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1 Executive summary

This deliverable is divided in two sections. In the first one, we present PrivySeal and in the
second one, we detail Attribute Based Encryption and its integration with StackSync.

In the first section, we present novel rich communication models and a privacy enhanc-
ing technology that has been tested with over a thousand users. For risk communication
models, as a case study, we consider the third party app ecosystem for the personal Cloud.
Personal cloud services such as Google Drive and Dropbox allow their users to install a va-
riety of attractive 3rd party apps. These 3rd party apps require access to the user’s data in
order to provide some functionality. Through an analysis of a hundred popular apps on
Google Chrome store, we discover that the existing permission model is quite often mis-
used: over two thirds of analyzed apps access more data than is needed for them to function.
Further, we discover through user experiments that simply telling users that apps are ac-
cessing more data than they require does not discourage them from installing those apps.
This poses two interesting challenges: a) can novel risk communication models be devel-
oped that can discourage users from installing privacy infringing apps? b) can we do a
comprehensive analysis of different risk communication models to gain deeper insights into
what influences users decisions in installing apps? To address these challenges, as our first
contribution, we present an ensemble method that we call Personalized Insights. Models in
Personalized Insights inform the users about the data-driven insights that apps can make
about users (e.g., their sentiments towards entities, collaboration and activity patterns etc.).
We compare the various models within Personalized Insights and discover several interest-
ing properties of different risk communication models. We also find several models that
are, on average, twice as effective as the current model in discouraging users from installing
privacy infringing apps. We also integrate Personalized Insights in the scenario of user-to-
user sharing privacy in StackSync. Based on the knowledge extracted from real users’ data
(over 112 gigabytes of Google Drive data from 1350 users), as our second contribution, we
develop a privacy-oriented app store, PrivySeal, in which users can see privacy infringing
Google Drive apps, and the far reaching insights these apps can make about them, and thus
choose apps judiciously. PrivySeal can be accessed at this URL: http://privyseal.epfl.ch.

In the second part of this document, we discuss the problem of privately sharing fold-
ers with users, and how this challenge has been addressed by novel crypto primitives like
Attribute-Based Encryption (ABE). With ABE, we have been able to provide fine-grained
access control at the file level without sacrificing scalability. Concretely, we have associated
each file with a set of attributes, which represents the file’s encryption/decryption policy.
A private key is associated with a monotonic access structure like a tree, which describes
the user’s permission (e.g., Medical AND (Doctor OR Nurse)). Then, a user can decrypt
the file if and only if her access tree is satisfied by the file’s attributes. Since the number
of attributes is significantly lower than the number of shared files, the key management is
simplified without impairing scalability. Next, we describe how ABE has been integrated
into StackSync, including all the changes both at the metadata and storage backends. Fi-
nally, some preliminary results have been obtained that verify that the overhead is compara-
bly small. The complete source code can be found at this URL: http://github.com/stacksync.
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2 PrivySeal: Effective Risk Communication for Privacy Aware
Sharing in the Cloud

Cloud services such as Google Drive, Dropbox, OneDrive etc., have become increasingly
popular over recent years. At the same time, such services have raised privacy concerns
about user’s data. But the danger is graver than it appears. While such Cloud services
are few in number, and at least have clearly defined privacy policies, they also serve as
platforms and allow a myriad of 3rd party apps to work on top of users’ data. These 3rd
party apps provide certain functionalities to users, for which they require access to the users’
data. Put simply, users sacrifice some of their privacy in order to get functionality that such
apps provide. However, it appears that often such apps acquire more data than is needed
for them to function.

As a case study, we did an analysis of a 100 third-party apps on one of the most popular
personal Cloud services, namely Google Drive (240 million active users in 2014 [1]), and
discovered that a staggering 68% of these apps require more permissions than they actually
need for functioning. Furthermore, these apps usually have no clearly defined privacy poli-
cies. Thus, users often end up exposing more data than is needed to unaccountable apps.
For instance, a user’s favorite PDF converter is highly likely to get access to her music library
and discover her taste in Mozart or obtain her geo-tagged photos and know where she went
on the weekend. Throughout this document, we refer to such apps as misbehaving apps. As
observed in other third-party apps ecosystems, giving such misbehaving apps superfluous
access can potentially result in users’ data being abused. This has recently been the case in
the health apps market where the top 20 most visited apps were found to be sharing users’
data with 70 analytics and advertising companies [2].

