among processes located in the private portion of the cloud is partially syn-
chronous [37] (i.e., with arbitrary but finite periods of asynchrony), whereas the communi-
cation among clients and public clouds is entirely asynchronous (i.e., does not rely on any
timing assumption) yet reliable, with messages between correct clients and clouds being
eventually delivered.

Our consistency model is likewise dual. We model processes on private premises as
classical state machines, with their computation proceeding in indivisible, atomic steps. On
the other hand, we model clouds as eventually consistent [27]; roughly speaking, eventual
consistency guarantees that, if no new updates are made to a given data item, eventually all
accesses to that item will return the last updated value.

9We believe that our dual fault and communication model reasonably reflects the typical hybrid cloud
deployment scenarios.
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Finally, for simplicity, we assume an adversary that can coordinate malicious processes
as well as process crashes. However, we assume that the adversary cannot subvert the
cryptographic hash functions we use (SHA-1), and that it cannot spoof the communication
among non-malicious processes.

Hybris data model and semantics. Similarly to commodity public cloud storage services,
Hybris exports a key-value store (KVS) API; in particular, Hybris address space consists of
flat containers, each holding multiple keys. The KVS API features four main operations: (i)
PUT(cont, key, value), to put value under key in container cont; (ii) GET(cont, key, value), to
retrieve the value; (iii) DELETE(cont, key) to remove the respective entry and (iv) LIST(cont)
to list the keys present in container cont. We collectively refer to Hybris operations that mod-
ify storage state (e.g., PUT and DELETE) as write operations, whereas the other operations
(e.g., GET and LIST) are called read operations.

Hybris implements a multi-writer multi-reader key-value storage. Hybris is strongly con-
sistent, i.e., it implements atomic (or linearizable [33]) semantics. In distributed storage
context, atomicity provides an illusion that a complete operation op is executed instantly at
some point in time between its invocation and response, whereas the operations invoked by
faulty clients appear either as complete or not invoked at all.

Despite providing strong consistency, Hybris is highly available. Hybris writes by a correct
client are guaranteed to eventually complete [34]. On the other hand, Hybris guarantees a
read operation by a correct client to complete always, except in an obscure corner case where
there is an infinite number of writes to the same key concurrent with the read operation.

4.3 Hybris Protocol

4.3.1 Overview

The key component of Hybris is RMDS which maintains metadata associated with each key-
value pair. In the vein of Farsite [38], Hybris RMDS maintains pointers to data locations and
cryptographic hashes of the data. However, unlike Farsite, RMDS additionally includes a
client-managed logical timestamp for concurrency control, as well as data size.

Such Hybris metadata, despite being lightweight, is powerful enough to enable tolerating
arbitrary cloud failures. Intuitively, the cryptographic hash within a trusted and consistent
RMDS enables end-to-end integrity protection: it ensures that neither corrupted values pro-
duced by malicious clouds, nor stale values retrieved from inconsistent clouds, are ever re-
turned to the application. Complementarily, data size helps prevent certain denial-of-service
attack vectors by a malicious cloud (see Sec. 4.4.2).

Furthermore, Hybris metadata acts as a directory pointing to f + 1 clouds that have been
previously updated, enabling a client to retrieve the correct value despite f of them being
arbitrary faulty. In fact, with Hybris, as few as f + 1 clouds are sufficient to ensure both
consistency and availability of read operations (namely GET) — indeed, Hybris GET never
involves more than f + 1 clouds (see Sec. 4.3.3). Additional f clouds (totaling 2 f + 1 clouds)
are only needed to guarantee that write operations (namely PUT) are available as well (see
Sec. 4.3.2). Note that since f clouds can be faulty, and a value needs to be stored in f + 1
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clouds for durability, overall 2 f + 1 clouds are required for PUT operations to be available in
the presence of f cloud outages.

Finally, besides cryptographic hash and pointers to clouds, metadata includes a time-
stamp that, roughly speaking, induces a partial order of operations which captures the real-
time precedence ordering among operations (atomic consistency). The subtlety of Hybris
(see Sec. 4.3.6 for details) is in the way it combines timestamp-based lock-free multi-writer
concurrency control within RMDS with garbage collection (Sec. 4.3.5) of stale values from
public clouds to save on storage costs.

In the following we detail each Hybris operation individually.

4.3.2 PUT Protocol

RMDS

w
k put(k|ts

new,v) ack k,ts
new
,H(v),[c

1
,c
2
]ts ok

c
1

c
2

c
3

ack

Figure 2: Hybris PUT protocol illustration ( f = 1). Common-case communication is depicted
in solid lines.

Hybris PUT protocol entails a sequence of consecutive steps illustrated in Figure 2. To
write a value v under key k, a client first fetches from RMDS the latest authoritative time-
stamp ts by requesting the metadata associated with key k. Timestamp ts is a tuple consist-
ing of a sequence number sn and a client id cid. Based on timestamp ts, the client computes
a new timestamp tsnew, whose value is (sn + 1, cid). Next, the client combines the key k and
timestamp tsnew to a new key knew = k|tsnew and invokes put (knew, v) on f + 1 clouds in
parallel. Concurrently, the clients start a timer whose expiration is set to typically observed
upload latencies (for a given value size). In the common case, the f + 1 clouds reply to the
the client in a timely fashion, before the timer expires. Otherwise, the client invokes put
(knew, v) on up to f secondary clouds (see dashed arrows in Fig. 2). Once the client has re-
ceived acks from f + 1 different clouds, it is assured that the PUT is durable and proceeds to
the final stage of the operation.

In the final step, the client attempts to store in RMDS the metadata associated with key k,
consisting of the timestamp tsnew, the cryptographic hash H(v), size of value v size(v), and
the list (cloudList) of pointers to those f + 1 clouds that have acknowledged storage of value
v. Notice, that since this final step is the linearization point of PUT it has to be performed in
a specific way as discussed below.
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Namely, if the client performs a straightforward update of metadata in RMDS, then it
may occur that stored metadata is overwritten by metadata with a lower timestamp (old-
new inversion), breaking the timestamp ordering of operations and Hybris consistency. To
solve the old-new inversion problem, we require RMDS to export an atomic conditional
update operation. Then, in the final step of Hybris PUT, the client issues conditional update
to RMDS which updates the metadata for key k only if the written timestamp tsnew is greater
than the timestamp for key k that RMDS already stores. In Section 4.4 we describe how we
implement this functionality over Apache ZooKeeper API; alternatively other NoSQL and
SQL DBMSs that support conditional updates can be used.

4.3.3 GET in the common case
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Figure 3: Hybris GET protocol illustration ( f = 1). Common-case communication is depicted
in solid lines.

Hybris GET protocol is illustrated in Figure 3. To read a value stored under key k, the client
first obtains from RMDS the latest metadata, comprised of timestamp ts, cryptographic hash
h, value size s, as well a list cloudList of pointers to f + 1 clouds that store the corresponding
value. Next, the client selects the first cloud c1 from cloudList and invokes get (k|ts) on c1,
where k|ts denotes the key under which the value is stored. Besides requesting the value, the
client starts a timer set to the typically observed download latency from c1 (given the value
size s) (for that particular cloud). In the common case, the client is able to download the
correct value from the first cloud c1 in a timely manner, before expiration of its timer. Once
it receives value v, the client checks that v hashes to hash h comprised in metadata (i.e., if
H(v) = h). If the value passes the check, then the client returns the value to the application
and the GET completes.

In case the timer expires, or if the value downloaded from the first cloud does not pass
the hash check, the client sequentially proceeds to download the data from the second cloud
from cloudList (see dashed arrows in Fig. 3) and so on, until the client exhausts all f + 1
clouds from cloudList.10

In specific corner cases, caused by concurrent garbage collection (described in Sec. 4.3.5),

10As we discuss in details in Section 4.4, in our implementation, clouds in cloudList are ranked by the client
by their typical latency in the ascending order, i.e., when reading the client will first read from the “fastest”
cloud from cloudList and then proceed to slower clouds.
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failures, repeated timeouts (asynchrony), or clouds’ inconsistency, the client has to take ad-
ditional actions in GET (described in Sec. 4.3.6).

4.3.4 Transactional PUT
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Figure 4: Hybris transactional PUT protocol illustration ( f = 1). Worst case communication
patterns are omitted for clarity.

The transactional PUT operation is exposed by the Hybris library in order to enable atomic
writing to different keys. The sequence of consecutive steps associated with the transactional
PUT operation is depicted in Figure 4. Similarly to the normal PUT protocol, at first the client
fetches the latest authoritative timestamps ([ts0...tsn]) by requesting in parallel to the RMDS
the metadata associated to the keys it wants to write ([k0...kn]). Each timestamp tsi is a tuple
consisting of a sequence number sni and a client id cidi. Based on timestamp tsi, the client
computes a new timestamp tsi_new for each key, whose value is (sni + 1, cidi). Next, the client
combines each key ki and timestamp tsi_new to a new key ki_new = ki|tsi_new and invokes put
(ki_new, vi) on f + 1 clouds in parallel. This operation is executed in parallel for each key to
be written. Concurrently, the client starts a set of timers whose expirations are set according
to the typically upload latencies observed for the given payload sizes. In the common case,
the f + 1 clouds reply to the the client for each key in a timely fashion, before the timer
expires. Otherwise, the client invokes put (ki_new, vi) on up to f secondary clouds (this worst
case scenario is not shown in Fig. 4 for clarity). Once the client has received acks from f + 1
different clouds for each key, it is assured that the transactional PUT is durable and it can
thus proceed to the final stage of the operation.