It can be discerned that whenever people share data, whether with 3rd party apps or
with other people, it is the need of the hour to guide them about the risk that is posed to
them because of their sharing activities. Towards that end we make the following specific
contributions:

i. Popularity, rating and reputation are bad indicators of misbehavior: We review hun-
dred third-party Google Drive apps and discover that more than two-third acquire more
data than they need. We also learn that popularity and rating are unreliable indicators of
app misbehavior. This has deep implications for all systems that depend on user or content
reputation/rating. (Section 2.2).

ii. Telling users that they are at risk falls on deaf ears: We develop a simple risk com-
munication model called Simple Risk Notifications that informs users about the unneeded
permissions that misbehaving apps are using. Through user experiments, we discover that
this model fails to deter users from installing misbehaving apps. Put bluntly, telling users that
their privacy is being infringed does not help. This motivates us to ask whether novel risk com-
munication models can be devised that can inform users about misbehaving apps and
discourage them from installing such apps? Furthermore, we want to analyze the factors
that can play a role in user’s decision to install misbehaving apps and the influence different
risk communication models can have on that decision (Section 2.3).

iii. Shocking them with intimate details, however, is another story: Towards that end,
we present an ensemble method called Personalized Insights, inspired by the novel concept

Page 2 of 50
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of Inverse Privacy [3]. Inverse privacy refers to the situation when a user is not aware of
the information that an external entity has on the user. Based on this definition, Personal-
ized Insights communicate to users the immediate and far-reaching insights which can be
inferred by the apps using superfluous permissions. These include but are not limited to:
users sentiments towards people and things; user collaboration and activity patterns; the
people, locations, and concepts that appear in users’ photos, etc. Through user experiments,
we show that Personalized Insights are twice as effective in deterring users from installing
misbehaving apps as the current model. Our analysis reveals various factors that can deter
users from installing misbehaving apps. For instance, we discover that insights which re-
veal users’ relations with other people reduce by half the installation of misbehaving apps, as
compared to insights that simply reveal information about the users themselves (Sections 2.4
and 2.5).

iv. PrivySeal helps users safeguard their data: We present PrivySeal a privacy aware
app store that uses Personalized Insights to warn users about misbehaving apps. This store
is available for public use at: https://privyseal.epfl.ch and has been used by over 1350
registered users. (Section 2.6).

2.1 Third-party Cloud Apps Ecosystem

2.1.1 General Model:

There are three entities that interact in the third-party Cloud app system: (1) a developer
who programs and manages a third-party application, (2) a user who uses that application for
achieving a certain service, and (3) a cloud provider at which the user’s data is stored. Using
the Cloud provider’s API, the application gets access to a subset of the user’s data after user
authorization, which is based on the user accepting a list of permissions that determines this
subset.

2.1.2 Threat Model

Upon using third-party Cloud apps that access their data, users sacrifice some of their pri-
vacy for getting some service(s). This tradeoff between privacy and services has been called
the Privacy vs Services Dilemma in the literature [4]. However, as we will see in the next
section, there are many apps that require more permissions than are needed for them to
function. We call such apps misbehaving apps, as opposed to well-behaving apps that only
request the permissions needed for their functionality.

Misbehaving apps might require more data for one of two reasons: (a) developers not
having the option to ask for any less (from the Cloud provider’s API); or (b) simply being
data greedy and requesting for as much data as can be harvested. Regardless of the reason,
these apps pose a risk which can be potentially exploited, e.g., by selling data to 3rd party
advertising providers. Furthermore, the user cannot be held responsible for sacrificing their
privacy in lieu of some functionality, as the same functionality could be provided by an app
that requires less data. In this work, we seek to combat the risk posed by these misbehaving
apps through improving the risk indicators that users are presented with during the autho-
rization process.

Page 3 of 50
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Table 2.1a Permissions requested with the short name we use for reference
Permission Short Name
View the files in your Google Drive. DRIVE_READONLY
View and manage the files in your Google Drive. DRIVE
View metadata for files in your Google Drive. DRIVE_METADATA_READONLY
View and manage metadata of files in your Google
Drive. DRIVE_METADATA

View and manage Google Drive files that you have
opened or created with this app. DRIVE_FILE

View your Google Drive apps. DRIVE_APPS_READONLY
Add itself to Google Drive. ADD_DRIVE
View and manage its own configuration data in your
Google Drive. DRIVE_APPDATA

2.1.3 The Case of Google Drive

Towards that end, we have taken Google Drive as a case study, and we have anatomized this
ecosystem in detail. Nevertheless, as we discuss later, the insights gained from our analysis
are applicable to other Cloud platforms as well. To begin with, any developer can register
an application that accesses Google Drive API at Google Developers Console1 for free. She
then receives a Client ID and Client Secret that need to be included in the application code to
access Google APIs. The developer can then specify in the code a set of Google permissions
(a.k.a. scopes) she wants to obtain.

The application itself can be hosted on any website the developer chooses; i.e., it is not
hosted by Google itself. The developer can also submit a request for featuring the app on
Google Chrome Web Store, which has a section for apps that work with Google Drive. In
the store, apps are presented along with screenshots and descriptions of their functionality
(provided by the developer). The store also allows users to rate and review applications.
Apps can be also submitted to other web stores hosted by Google, such as the Add-ons
Stores for Google Docs, Google Sheets, or Google Slides and the Google Apps Marketplace
for enterprises.

An application can request permission to access Google Drive data at any time of its
operation, and not necessarily at the beginning. For example, the user can be presented
with a button in a side menu that reads “Import file from Google Drive”, and clicking on this
button redirects to a Google-hosted page that presents the set of permissions requested by
the application, as shown in Figure 1. As we see later, the absence of a standard location and
interface for hosting apps and triggering the permissions request is one of the reasons that
makes the automated, large scale privacy analysis of apps infeasible. The main permissions
pertinent to Google Drive are presented in Table 2.1a.

As far as files’ data is concerned, an app can request access to all files (DRIVE and
DRIVE_READONLY permissions) or on a per-file basis (DRIVE_FILE). In the latter case,
the explicit approval for each new file(s) is mediated by an interface provided by Google.
For example, the developer can present the user with a file picker popup (hosted by Google)
so that she can select (and thus approve access to) the file. Alternatively, the file can be

1https://console.developers.google.com
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AcceptCancel

PDF Converter would like to:

Add itself to Google Drive

View and manage the files in your Google Drive

By clicking Accept, you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can
change this and other Account Permissions at any time.

smith.john639@gmail.com

Figure 1: Example of the current permissions interface of Google Drive

opened from Google Drive’s interface via the “Open with” option in the context menu of
the file. In the case of full access, an app can access any file directly via Google Drive API
without the need for user intervention. For example, this type of access enables an app to
list all the user’s files and download them in the background.

In addition to accessing file data, the developer can request access to file metadata
(DRIVE_METADATA and DRIVE_METADATA_READONLY) or to the list of apps the user
has authorized before (DRIVE_APPS_READONLY). It is worth noting that the permission
list is not limited to Google Drive API and that it typically includes permissions from other
Google APIs, such as access to user’s profile information, email address, contacts list, etc.

2.2 Investigating the Privacy Risk posed by 3rd Party Google Drive Apps

As we can see from the previous section, there are no fine grained permissions that pertain
to file contents between the two extremes of full access and per-file access. Hence, one
could encounter a lot of applications that request more data than needed, e.g., by requesting
full access, although their functionality might not necessitate such a level. Accordingly, the
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access to user’s files ends up in the hands of various parties, bearing the risk of intentional
or unintentional disclosure. A lot of the highly used 3rd party applications do not have
privacy policies or justifications of the requested permissions. Moreover, the users are not
usually aware of the API details or the application functionality, especially before installing
the apps. Thus, the choice of installation is not well-informed from a privacy perspective.

2.2.1 App Study

The question that comes next is: “what is the extent of risk that actual users are exposed
to?” To answer this, we examine a sample of third-party Google Drive apps to determine
the percentage of apps that requests extra permissions. We proceed to Google Chrome Web
Store, which has a section for apps that work with Google Drive2. The store features apps on
its main page, that change with time. We selected 100 featured applications from this page,
and we manually reviewed them one by one.

2.2.2 Review Process

An app’s review process starts by going to the application website, linked from the store,
and testing the application manually. For each application, we first find the step where the
app connects to Google Drive (if this is not upon the initial sign up). Then, we authorize the
app to access a test Google Drive account created for this purpose.

We then record the following information:

1. all the requested permissions by the app

2. the permissions requested but not needed by the app

3. the alternative permissions provided by Google that the developer could have used
instead of the ones in (2)

4. the alternative permissions not provided by Google that the developer could have
used instead of the ones in (2)

The first step above is obvious. The second step requires (a) knowledge about Google
Drive API and (b) investigating the ways in which the application accesses the user’s Google
Drive data, and the data it actually requires. As explained previously, when the approval
for each file is always mediated by an interface provided by Google, then the per-file access
level is sufficient for the functionality. If the application implements its own file browsing
interface, as in the case of a custom photo browser, then the developer cannot use the per-
file access. In that case, with the current Google Drive API, the only choice is to request
full access. In the third step, we note down the alternative Google Drive permissions that
the developer could have used. In the fourth step, we note down the permissions that the
developer could theoretically use but is not able to since they are not currently provided by
Google Drive. For instance, a photo editing app could use permissions that allow accessing
photos only, if Google Drive were to implement this permission. During the review, we had