In the final step, the client attempts to store in RMDS the updated metadata associated
with each key written ki, consisting of the timestamp tsi_new, the cryptographic hash H(vi),
size of value vi size(vi), and the list of pointers to those f + 1 clouds that have acknowledged
storage of value vi. As for the normal PUT operation, in order to make the whole operation
linearizable thus avoiding the so-called old-new inversion anomaly, we employ the condi-
tional update exposed by the RMDS: the metadata update for each key ki succeeds only if
the written timestamp tsi_new is greater than the timestamp for key ki that RMDS already
stores. Besides, in order to enforce the transactional atomicity of the set of write operations,
we wrap the metadata updates into an RMDS transaction. Specifically, we use the MULTI
API exposed by Apache ZooKeeper, which implements the requested funcionality. Hence,
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if any of the single write to RMDS fails, the whole transaction fails, obliterating the entire
Hybris transactional PUT. In case of failure, the value possibly written on the cloud stores are
then erased by the periodical garbage collection background task.

4.3.5 Garbage Collection

The purpose of garbage collection is to reclaim storage space by deleting obsolete versions of
keys from clouds while allowing read and write operations to execute concurrently. Garbage
collection in Hybris is performed by the writing client asynchronously in the background.
As such, the PUT operation can give back control to the application without waiting for
completion of garbage collection.

To perform garbage collection for key k, the client retrieves the list of keys prefixed by
k from each cloud as well as the latest authoritative timestamp ts. This involves invoking
list(k|∗) on every cloud and fetching metadata associated with key k from RMDS. Then for
each key kold, where kold < k|ts, the client invokes DELETE (kold) on every cloud.

4.3.6 GET in the worst-case

In the context of cloud storage, there are known issues with weak, e.g., eventual [27] con-
sistency. With eventual consistency, even a correct, non-malicious cloud might deviate from
atomic semantics (strong consistency) and return an unexpected value, typically a stale one.
In this case, sequential common-case reading from f + 1 clouds as described in Section 4.3.3
might not return a value since a hash verification might fail at all f + 1 clouds. In addi-
tion to the case of inconsistent clouds, this anomaly may also occur if: (i) timers set by the
client for an otherwise non-faulty cloud expire prematurely (i.e., in case of asynchrony or
network outages), and/or (ii) values read by the client were concurrently garbage collected
(Sec. 4.3.5).

To cope with these issues and eventual consistency in particular, Hybris leverages meta-
data service consistency to mask data inconsistencies in the clouds effectively allowing avail-
ability to be traded off for consistency. To this end, Hybris client indulgently reiterates the GET
by reissuing a get to all clouds in parallel, and waiting to receive at least one value match-
ing the desired hash. However, due to possible concurrent garbage collection (Sec. 4.3.5), a
client needs to make sure it always compares the values received from clouds to the most
recent key metadata. This can be achieved in two ways: (i) by simply looping the entire
GET including metadata retrieval from RMDS, or (ii) by looping only get operations at f + 1
clouds while fetching metadata from RMDS only when metadata actually changes.

In Hybris, we use the second approach. Notice that this suggests that RMDS must be able
to inform the client proactively about metadata changes. This can be achieved by having
a RMDS that supports subscriptions to metadata updates, which is possible to achieve in,
e.g.., Apache ZooKeeper (using the concepts of watches, see Sec. 4.4 for details). The entire
protocol executed only if common-case GET fails (Sec. 4.3.3) proceeds as follows:

1. A client first reads key k metadata from RMDS (i.e., timestamp ts, hash h, size s and
cloud list cloudList) and subscribes for updates for key k metadata with RMDS.
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2. Then, a client issues a parallel get (k|ts) at all f + 1 clouds from cloudList.

3. When a cloud c ∈cloudList responds with value vc, the client verifies H(vc) against
h11.

(a) If the hash verification succeeds, the GET returns vc.

(b) Otherwise, the client discards vc and reissues get (k|ts) at cloud c.

4. At any point in time, if the client receives a metadata update notification for key k from
RMDS, the client cancels all pending downloads, and repeats the procedure by going
to step 1.

The complete Hybris GET, as described above, ensures finite-write termination [39] in
presence of eventually consistent clouds. Namely, a GET may fail to return a value only the-
oretically, in case of infinite number of concurrent writes to the same key, in which case the
garbage collection at clouds (Sec. 4.3.5) might systematically and indefinitely often remove
the written values before the client manages to retrieve them.12

4.3.7 DELETE and LIST

Besides PUT and GET, Hybris exports the additional functions: DELETE and LIST— here, we
only briefly sketch how these functions are implemented.

Both DELETE and LIST are local to RMDS and do not access public clouds. To delete
a value, the client performs the PUT protocol with a special cloudList value ⊥ denoting
the lack of a value. Deleting a value creates metadata tombstones in RMDS, i.e. metadata
that lacks a corresponding value in cloud storage. On the other hand, Hybris LIST simply
retrieves from RMDS all keys associated with a given container cont and filters out deleted
(tombstone) keys.

4.3.8 Confidentiality

Adding confidentiality to Hybris is straightforward.To this end, during a PUT, just before
uploading data to f + 1 public clouds, the client encrypts the data with a symmetric crypto-
graphic key kenc. Then, in the final step of the PUT protocol (see Sec. 4.3.2), when the client
writes metadata to RMDS using conditional update, the client simply adds kenc to metadata
and computes the hash on ciphertext (rather than on cleartext). The rest of the PUT proto-
col remains unchanged. The client may generate a new key with each new encryption, or
fetch the last used key from the metadata service, at the same time it fetches the last used
timestamp.

To decrypt data, a client first obtains the most recently used encryption key kenc from
metadata retrieved from RMDS during a GET. Then, upon the retrieved ciphertext from
some cloud successfully passes the hash test, the client decrypts data using kenc.

11For simplicity, we model the absence of a value as a special NULL value that can be hashed.
12Notice that it is straightforward to modify Hybris to guarantee read availability even in case of an infinite

number of concurrent writes, by switching off the garbage collection.
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4.3.9 Erasure coding

In order to minimize bandwidth and storage capability requirements, Hybris supports era-
sure coding. Erasure codes entail partitioning data into k > 1 blocks plus m additional parity
fragments, each of the k + m blocks taking about 1/k of the original storage space. When us-
ing an optimal erasure code, the original data can be reconstructed from any k blocks despite
up to m erasures. In Hybris, we fix m to equal to f .

Deriving an erasure coding variant of Hybris follows the scheme of protocol AWE, de-
veloped in Section 3. Namely, in a PUT, the client encodes original data into f + k erasure
coded chunks and places one chunk per cloud. Hence, with erasure coding, PUT involves
f + k clouds in the common case (instead of f + 1 with replication). Then, the client com-
putes f + k hashes (instead of a single one in case of replication) that are stored in the RMDS
as the part of metadata. Finally, erasure coded GET involves fetching chunks from k clouds
in common case, with chunk hashes verified against those stored in RMDS. In the worst
case, Hybris with erasure coding uses up to 2 f + k (resp., f + k) clouds in PUT (resp., GET).

Finally, it is worth noting that in Hybris, there is no explicit relation between parameters
f and k which are independent. This offers more flexibility with respect to prior solutions
that mandated k ≥ f + 1.

4.3.10 Tunable consistency

As the rise of the NoSQL movement testified, not every application can afford the perfor-
mance drawbacks entailed by strong consistency. Besides, a maybe surprising large amount
of nowadays applications actually requires weaker correctness semantics. For instance, re-
cent work [40] shown that most applications directly facing end users are well served by
causally consistent storage systems [41]. Hence, a wide and multi-dimensional spectrum of
different consistency semantics has been developed over the years both by the database and
the distributed systems research communities.

In order to better serve this diversified range of needs, Hybris implements and exposes
tunable consistency semantics. Namely, for each execution it is possible to make Hybris re-
spect two consistency models alternative to linearizability, i.e., read-your-write consistency
and bounded staleness. Formally, read-your-write consistency [42] mandates that a read op-
eration invoked by a process can be applied only on replicas of the storage system that have
already performed all write operations previously issued by the same process. Bounded
staleness, as the name hints, is a condition that restricts the staleness of the information read
from a storage system. Several different models based on the concept of bounded stale-
ness have been proposed in literature. Some of them measure the staleness in terms of data
versions [43], whereas some others express it as function of the real-time passed since the
corresponding write operation [44].

Read-your-write is a very weak condition that only requires the reader to obtain results
that include its own writes. This condition is easily implemented in Hybris by leveraging
caching. Essentially, an on-write caching policy is enabled in order to cache all the data
written by each client. In particular, upon a successful write operation, a client stores the
written data in Memcached as associated to the key used to write data to the cloud stores
(e.g., 〈k|tsnew〉), which identifies its unique write operation. Additionally, the client caches
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in its own local memory the aforementioned key associated to the original key (i.e., k). Suc-
cessive reads will first try to fetch the data from the caching layer by using the operation key
cached locally, thus possibly obtaining values previously written without incurring into the
monetary and latency costs of communications with cloud stores.

Similarly, for bounded staleness we use the caching layer composed by Memcached
servers. In particular, in order to implement the time based bounded staleness restriction
we set the expiration date of each cached value to a certain predefined ∆. Besides, since
according to this policy clients can read each other’s writes, we write the cached value on
Memcached under the original key k instead of using, as in the read-your-write semantic,
the key identifying the single write operation.

Version based bounded staleness is implemented in Hybris by using caching and by
adding to the metadata stored on RMDS for each key a field that accounts for the number of
versions written from the last caching operation. Upon writing, the client reads from RMDS
the number of version elapsed since the last caching operation for key being written. In case
of successful write, if the number of non-cached versions exceeds a predefined threshold η,
the value is cached on Memcached under its original key (i.e., k). When reading, clients will
first try to read the value from the cache, thus obtaining, in the worst case, a value that is η
versions older than the most recent one.

Although in principle Hybris architecture does not prevent the implementation of other
consistency models, some of them require further computational capabilities or native han-
dling of causal semantics from the RMDS component. Hence, in order to stand by our choice
of keeping Hybris codebase simple and easy to use, we preferred to only implement the two
aforementioned semantics as they are good representative of popular tradeoffs that favor
performance requirements over consistency.

Besides, as future work, we envison the implementation of different consistency policies
on a per-operation basis. Thus, much like systems supporting RedBlue consistency [45],
Hybris would offer the possibility of performing operations supporting strong consistency
rather than other more relaxed semantics.

4.4 Implementation

We implemented Hybris in Java. The implementation pertains solely to the Hybris client side
since the entire functionality of the metadata service (RMDS) is layered on top of Apache
ZooKeeper client. Namely, Hybris does not entail any modification to the ZooKeeper server
side. Our Hybris client is lightweight and consists of about 3400 lines of Java code. Hybris
client interactions with public clouds are implemented by wrapping individual native Java
SDK clients (drivers) for each particular cloud storage provider13 into a common lightweight
interface that masks the small differences across native client libraries.

In the following, we first discuss in details our RMDS implementation with ZooKeeper
API. Then, we describe several Hybris optimizations that we implemented.

13Currently, Hybris supports Amazon S3, Google Cloud Storage, Rackspace Cloud Files and Windows Azure.
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4.4.1 ZooKeeper-based RMDS

We layered Hybris implementation over Apache ZooKeeper [32]. In particular, we durably
store Hybris metadata as ZooKeeper znodes; in ZooKeeper znodes are data objects addressed
by paths in a hierarchical namespace. In particular, for each instance of Hybris, we gener-
ate a root znode. Then, the metadata pertaining to Hybris container cont is stored under
ZooKeeper path 〈root〉/cont. In principle, for each Hybris key k in container cont, we store a
znode with path pathk = 〈root〉/cont/k.

ZooKeeper exports a fairly modest API to its applications. The ZooKeeper API calls
relevant to us here are: (i) create/setData(p, data), which creates/updates znode with path p
containing data, (ii) getData(p) to retrieve data stores under znode with p, and (iii) sync(),
which synchronizes a ZooKeeper replica that maintains the client’s session with ZooKeeper
leader. Only reads that follow after sync() will be atomic.14

Besides data, znodes have some specific Zookepeer metadata (not be confused with Hy-
bris metadata which we store in znodes). In particular, our implementation uses znode ver-
sion number vn, that can be supplied as an additional parameter to setData operation which
then becomes a conditional update operation which updates znode only if its version num-
ber exactly matches vn.

Hybris PUT. At the beginning of PUT (k, v), when client fetches the latest timestamp ts for
k, the Hybris client issues a sync() followed by getData(pathk) to ensure an atomic read of ts.
This getData call returns, besides Hybris timestamp ts, the internal version number vn of the
znode pathk which the client uses when writing metadata md to RMDS in the final step of
PUT.

In the final step of PUT, the client issues setData(pathk, md, vn) which succeeds only if
the znode pathk version is still vn. If the ZooKeeper version of pathk changed, the client
retrieves the new authoritative Hybris timestamp tslast and compares it to ts. If tslast > ts,
the client simply completes a PUT (which appears as immediately overwritten by a later PUT
with tslast). In case, tslast < ts, the client retries the last step of PUT with ZooKeeper version
number vnlast that corresponds to tslast. This scheme (that we believe to be interesting in
its own right) is wait-free [34] and is guaranteed to terminate since only a finite number of
concurrent PUT operations use a timestamp smaller than ts.

Hybris GET. In interacting with RMDS during GET, Hybris client simply needs to make sure
its metadata is read atomically. To this end, a client always issues a sync() followed by
getData(pathk), just like in our PUT protocol. In addition, for subscriptions for metadata
updates in GET (Sec. 4.3.6) we use the concept of ZooKeeper watches (set by e.g., getData)
which are subscriptions on znode update notifications. We use these notifications in Step 4
of the algorithm described in Section 4.3.6.

14Without sync, ZooKeeper may return stale data to client, since reads are served locally by ZooKeeper
replicas which might have not yet received the latest update.
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4.4.2 Optimizations

Cloud latency ranks. In our Hybris implementation, clients rank clouds by latency and pri-
oritize clouds with lower latency. Hybris client then uses these cloud latency ranks in com-
mon case to: (i) write to f + 1 clouds with the lowest latency in PUT, and (ii) to select from
cloudList the cloud with the lowest latency as preferred cloud in GET. Initially, we imple-
mented the cloud latency ranks by reading once (i.e., upon initialization of the Hybris client)
a default, fixed-size (100kB) object from each of the public clouds. Interestingly, during our
experiments, we observed that the cloud latency rank significantly varies with object size
as well as the type of the operation (PUT vs. GET). Hence, our implementation establishes
several cloud latency ranks depending on the file size and the type of operation. In addition,
Hybris client can be instructed to refresh these latency ranks when necessary.

Erasure coding. Hybris integrates an optimally efficient Reed-Solomon codes implementa-
tion, using the Jerasure library [46], by means of its JNI bindings. The cloud latency rank
optimizations remains in place with erasure coding. When performing a PUT, f + k erasure
coded blocks are stores in f + k clouds with lowest latency, whereas with GET, k > 1 clouds
with lowest latency are selected (out of f + k clouds storing data chunks).

Preventing “Big File” DoS attacks. A malicious preferred cloud may mount a DoS attack
against Hybris client during a read by sending, instead of the correct file, a file of arbitrary
length. In this way, a client would not detect a malicious fault until computing a hash of the
received file. To cope with this attack, Hybris client uses value size s that Hybris stores and
simply cancels the downloads whose payload size extends over s.

Caching. Our Hybris implementation enables data caching on the private portion of the
system. We implemented simple write-through cache and caching-on-read policies. With
write-through caching enabled, Hybris client simply writes to cache in parallel to writing to
clouds. On the other hand, with caching-on-read enabled, Hybris client upon returning a
GET value to the application, writes lazily the GET value to the cache. In our implementa-
tion, we use Memcached distributed cache that exports a key-value interface just like public
clouds. Hence, all Hybris writes to the cache use exactly the same addressing as writes to
public clouds (i.e., using put(k|ts, v)). To leverage cache within a GET, Hybris client upon
fetching metadata always tries first to read data from the cache (i.e., by issuing get (k|ts) to
Memcached), before proceeding normally with a GET.

4.4.3 Hybris source code

Hybris Java code base is composed by two main modules: MdsManager and KvsManager,
the first is a thin wrapper layer of the metadata distributed storage service (i.e. ZooKeeper),
while the latter implements the storage primitives towards the APIs of the main public cloud
storage services - currently, it supports Amazon S3, Google Cloud Storage, Rackspace Cloud
Files and Windows Azure Blob. Maven is used to compile the code and managing the de-
pendencies.
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Hybris source code is publicly released under the terms of Apache 2.0 license and avail-
able for download at this web address: https://github.com/pviotti/hybris. Erasure cod-
ing support is provided by the Jerasure library15 through its JNI bindings16.

A thorough evaluation of Hybris can be found in our 2014 Symposium on Cloud Com-
puting (SoCC) paper [47].

4.5 Hybris as StackSync storage backend

StackSync is a Personal Cloud and data synchronization solution developed by URV for
the CloudSpaces project. It consists of a full fledged and scalable framework of open source
components that operates in a coordinated fashion in order to offer a synchronization service
for mobile, web and desktop platforms that, thanks to its architecture, can easily scale. For
further details about StackSync we refer the reader to D2.2 or to the paper published in the
proceedings of 2014 Middleware Conference [48].