2https://chrome.google.com/webstore/category/apps?_feature=drive)
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Table 2.2a Suggested permissions not offered by Google Drive
View photos in your Google Drive.
View and manage photos in your Google Drive.
View documents in your Google Drive.
View and manage documents in your Google Drive.
View files of specific type(s) in your Google Drive (other than images and docu-
ments).
View and manage files of specific type(s) in your Google Drive (other than images
and documents).

a set of alternative permissions (presented in Table 2.2a) that are not currently provided by
Google, and we report whether some of these permissions would be sufficient for replacing
the actually requested permissions.

2.2.3 Review Results

Permission Usage:
Analyzing the application reviews, we found out that 68 out of 100 apps request unneeded
permissions (Table 2.2b). In 64 of these 68 apps, the developers could have requested less
invasive permissions with the current API provided by Google. Had the more fine-grained
permissions suggested in Table 2.2a been available, the 4 remaining apps could also have
requested less invasive permissions. In total, 76 out of the 100 apps requested full access to
the all the files in the user’s Google Drive. Interestingly, 9 of every 10 apps requesting full
access are misbehaving.

As we show in Table 2.2c, the top permission that is needlessly requested is the full read
and write access to Google Drive (in 55 apps), followed by the full read access permission (in
17 apps). This further increases the magnitude of data that can be exploited with the extra
permissions. On the other hand, the per-file access permission is the top permission that is
actually needed when requested. This happens in 41 of the apps. However, in 16 of these
41 apps, we have found that the developer also requested full access to the user’s data. We
conjecture that this could be aimed at deceiving the user into installing such applications due
to the presence of per-file access. Table 2.2d shows the distribution of alternative permissions
that could replace the extra permissions needlessly requested by the apps. It is evident that
the top alternative is the per-file access. This indicates that despite its limitations, simply
the correct usage of the current Google Drive API (which does provide per-file access), can
eliminate the major part of the privacy risk. Nevertheless, it is evident that developers are
generally guilty of not doing this.

As we show in Table 2.2c, the top permission that is needlessly requested is the full read
and write access to Google Drive (in 55 apps), followed by the full read access permission (in
17 apps). This further increases the magnitude of data that can be exploited with the extra
permissions. On the other hand, the per-file access permission is the top permission that is
actually needed when requested. This happens in 41 of the apps. However, in 16 of these
41 apps, we have found that the developer also requested full access to the user’s data. We
conjecture that this could be aimed at deceiving the user into installing such applications due
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Table 2.2b App Reviews Statistics
Metric Value

Misbehaving apps 68/100 (68%)
Misbehaving apps due to Google Drive API

limitations 4/68 (≈ 6%)

Misbehaving apps due to Developers’ fault 64/68 ( ≈ 94%)
Apps with full access 76/100 (76%)

Misbehaving apps with full access 68/76 (≈ 89%)
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Figure 5: Example of
Simple Risk Notifica-
tions interface

to the presence of per-file access. Table 2.2d shows the distribution of alternative permissions
that could replace the extra permissions needlessly requested by the apps. It is evident that
the top alternative is the per-file access. This indicates that despite its limitations, simply
the correct usage of the current Google Drive API (which does provide per-file access), can
eliminate the major part of the privacy risk. Nevertheless, it is evident that developers are
generally guilty of not doing this.

Current Risk Indicators:
As we have reviewed apps from the Chrome Store, we were also able to extract, for each app,
the average rating, the total number of ratings, and the total number of installations. These num-
bers are part of what is visible to the users when they are deciding on the app installation
and can be perceived as indicators of trust. To determine the validity of this perception, we
investigated the correlation between these metrics on one hand and the apps’ (mis)behavior
on the other.

For each of these metrics, we calculated the point biserial correlation coefficient3 between
the metric on one hand and a dichotomous variable B indicating whether the app is misbe-
having. We found out that average rating metric is weakly correlated (0.189), indicating that
the probability for the app to be well-behaving slightly increases with higher ratings. More-
over, the number of ratings has a weak positive correlation (0.256) with B. Finally, there is
almost no correlation (0.082) between the number of app installations and B.