In order to finalize the integration of Hybris with the StackSync prototype, Eurecom has
developed a plugin that allows StackSync clients to store data on commercial cloud key-
value stores through Hybris. An high level overview of the resulting architecture is depicted
in Fig. 5. This integration brings about the benefits of both worlds: an agile and scalable
framework for data synchronization, complemented by a failure tolerant and secure cloud-
based storage system.

Hybris Clouds

Hybris Client

Figure 5: StackSync architecture overview with Hybris.

Beside the plugin, a graphical configuration panel has as well been developed. As illus-
trated in Fig. 6, such panel allows users to set and tune all aspects of Hybris configuration,
such as, for instance, the ZooKeeper address, the caching and the erasure coding optional
features.

15http://web.eecs.utk.edu/%7Eplank/plank/papers/CS-08-627.html
16https://github.com/jvandertil/Jerasure
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Figure 6: Hybris GUI configuration panel for StackSync.

The source code of StackSync featuring Hybris as storage backend is hosted at this ad-
dress: https://github.com/pviotti/stacksync-desktop.
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5 BitTorrent in Personal Clouds

Nowadays, users are unceasingly relying on cloud storage services to store, edit and retrieve
their data stored in remote servers and which can be accessed all over the Internet. Such
systems are hosted by cloud-based datacenters spread all over the world and are generally
equipped with a set of features that allow sharing and collaboration between the users. That
is why these popular applications account for a major share of Internet traffic today [49].

Small and medium-sized personal clouds with limited budget constraints generally have
fixed amount of bandwidth. This bandwidth is shared by all the concurrent active end-
users, which might jeopardize the overall quality of service especially when the demand
becomes high. As a matter of fact, these systems are based on a client-server architecture
and the default content distribution protocol is usually HTTP. This means that all download
requests are handled by a central entity which sends the requested content in a single stream.
Unfortunately, such transfer is limited by the narrowest network condition along the way,
or by the server being overloaded by requests from many clients.

To cope with these limitations, the cloud can benefit from the clients’ upload capacities to
overcome its bandwidth limits. This can be done by using the BitTorrent (BT) protocol [50] to
distribute the files that are shared between a set of devices. In such scenarios, it is possible
to benefit from the common interest of users in the same file and use their own upload
bandwidth to offload the cloud from doing all the serving. The two following common file
distribution scenarios could benefit from our hybrid download strategy:

1. Synchronization: User A is adding a new file f to his personal account. During the
synchronization process, the same file will be download by all the other synchronized
devices of the user (figure 7a)

2. Sharing: User A is sharing a file f with other users. In this case, the file will be down-
loaded by all the synchronized devices of the users (Figure 7b)

User A 
User A’s connected devises 

(a) Synchronization

User A 

User B and user C’s connected devises 

User B 
User C 

(b) Sharing

Figure 7: Synchronization and sharing in personal cloud systems

However, the use of BitTorrent may incur a longer download time compared to HTTP
especially for small files [2]. The main challenge is to decide for each swarm which proto-
col is more suitable (HTTP or BT) for transferring the requested files and how much cloud
bandwidth should be allocated to each swarm.
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5.1 Architecture

Figure 8 presents the general architecture of a PC. This figure is inspired from the official
architecture of Dropbox [51]. It presents the core elements of a PC, without taking into con-
sideration the authentication and encryption layers that are deployed to reinforce security.
These elements are:
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                User interfaces 

 

Processing service
 

 

Metadata servers 

 

 

 

 

 

 

 

 

 

 

 

Database 
 

 

 

 

 

 

 

     Notification service     
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Figure 8: General architecture of personal clouds

• Meta-data service: The meta-data servers contain all the meta-data information related
to the clients and the files. They can be equipped with a local database where all the
meta-data is stored.

• Storage service: The storage service of storage back-end refers to the physical loca-
tions where the users’ file content are stored. It can be local, in the form of local stor-
age servers accessed via FTP/SFTP, or external, provided by a third-party (Amazon,
Google. . . ).

• Notification service: The notification service is dedicated to monitoring whether or
not any changes have been made to the users’ accounts. Whenever a change to any file
takes place, the client is notified in order to synchronize these changes.

• PC clients or user interfaces: The services offered by personal clouds can be utilized
and accessed by physical clients through a number of interfaces, including web inter-
faces (accessed through web browsers), desktop applications or mobile apps.

• Processing service: The processing service is responsible for processing the files and
ensuring their delivery to the end-users. To download a file, the client sends an HTTP
GET request to the processing service. The latter verifies the existence of the file in the
storage nodes and the file is transferred using the HTTP protocol.
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Figure 9: Global view of the system architecture with BT components

To allow inter-client content transfers via BT, several components are added to accom-
modate the BT behavior. These components are shown in Figure 9 and include:

• Content Delivery Service : The content delivery service is also referred to as cloud. Its
main role is to process the requests coming from the end-users and ensure the delivery
of the files to the corresponding requesters. Several components are added, compared
to the default architecture (Figure 8), including:

- Coordinator: The coordinator is the core component of the cloud. It is responsible
for managing all the clients’ requests and ensuring they are processed correctly.
The coordinator is also responsible for the proper management of the cloud’s re-
sources.

- Seeder nodes: The seeder nodes are the entities responsible for delivering the
requested content from the storage back-end servers to the end-users. To each file
being distributed corresponds one seeder node. In our paper, we refer to these
seeder nodes as cloud seeds or seeds. We distinguish two types of seeds: HTTP
seeds and BitTorrent seeds depending on the algorithm adopted to distribute the
requested content to end-users.

• Clients swarms: All the end-user peers are organized into swarms. We define a swarm
by the set of peers that are requesting the same file. If a file is being downloaded
by a single peer, we consider it as a single-peer swarm. This means that, at a given
time, there are as many swarms as the number of files being downloaded (to each
file corresponds only one swarm and one seeder node). In our model, we distinguish
between two types of swarms:

- HTTP Swarms: The HTTP swarms are the swarms whose peers are downloading
the corresponding file from HTTP seeds via HTTP. Clearly, these peers are not
collaborating with each other, but grouping them in swarms is a simple means of
control which will help, later on, in making the switching decision.
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- BitTorrent Swarms: Also referred to as BT swarms. Similar to HTTP swarms, BT
swarms are the swarms whose peers are downloading the corresponding file from
BT seeds via the BT protocol. Typically, these swarms are composed of two peers
or more. Since the peers are supposed to collaborate between each other with the
help of the cloud seed, it makes no sense to have a single-peer BT swarm.

To download a file, the client sends an HTTP GET request to the coordinator. The latter
verifies the existence of the file in the storage nodes and decides the download protocol to
be used: HTTP or BitTorrent. The decision is made based on the load on the seed and the
swarms’ characteristics. In the case of a HTTP download, a HTTP seeder node is associ-
ated with the requested file which will be transferred using the HTTP protocol. Otherwise,
in the case of a BT transfer, the coordinator creates a torrent meta-data file and runs a cor-
responding BT seed. After that, the recently created .torrent file will be transmitted to the
corresponding clients who, unaware of all these interactions, will then start downloading
the file using the BitTorrent protocol (from the cloud seed and/or from the other clients).
Evidently, the “old" clients who arrived before the switch to BitTorrent will also benefit from
the switch if they did not finish the download. In fact, when an “old" client requests a new
part of the file to be downloaded, he will realize that the transfer protocol has changed and
will automatically adapt to the new one. Thus, each “old" client will join the swarm with
the pieces he already has, which means that he will be probably contributing to the swarm
as soon as he switches to BitTorrent in a very transparent way.

5.2 When to switch to BitTorrent?

The main challenge in adopting two different download protocol lies in the choice of which
protocol to use for each swarm. The main idea is to switch from HTTP to BitTorrent upon
detection of an increasing number of requests on a specific content. While this approach
seems to be very convenient for big files, it might incur a significant increase in download
time for the small ones [2].

To this extend, it is important to identify the best switching point that will help avoiding
bottlenecks without affecting significantly the download time. There are many important
parameters that should be considered when choosing this point, including: the size of the
shared file, the bandwidth of the cloud allocated to that file, the number of peers download-
ing the file and their corresponding bandwidth capacities. To this extent, the choice of the
switching point should be based on a complete comparative study of BitTorrent and HTTP
in order to determine the most convenient one in each specific case. This study should be
able to answer the following question: How much time would the clients gain (or lose) and how
much bandwidth could the cloud save, if the download protocol is switched from HTTP to BitTorrent?

To compare the efficiency of , we consider the case of a swarm s composed of Ls distinct
peers requesting the same file fs from the same source, called the cloud seed (or simply the
seed). We denote by ws the allocated share of the cloud’s upload bandwidth reserved to s, Fs
the size of the shared file fs, us the average upload speed of the peers in the s and by dmin,s
the download speed of the slowest peer among them (see Figure 10 for more details).

In the following subsections, we will present some formulas related to the estimation of
the download times in HTTP and BT (respectively Thttp and Tbt. We will also define the gain
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Cloud seed:

• ws: allocated share of the cloud’s

bandwidth allocated to the swarm s

Requested file fs:

• Fs: the size of fs

Swarm s:

• Composed by Ls peers

• us: average upload speed of the peers in s

• dmin,s: download speed of the slowest peer in s

Figure 10: File distribution scenario

percentage Gain and estimate the amount of bandwidth offloaded Offload.

5.2.1 The distribution time for small files in BitTorrent

To get an estimation of the download time in BitTorrent-like systems, we borrow the follow-
ing formula proposed in [53] by Kumar and Ross:

Tpa (ws, s) =
Fs

min
{

dmin,s,
ws+Ls us

Ls
, ws

} , (1)

where Tpa (ws, s) is the minimum time needed to distribute a file of size Fs to the Ls leechers
in s. This time depends on the download speed of the slowest peer dmin,s, the aggregated
upload bandwidth of all the nodes divided equally between all the Ls leechers, and the
upload bandwidth of the cloud seed(s). The authors presented in their paper a complete
proof of the download time. The proof is organized into the following exhaustive cases
depending on the parameter that may be responsible for the transfer bottleneck:

1. Case A: dmin,s ≤ min
{

ws+Ls us
Ls

, ws

}
and dmin,s ≤ ws+Ls us

Ls−1 :
In this case, the download speed of the peers is limited by the download bandwidth
of the slowest peer in the swarm dmin,s.

2. Case B: dmin,s ≤ min
{

ws+Ls us
Ls

, ws

}
and ws+Ls us

Ls−1 ≤ dmin,s:
In Case B, the transfer is limited by the maximum speed at which a leecher can get
data from the other leechers, that is ws+Ls us

Ls−1 .

3. Case C: ws+Ls us
Ls

≤ min {ws, dmin,s}:
The transfer bottleneck in this case is limited by the aggregated upload speed of the
network (ws + Ls us) divided equally between the L leechers.
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Table 5.2a Table of notations
Symbol Meaning

W the cloud’s upload budget limit
S the set of all active swarms

Shttp a subset of S that corresponds to the set of the swarms downloading the files
via HTTP

Sbt a subset of S that corresponds to the set of the swarms switched to BitTorrent
s a swarm s = (Ps, fs, ws, isBTs) is identified by the set of the peers forming it

Ps, the file being shared fs, the corresponding amount of allocated cloud band-
width ws and a boolean variable isBTs that indicates the download protocol.

Ps set of all the peers in s. Ps =
{
(up, dp), ∀p ∈ Ps

}
where up and dp are respec-

tively the upload and download speeds of a given peer p ∈ s
fs file requested by the peers in Ps

ws amount of cloud bandwidth allocated to the swarm s
isBTs boolean variable that indicates the download protocol adopted by the peers in s.

isBTs = True, if peers in Ps are downloading fs via BitTorrent and isBTs = False,
otherwise

Fs size of the requested file fs

Ls number of peers in Pss (Ls = |Ps|)
dmin,s the download speed of the slowest peer in Ps (dmin,s = min

∀p∈Ps
dp)

us the average upload speed of all the peers in Ps (us = ∑
p∈Ps

up
Ls

)

ηs the effectiveness of file sharing, introduced in [52] and reused in [2]. ηs takes
real values in [0, 1] where 1 means maximum effectiveness while a value of 0
signals the absence of collaboration between peers

αbt the overhead related to the start-up phase in BitTorrent transfers
τ the QoS constraint that defines the switching point from HTTP to BT

4. Case D: ws ≤ min
{

dmin,s,
ws+Ls us

Ls

}
:

In this case, the upload bandwidth of the seed ws is the maximum limit at which each
peer can download “fresh” content.

For each of the cases listed above, the authors in [53] constructed a seeding rate profile
si(t) which denotes the bit rate at which the seeds send pieces to leecher i at time t.
The adopted distribution scheme is the following: As soon as a leecher li begins to receive
data from the seed, it replicates it to each of the other (Ls − 1) leechers at a rate xi(t), where
xi(t) ≤ si(t), as shown in Figure 11. For each case, the distribution scheme consists of L
application-level multicast trees, each rooted at a specific seed, passing through one of the
leechers and terminating at each of the (Ls − 1) other leechers.

To calculate the offload ratio in the following section, we need to measure the volume
of data offloaded from the cloud. We present here the seeding rate for each case. This rate,
denoted by si(t) for the sake of clarity, depends on the time t, the file size Fs, the upload
speed of the seeds ws, and the set of upload and download speeds of all the leechers in s.
For a complete proof and more details regarding these formulas, we kindly refer the reader
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Figure 11: General distribution scheme structure: Leecher li (i ∈ {1, 2, 3}) downloads
“fresh” data at the rate si(t) from the seeds. The data is replicated later to the other 2 leechers
at a rate xi(t) < si(t).

to the original paper [53].

si(t) =



ui dmin,s
Ls us

Case A
ui−Ls us

Ls−1 + dmin,s Case B
ui−Ls us

Ls−1 + ws+Ls us
Ls

Case C
ui ws
Ls us

Case D

(2)

Adding the BitTorrent overheads One of the limitations of equation (1) is that it does not
take into consideration the overhead that peer-assisted systems may present compared to
the client-server ones. These overheads may be neglected for large files. However, they
cannot be ignored for the small ones, for which the download time is in the order of a few
seconds.

To illustrate the important role that this overhead plays in the distribution of small files,
we ran several experiments distributing a 1MB file to several clients. We measured the
experimental download times and compared them to the estimated ones using (1). We cal-
culated also the absolute and relative errors. We group all these results in Table 5.2b, where
the estimated and experimental download times, and the absolute error are all measured in
seconds.

As we can see in Table 5.2b, the difference between the estimated and experimental re-
sults can exceed 50% in some cases, which proves that an accurate estimation should include
the protocol overheads. These overheads can be mainly of two types, each related to a dif-
ferent phase of BitTorrent:

• Overhead related to the start-up phase: Before starting the download, there are a few
steps that each leecher needs to perform: First, the leecher has to get and read the
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Table 5.2b Estimated versus experimental distribution time with BitTorrent of a 1MB file.
The seed bandwidth is limited to 5 Mbps and the clients are homogeneous each having an
upload and download speed of respectively 1 and 2 Mbps.

Clients count 2 3 4 5
Estimated time 4 s 4 s 4 s 4 s

Experimental time 5.51 s 5.47 s 6.03 s 6.25 s
Absolute error 1.51 s 1.47 s 2.03 s 2.25 s
Relative error 37.75% 36.75% 50.75% 56.25%

.torrent file that contains all the meta-info data about the requested content. And then,
it needs to contact the tracker(s) to get a list of other peers sharing or downloading the
same file. After locating and connecting to the peers, the leecher can finally begin the
transfer.
This overhead is relative to the architecture of the system. It can be monitored and
dynamically adapted based on the load of the system. We experimentally studied this
overhead and noticed that it can be simply modeled as a constant duration αbt added
to the download time. More details about the experimental evaluation of αbt can be
found in [2].

• Overhead related to the download phase: In BitTorrent, peers upload to each other
even though they may only have parts of the file. This can result in upload interrup-
tions when the uploader has no pieces to offer to his unchoked peers.
Fortunately, this problem has already been tackled in [52], where the authors intro-
duced a parameter to scale down the upload speed of leechers. This parameter, de-
noted as η ∈ [0, 1], measures the effectiveness of file sharing. It can be computed as
follows:

η = 1−P
{

downloader i has no piece that
his unchoked peers need

}
The authors derived this probability and came to the conclusion that η can be ex-
pressed as: 17

ηs = 1−
N−1

∑
ni=0

1
N

(
N − ni

N (ni + 1)

)k

where N is the number of pieces of the served file and k the number connections a peer
has.
The authors in [52] focused on the case of large files and concluded that η ≈ 1 when
N is high. Let us now consider a small file of 1MB composed of k = 4 chunks each of
256KB. For N = 2, the above equation yields ηs = 0.7069, which means that there is
a probability of about 30% that a peer has no pieces for its unchoked peers. This can
affect the download time and make it relatively longer. Thus, this overhead should be
also considered when estimating the download time in BitTorrent.

Considering the above listed overheads, we were able to extend Eq. (1) in order to provide

17The rectified version of [52] which contains the correct expression of ηs can be found at: http://users.
encs.concordia.ca/~dongyu/paper/bittorrent.pdf
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an accurate estimation of the download time in BitTorrent as follows:

Tbt (ws, s) =
Fs

min
{

dmin,s,
ws+ηs Ls us

Ls
, ws

} + αbt (3)

5.2.2 Gain Ratio

To measure the difference between the download times of client-server and peer-assisted
systems, we introduce the gain ratio as follows:

Gain (ws, s) =
Tcs(ws, s)− Tbt(ws, s)

Tcs(ws, s)

where Tcs is the distribution time in a client-server architecture. Tcs is limited by the
download speed of the slowest peer dmin,s or the bandwidth of all the seeds ws divided
equally between the Ls clients. Tcs can be simply defined as follows:

Tcs (ws, s) =
Fs

min
{

dmin,s,
ws
Ls

} (4)

Clearly, the gain can take negative or positive values and can be also equal to zero. For
instance, if the gain is positive, this means that downloading the file via BitTorrent takes less
time than using HTTP. To derive the equation of the gain, we distinguish four different cases
based on the values of min

{
dmin,s,

ws+ηs Ls us
Ls

, ws

}
and min

{
dmin,s,

ws
Ls

}
:

1. Case I: dmin,s ≤ ws
Ls

and dmin,s ≤ min
{

ws+ηs Ls us
Ls

, ws

}
:

In this case, the bottleneck in HTTP and BitTorrent is the download speed of the slow-
est peer. The corresponding download times are: Tcs =

Fs
dmin,s

and Tbt =
Fs

dmin,s
+ αbt.

2. Case II: ws
Ls
≤ dmin,s and dmin,s ≤ min

{
ws+ηs Ls us

Ls
, ws

}
:

In Case II, the bottleneck in HTTP is ws
Ls

, while it is equal to dmin,s in BitTorrent. The
corresponding download times are: Tcs =

Fs Ls
ws

and Tbt =
Fs

dmin,s
+ αbt.

3. Case III: ws+ηs Ls us
Ls

≤ min {dmin,s, ws}:
In this case, the bottleneck in BitTorrent is ws+ηs Ls us

Ls
. And since ws ≤ ws + ηs Ls us and

ws+ηs Ls us
Ls

≤ dmin,s, this means that ws
Ls

is always ≤ dmin,s. Thus, in this case, Tcs =
Fs Ls
ws

and Tbt =
Fs Ls

ws+ηs Ls us
+ αbt.

4. Case IV: ws ≤ min
{

dmin,s,
ws+ηs Ls us

Ls

}
:

Since ws
Ls
≤ ws and ws ≤ dmin,s, this means that ws

Ls
is always ≤ dmin,s. In this case,

Tcs =
Fs Ls
ws

and Tbt =
Fs
ws

+ αbt.
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For each of the previous cases, we substitute Tcs and Tbt to derive the gain ratio as follows:

Gain (ws, s) =



−αbt dmin,s

Fs
Case I

1− ws

Ls dmin,s
− αbt ws

Fs Ls
Case II

1− ws

ws + ηs us Ls
− αbt ws

Fs Ls
Case III

1− 1
Ls
− αbt ws

Fs Ls
Case IV

(5)

5.2.3 Offload Ratio

The offload ratio defines the amount of data offloaded from the cloud seed. It is determined
by the total amount of data exchanged between the peers divided by the total downloaded
data volume:

Offload (ws, s) =
data from peers
total data sent

= 1− data from cloud
total data sent

= 1−
∑

i∈L

∫ Tbt(ws,s)
0 si(t)dt

Fs Ls

where si(t) is the seeding rate. Taking into consideration the seeding rate as defined in (2),
we can deduce the offload rates as follows:

Offload (ws, s) =



1− 1
Ls

Case A
ηs Ls us
Ls dmin,s

Case B

1− ws
ws+ηs Ls us

Case C

1− 1
Ls

Case D

(6)

5.2.4 The quality of service constraint τ

We presented in the previous sections two key parameters that can help us measure the
tradeoff between HTTP and BitTorrent. The gain ratio measures the gain or loss in time that
the leechers might experience when switching from HTTP to BitTorrent. The offload ratio
gives an estimation of the amount of data that can be offloaded from the server thanks to
BitTorrent.

It is clear that if we neglect a potential increase in download time caused by the switch
to BitTorrent, the overall offload ratio will always be the highest possible. However, it is
equally important to not degrade significantly the download service for the clients. We
distinguish the four following cases based on the constraints that can be placed on these
parameters:

i. The first possible solution is to put no constraints, that is, BitTorrent is always used
when the number of leechers Ls ≥ 2. In this case, the overall offload ratio will be the
highest possible. But, the clients might experience a longer download time.
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ii. Another possible solution is to put a limit on the offload ratio: the cloud switches to
BitTorrent only when the offload is important. For example, the cloud can decide to
switch only when the estimated offloaded bandwidth is above 50% of the total band-
width, regardless of the download time.

iii. The third possible case is fixing a gain limit: the cloud decides to switch only when the
download time in BitTorrent compared to HTTP does not exceed a certain threshold.
This threshold can be put on the gain ratio to ensure a minimal bound on the permitted
loss in download time.

iv. The last possibility is fixing both the gain and offload ratios. While this case presents
an efficient strategy to avoid unnecessary switches, it might be too strict and could
limit the overall offload ratio.

After listing all the possible scenarios, we believe that the most convenient procedure
to manage the download protocols is the third one. To this extent, we pose τ as the gain
constraint. If τ ≤ 0, it means that the system tolerates a potential increase in the download
time that could occur because of the switch. However, a positive value of τ reflects a stricter
constraint. For instance, τ = −0.5 means that an increase up to 50% of the download time is
tolerated. Note that a constraint of this magnitude is possible, because τ = −0.5 could rep-
resent, for small files, a slight increase in the download time, in the order of a few seconds,
to be more precise.

τ can take different values depending on the type of the user account. The choice of its
concrete value is left up to the system administrator depending on his needs. A possible
concrete example of τ is the following: Suppose that a given service provider cannot gain
in bandwidth at the expense of worsening the download time for premium users who are
those who are paying money for the service. For this type of clients, τ should be always≥ 0.
However, for free users, which represent a significant portion of the overall user mass18, it
is possible to loosen that constraint, and tolerate delays of up to 50% (which corresponds to
τ = −0.5), for instance.

5.2.5 Solving the equation Gain(wbt
s , s) ≥ τ

In order to calculate the minimum amount of cloud bandwidth needed to ensure that the
switching condition Gain(wbt

s , s) ≥ τ is satisfied, it essential to reverse the gain formulation
(equation 5). To this extend, we study the behavior of the gain formulas when wbt

s varies.
Based on this constraint, we identify two exhaustive cases in which the gain equations are
monotonically decreasing. For each case, we deduce the reversed equations of the gain,
interval per interval, as follows19:

• Case A: (Ls − 1) dmin,s ≥ Ls ηs us: the average download speed of the peers in the

1896% of Dropbox clients use the free version of the service (Souce: http://www.economist.com/blogs/
babbage/2012/12/dropbox)

19 For the complete proof of the solution, please refer to [54]
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swarm s is higher than the upload bandwidth the whole swarm can provide:

wbt
s =



Ls dmin,s, ∀τ ∈
]
−∞,− αbtdmin,s

Fs

]
(1−τ)Fs Ls dmin,s

Fs+dmin,s αbt
, ∀τ ∈

[
− αbt dmin,s

Fs
, ηs us

dmin,s
− αbt (dmin,s−ηs us)

Fs

]
√

a2b2−2abc+4ab+c2−ab−c
2 b , ∀τ ∈

[
ηs us
dmin,s

− αbt(dmin,s−ηs us)
Fs

, 1− 1
Ls
− αbt ηs us

(Ls−1) Fs

]
Fs[Ls (1−τ)−1]

αbt
, ∀τ ∈

[
1− 1

Ls
− αbt ηs us

(Ls−1) Fs
, 1− 1

Ls

[
6 ∃, ∀τ ∈

[
1− 1

Ls
,+∞

[
Where:

a = ηs Ls us, b =
αbt

Fs Ls
and c = τ (7)

• Case B: (Ls − 1) dmin,s ≤ Ls ηs us: the average download speed of the peers in the
swarm s is lower than the upload bandwidth the whole swarm can provide:

wbt
s =



Ls dmin,s, ∀τ ∈
]
−∞,− αbt dmin,s

Fs

]
(1−τ)Fs Ls.dmin,s

Fs+dmin,s αbt
, ∀τ ∈

[
− αbt dmin,s

Fs
, 1− 1

Ls
− αbt dmin,s

Fs Ls

]
Fs [Ls(1−τ)−1]

αbt
, ∀τ ∈

[
1− 1

Ls
− αbt dmin,s

Fs Ls
, 1− 1

Ls

[
6 ∃, ∀τ ∈

[
1− 1

Ls
,+∞

[

5.2.6 The switching algorithm

The main goal of the switching algorithm (Algorithm 1) is to evaluate for each requested
file the most suitable content distribution model: client-server or peer-assisted, based on the
current demand load. Each active seeder node in the system is associated with a swarm of
clients that are interested in the same file. It is important to remind here that the default
bandwidth distribution protocol is HTTP, but BitTorrent can be also used when the switch-
ing conditions previously stated are satisfied. The swarms whose peers are using HTTP as
a transfer protocol are referred to as HTTP swarms (Shttp is the set of HTTP swarms) and the
ones with peers downloading via BT are labeled as BT swarms (Sbt is the set of BT swarms).
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Algorithm 1 Switching algorithm

Input p∗ . the new coming peer
Input s∗ . swarm to which p∗ belongs
Input w∗s . seed bandwidth allocated to s∗

Input τ . the switching constraint

1: if not isBTs∗ then . s∗ is a HTTP swarm
2: calculate Gain(ws∗ , s∗)
3: if Gain(ws∗ , s∗) ≥ τ then . switching to BT
4: create a .torrent file for fs∗

5: launch a BT seed for fs∗ in the cloud
6: for all p ∈ s∗ do . for all peers in s∗, including ps∗

7: send the .torrent to p
8: launch a BT leecher inside p
9: start BT transfer

10: end for
11: isBTs∗ =True
12: else
13: p∗ downloads the file via HTTP
14: end if
15: else . s∗ is already a BT swarm
16: send the .torrent to p∗

17: launch a BT leecher inside p∗

18: end if

The algorithm is executed whenever a new peer p∗ joins a swarm s∗ ∈ S, to download a
file fs∗ . If the file is already requested by other peers, then p∗ will be added to the existing
swarm s∗. Otherwise, a new swarm s∗ will be created containing a single peer p∗ in s∗

changes. Based on the protocol already being used for s∗, the switching algorithm works as
follows:

• If the peers in s∗ are download f ∗ via HTTP, then the system evaluates the benefit that
can be driven from the switch. To do so, it is essential to compute the estimated gain
and compare it with the switching constraint τ.

– When the resulting gain is greater than τ, it means that the quality of service
constraint is verified. In this case, the distribution protocol will be switched to
BitTorrent: A .torrent file corresponding to fs∗ will be created and sent to all the
peers in s∗. In parallel, a seed will be launched in the cloud. Upon the reception
of the .torrent file, a BitTorrent leecher will be launched inside each peer in s∗.
After this phase, these peers will start downloading the file in BitTorrent, while
offloading the cloud from doing all the serving.

– When the gain is lower than τ, it means that the switching constraints are not
verified. In this case, the download protocol is kept unchanged (no switching to
BT) and p∗ will get the file directly from the cloud seed.

• In the case where s∗ is already a BT swarm (before the arrival of p∗), then the new peer
will download the corresponding .torrent file and join the other peers in s∗ to download
fs∗ via BT
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Validation of the switching algorithm To validate the switching algorithm, we validated
it on the UB1 trace. We fixed the upload speed of the seed w∗s to 2 Mbps. We remind our
reader that w∗s does not refer to the total upload bandwidth of the cloud, but to the portion
of its bandwidth allocated to the each specific file/swarm. We considered the case were all
the clients were homogeneous and have an upload and download speed of 512 Kbps and 1
Mbps, respectively.

We went through the trace focusing on the files that have been downloaded more than
once. Our goal was to identify the files with collapsing download times which are the can-
didates for the switch to BitTorrent. In other words, for each file, we checked if there were
consecutive download operations (at time stamps t1 and t2) that came before the end of the
theoretical download time in HTTP: t2 − t1 ≤ Tcs. Tcs is calculated based on the settings
listed above. After the identification of these files, we calculated for each case the gain ratio
using (5). Depending on the gain value and the τ constraint, we identified the files that were
subject to switching and measured the corresponding offloaded volume of data using (6).

Table 5.2c Offloaded volume and offload percentage resulting from the application of Algo-
rithm 1 using different τ values

Constraint Offloaded Volume Overall Offload%
τ = −1.0 207.35 GB 16.7183%
τ = −0.5 207.33 GB 16.7170%
τ = −0.2 207.04 GB 16.6938%
τ = 0.0 137.64 GB 11.0979%
τ = 0.2 137.59 GB 11.0942%
τ = 0.5 90.60 GB 7.3055%
τ = 1.0 0.0 GB 0.0%

Table 5.2c presents the results of the application of Algorithm 1 on the trace. The overall
offload percentage is calculated based on the percentage ratio between the offloaded vol-
ume and the total downloaded volume (1,240.25 GB). We varied the values of the switching
constraint τ in order to get a global idea of the gains, and we noticed that if we fixed τ to
tolerate losses of 20% (τ = −0.2), the cloud load could be reduced up to 16%. In the case
of stricter constraints, e.g., no loss is tolerated (τ = 0), or no switch unless we gain 20% in
download time (τ = 0.2), the overall offload percentage falls down to around 11%.

Even though the UB1 system is not very popular, our algorithm could achieve savings
up to 16% in terms of cloud bandwidth. We strongly believe that this offload would be
higher on other systems, like Dropbox or Google Drive, which have more users and more
file sharing.

To measure the amount a money that can be saved using our algorithm, we consider a
cloud storage system that uses Amazon Simple Storage Service (S3) as a storage back-end.
At the time of writing this paper, the standard charging rates for data transfer were20:

• $0.0 per GB for the first 1 GB/month

• $0.12 per GB for transfers up to 10 TB/month

20More information about the complete and updated rates can be found at http://aws.amazon.com/s3/
pricing/
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• $0.09 per GB for the next 40 TB/month

Using these rates, the overall data transfer cost is approximately $3, 000 per month. Fix-
ing the gain constraint to τ = −1 would lead to savings of about $450 per month which is
about $5, 374 per year. These savings will be higher for systems that involve more sharing
than UB1.

5.2.7 The bandwidth allocation algorithm

In this section we present our bandwidth distribution and protocol management algorithm.
This algorithm aims to minimize the cloud’s allocated bandwidth among the seeder nodes,
while respecting the QoS constraint. We remind that a seeder node is an entity responsible
for distributing a given file to the corresponding set of clients.

In addition to the bandwidth allocations, the algorithm is also responsible for evaluat-
ing for each swarm the most suitable content distribution protocol: HTTP or BitTorrent. A
swarm would switch to BitTorrent if it satisfies the following conditions:

1. The number of clients in the swarms is higher or equal to 2. In fact, it makes no sense
to use BitTorrent with only one client interested in the file.

2. The switch to BitTorrent should satisfy the quality of service constraint τ. This means
that BitTorrent can be used only when the gain percentage (equation 5) is higher or
equal than τ.

3. The amount of cloud bandwidth allocated in BitTorrent should be smaller than the one
using HTTP. This means that the switch will only take place if the cloud would gain in
terms of bandwidth.

The main goal of our bandwidth distribution and switching algorithm is to optimally
manage the cloud’s limited bandwidth among the seeder nodes. It is also responsible for
evaluating for each requested file the most suitable content distribution model: client-server
or peer-assisted, based on the current demand load. Each active seeder node in the system
is associated with a swarm of clients that are interested in the same file. It is important to
remind here that the default bandwidth distribution protocol is HTTP, but BitTorrent can be
also used when the switching conditions previously stated are satisfied. The swarms whose
peers are using HTTP as a transfer protocol are referred to as HTTP swarms (Shttp is the set of
HTTP swarms) and the ones with peers downloading via BT are labeled as BT swarms (Sbt
is the set of BT swarms).

The algorithm is executed whenever a change affects a swarm s∗ ∈ S. This change can
be related to a modification in one or more of the parameters of a certain swarm. It can be
due to one or more of the following cases:

- A new peer p∗ wants to download a file fs∗ . If the file is already requested by other
peers, then p∗ will be added to the existing swarm s∗. Otherwise, a new swarm s∗ will
be created containing a single peer p∗.
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- A peer p∗ leaves a swarm s∗. If p∗ was not the only peer in the swarm, then the
modified swarm will contain a list of the other remaining peers. If p∗ was the last peer
in s∗, then s∗ will be removed from S.

- The upload or download speed of one or more of the peers in s∗ changes.

Algorithm 2 Bandwidth distribution and switching algorithm

Input S . the set of all the current swarms
Input s∗ . swarm affected by a change
Input W . the cloud’s upload bandwidth budget limit
Input τ . the switching constraint

1: if Ls∗ = 1 then . s∗ is a single-peer swarm
2: ws∗ = Ds∗

3: else if Ls∗ > 1 then . s∗ has more than one peer
4: if s∗ ∈ Shttp then . s∗ is a HTTP swarm
5: calculate wbt

s∗ using equation (7)
6: if wbt

s∗ ≤ Ds∗ then . switching to BT
7: switch the transfer protocol from HTTP to BT
8: isBTs∗ = True . mark s∗ as a BT swarm
9: ws∗ = wbt

s∗
10: else . not switching to BT
11: ws∗ = Ds∗

12: end if
13: else . s∗ ∈ SBT, s∗ is a BT swarm
14: ws∗ = wbt

s∗ calculated using equation (7)
15: end if
16: else . Ls∗ = 0, s∗ no longer exists
17: remove s∗ from S
18: if ∑s∈S ws + ws∗ = W then . the cloud was overloaded
19: for each s in Sbt do
20: ws = ws +

ws

∑s∈Sbt
ws

ws∗ . redistribute ws∗ to the BT swarms

21: end for
22: end if
23: end if

24: if ∑s∈S ws > W then
25: for each s in S do
26: ws =

ws

∑s∈S ws
W . scale down all the bandwidth shares

27: end for
28: end if

The algorithm requires the following input parameters: the set of all current swarms S,
the swarm affected by the change s∗, the cloud’s upload bandwidth budget limit W and
the switching constraint τ. Using these input parameters, the algorithm identifies for each
swarm the most suitable download protocol (HTTP or BT) and calculates the amount of
bandwidth to be allocated to the corresponding seed, as follows:
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- If s∗ is a single-peer swarm (Ls∗ = 1), then the cloud allocates to s∗ a share of band-
width equal to its download capacity: ws∗ = Ds∗ (lines 1 and 2). In this case, the file
will be distributed directly from the cloud seed to the single-peer using HTTP.

- If the number of peers in s∗ is strictly higher than 1 (lines 3 to 12), then there are two
possible cases:

• If the peers in s∗ are using HTTP to download fs∗ (isBTs∗ = False), the algorithm
verifies if it is worth it to switch to BT. To do so, wbt

s∗ is calculated according to
equation (7). We remind that wbt

s∗ measures the amount of seed bandwidth re-
quired to verify the quality of service constraint τ when using BT for s∗. The
algorithm compares later this bandwidth (ws∗) with the bandwidth allocated by
default to the swarm (which is equal to Ds∗).

◦ If the bandwidth required using BT is smaller than the one allocated by de-
fault (wbt

s∗ ≤ Ds∗), then the download protocol more suitable for s∗ is BT (lines
4 to 9). In this case, a .torrent file associated to fs∗ is created and a BT seed is
launched in the cloud. All the peers in s∗ have to download the .torrent file
recently created and then can start downloading fs∗ via BT.

◦ If the use of BT requires more bandwidth than HTTP, then it is not worth
switching to BT. In this case, the cloud allocates a share of bandwidth equal
to Ds∗ (line 11).

• If s∗ has already switched to BT, then the algorithm recalculates wbt
s∗ : the band-

width needed to maintain the quality of service constraint τ, which represents
also the amount of bandwidth allocated to s∗.

- If s∗ is an empty swarm (Ls∗ = 0), then the swarm is removed from the swarms’ list.
If the cloud was overloaded before the removal of s∗, then the amount of bandwidth
that was previously allocated to s∗ is redistributed among the BitTorrent swarms (lines
18 to 22). This will prevent the cloud’s bandwidth from being underutilized and will
boost the distribution of the files among the BT swarms.

When the number of simultaneous requests becomes high, the seed might be unable to
serve all the swarms at their full speed. In such a case, the cloud has to scale down all the
bandwidth allocations proportionally to the demand (lines 24 to 28).

Validation of the bandwidth allocation algorithm In order to evaluate the performance
of the proposed algorithm, we implement two simulators. The first simulates the default
behavior of the cloud where all the download requests are treated individually and the files
are distributed via HTTP. The second simulates the bandwidth distribution and protocol
management algorithm. We compare later the results of both approaches using a trace of a
real personal cloud system. We run both simulators with a wide combination of τ and W
values and collect the logs of each experiment. Then, we evaluate our algorithm comparing
the results with the ones obtained using the default strategy with the same bandwidth limits.

First of all, we run the simulator fixing the upload bandwidth budget at 300 Mbps and
varying the switching constraint τ. The goal is to get a first idea of the performance of the
algorithm. We measure for each simulation, the download time taken by each operation and
compare them to the times measured using the HTTP-only simulator with the same budget
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limit. It is important here to note that the download times are measured in seconds with a
precision of one millisecond. We classify the operations into three different categories: oper-
ations that have gained in download time with the algorithm, operations that experienced
losses and operations whose download time is left unchanged for both approaches.

Table 5.2d Percentages of operations with gains and losses in download time resulted by the
algorithm compared to pure HTTP use. The cloud upload bandwidth budget limit is W=300
Mbps.

τ1 = −0.2 τ2 = 0 τ3 = 0.2 τ4 = 0.4
% of operations with gain 82.89 % 82.9 % 83.43 % 83.53 %
% of operations with loss 2.23 % 2.31 % 2.48 % 2.85 %
% of operations with no difference 14.88 % 14.79 % 14.09 % 13.62 %

Total % 100 % 100 % 100 % 100 %

Table 5.2d presents the percentages of the operations in each category. We notice that
for the three different values of τ, more than 80% of the operations benefited from a gain in
download time, about 15% kept the same time and only about 2.5% of them lost in down-
load time. Even though these percentages are quite good, we need to make sure that the
cumulative gains are higher than the losses. To do so, we sum all the download times of
all operations for both approaches and calculate the total net gain percentage (net_gain_%).
net_gain_% represents the percentage ratio between the total time gained (or lost) by using
the algorithm (net_gain_hours = sum_http_hours− sum_algo_hours) and the total download
times using HTTP only (sum_http_hours).

net_gain_% =
net_gain_hours
sum_http_hours

× 100 =
sum_http_hours− sum_algo_hours

sum_http_hours
× 100

Table 5.2e Total sum of all the download times for all the operations and the net gain percent-
age for the algorithm applied on the one-hour sample of the UB1 trace. The cloud upload
bandwidth budget limit is W=300 Mbps.

τ1 = −0.2 τ2 = 0 τ3 = 0.2 τ4 = 0.4
sum_http_hours (in hours) 2450.2 2450.2 2450.2 2450.2
sum_algo_hours (in hours) 2000.98 1997.05 1952.73 1906.56
net_gain_hours (in hours) 449.22 453.15 497.47 543.64
net_gain_% 18.33% 18.49% 20.3% 22.19%

Table 5.2e presents the total sum of all the download times of all the download operations
and the net gain percentage based on the UB1 one-hour sample. The first row represents the
sum of download times using HTTP. It is important to mention here that, for HTTP, this sum
depends only on the cloud upload bandwidth budget W. Hence, for the fixed bandwidth
W = 300 Mbps, it is always equal to 2450.2 hours, regardless of the τ constraint. However,
the sum of the download times using the algorithm with a given cloud bandwidth limit
depends highly on the switching constraint τ. In Table 5.2e, we compare the results with
three different τ values: The first constraint is τ1 = −0.2: this constraint can be translated
as follows: at a certain timestamp, a swarm can switch from HTTP to BitTorrent only if it
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will only lose less than 20% in download time. Under this constraint, we notice that the
algorithm performs better than HTTP with a net gain in the client’s download time equal
to 18.33%. Next, we make the constraint a little bit stricter and we accept only switches to
BT when the peers in question will only gain in download (τ2 = 0, no loss is permitted).
We notice that the net gain percentage improves slightly. This is because the constraint
will prevent swarms with negative gains from switching which will result in an increase of
the total amount of net gain hours. With the third and fourth constraints τ3 = +0.2 and
τ4 = +0.4 (switch only if the corresponding peers will gain 20%, respectively 40%, or more
gain in download time), the net gain percentage gets higher and reaches more than 20% of
the total download time of all peers.

5.3 Implementation: Integration with StackSync

Our hybrid approach can applied widely in any cloud-based system. Personal clouds are the
most appropriate for this proposal since the developers can tune the client’s implementation
to extend them with the BT functionality.

To validate our model, two main components should be added to the StackSync archi-
tecture (figure 12): a central coordinator (on the server’s side) and a BitTorrent library (on
the client’s side).

Figure 12: StackSync architecture overview with BitTorrent

The jbittorrent 21 library used in our implementation is a simple and easy to use Java
implementation of the BitTorrent protocol. It provides a set of classes that allow the creation

21jbittorrent is available in GitHub under the GNU GPL license https://github.com/cloudspaces/
jbittorrent
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of the .torrent files and the download and sharing of files between peers in a BitTorrent
swarm.

jbittorrent is based on the library Java BitTorrent API22 developed by Baptiste Dubuis,
Artificial Intelligence Laboratory, EPFL. In o jbittorrent extends the original library with the
following features:

• Optimization of the management mechanism that maintains the connections between
the peers of the swarms. The new version of the library solves the multiple connection
problem in the version 1.0 of the Java BitTorrent API. This problem was due to the fact
that connections are identified by the IP and the port of the peer in question which
might result in multiple connections for one peer.

• Improvement of the implementation of the Choking Algorithm by guaranteeing that
the number of unchoked peers is exactly five

• Re-implementation of the Optimistic Unchoking process in a way that makes it easier
for a peer to get its first pieces

• Implementation of the Rarest First Algorithm in the process of the pieces selection
process

• Implementation of the End Game Strategy

We have validated our approach using a trace of the Ubuntu One system [2, 54, 3, 55]
and have proven that the used of BitTorrent can reduce significantly the load on the cloud
without degrading the download times for the clients. Nevertheless, we have chosen not to
include this feature in the final release of StackSync in order to avoid privacy issues.

22More information about the Java BitTorrent API can be found at: http://sourceforge.net/projects/
bitext/
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6 Conclusion

In this document we presented several research works that are joined by the same underly-
ing objective: making Personal Cloud storage platforms more secure and convenient.

We analysed the use of erasure coding in a comprehensive solution to handle untrusted
and heterogeneous cloud repositories. Further, with the Hybris storage protocol, we have
tackled the problem of untrusted storage from another perspective: the challenging integra-
tion between private and public clouds, and the related trade-offs on consistency and fault
tolerance. Finally, in Section 5, we have presented another interesting case of study on cloud
storage. While Hybris approached cloud storage issues from users’ point of view, this lat-
ter work focused on techniques to exploit peer-to-peer technologies to offload cloud storage
platforms and ease files distribution.

We believe that the research contributions presented in this work can match the practical
requirements of a real-life Personal Cloud system. We validated this belief by designing and
developing solutions that easily integrate with the StackSync prototype.
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