From this data, it is not immediately clear whether users can depend on a higher rating,
for example, as a reliable indicator that the app does not request extra permissions. We dig

3This correlation coefficient is typically used to estimate the degree of relationship between a dichotomous
nominal scale and a numeric scale.
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Table 2.2c Permissions’ Usage in Reviews
Permission Unneeded Needed

DRIVE_READONLY 17 1
DRIVE 55 7

DRIVE_METADATA_READONLY 2 1
DRIVE_FILE 0 41

DRIVE_APPS_READONLY 1 1

Table 2.2d Alternative Permissions Possibilities
Alternative Permission Count

DRIVE_FILE. 48
DRIVE_METADATA_READONLY 1
View photos in your Google Drive. 1

View files of specific type(s) in your Google Drive. 2
View and manage files of specific type(s) in your

Google Drive. 2

deeper into this issue by drawing the histogram showing the fraction of misbehaving apps
at each rating interval (Figure 2). In this, as well as the next two graphs, we ignore the
histogram bins in which we had less than 5 apps. The horizontal line at Bav = 0.32 in each
of the graphs denotes the average proportion of misbehaving apps in the whole sample. In
Figure 2, it can be observed that still nothing definitive can be said about whether or not an
app is well-behaving through just taking its rating into account. In most cases, no matter
what the rating, at most only 1 out of every 4 apps is well-behaving. Even in the best case
scenario (of rating 4-4.5), the proportion of well-behaving apps is still only approximately
0.5. This suggests that even with this rating, it is a coin toss for the user to know if an app is
well-behaving.

In Figure 3, we consider the case of ratings count for apps, represented on a natural log
scale. The number of ratings has a weak correlation (0.256) with B. As in the case of the
previous graph, it can be observed that the number of ratings also cannot help the user in
determining whether or not an app is misbehaving. We can see that even at a very high
number of ratings, the proportion of well-behaving apps remains below 0.5. In Figure 4,
we show the same type of graph, with the natural log scale of the number of times an app
has been installed on the x-axis. The correlation is almost absent as is evident from the fact
that all but one of the bins are close to the general average fraction of good apps. While
one can conclude that apps with low number of installations are generally misbehaving,
the converse is not true: apps with high number of installations are not generally well-
behaving. Therefore, as stated earlier, these results call for new forms of risk indicators
as users simply cannot know if an app is well-behaving either through its popularity or
rating.

2.3 The Case of Simple Risk Notification

Our app study shows that users’ data is at risk and that the existing indicators fail to com-
municate the risk posed by the apps. The first approach that we investigate in this sec-
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tion is whether explicitly telling the users that apps are misbehaving helps them take more
privacy-aware decisions. We note here that we follow Google Drive’s approach of request-
ing permissions “At Setup” [5] (i.e., at the first time of app authorization). This is unlike
other ecosystems (e.g., iOS or Android M), which require a “Just in Time” approach (i.e.,
permissions are requested only when the actual functionality is needed), This is because, in
Google Drive, many applications are supposed to work with the user’s data even when she
is offline. Hence, granting access in an interactive manner for individual permissions is not
always feasible.

Our proposed scheme builds on the following hypothesis:

“When users are informed about the unneeded permissions being requested by applications, they
are less likely to authorize such applications.”

This scheme replaces the current permissions interface displayed in Figure 1 with a new
interface, presented in Figure 5. We call this risk communication model Simple Risk Notifica-
tion (SRN), and it reveals to the user the distinction between permissions that are needed for
the application functionality, and those others that are unnecessarily requested.

2.3.1 Experimental Setup

In order to test our interface modifications, we designed a multi-stage experiment with ac-
tual users.

User Recruitment:
In order to recruit users, we primarily used our university’s mailing list, in addition to
spreading the invitation via friends and connections. The users were briefed about an appli-
cation that is related to protecting the privacy of their data against third-party applications
on Google Drive. The news about the app was also reported on the university’s website
and was picked up by several technology websites. The website itself described itself as an
application for Google Drive that aims at exposing what 3rd party web apps can needlessly
get about users. Via our website, the users can sign in to their Google account, and then
grant full Google Drive access to our app. Next to the “sign in” button, we linked to our
privacy policy, explaining what data the app gets and what it keeps.

Upon signing in, users were given two choices: (1) participating in our experiment or
(2) continuing to the application (whose details will come later in Section 2.6.1). Only those
users who had at least 10 files containing text or 20 images were allowed to continue. This
is to ensure that they possess at least a minimal level of knowledge about Google Drive.
Next, users who chose to participate in our experiment were assigned to one of the groups
described below. As a motivation to complete the experiments, the users were enrolled in a
lucky draw, where they could win one of five gift cards to a mobile app store of their choice.

Methodology:
A user experiment was divided into tasks. In each task, the user was requested to select an
app with a specified goal and then determine if the app’s permissions were too invasive for
her to accept. For example, the goal would read “Select the app which allows you to extract
the ZIP files on your Google Drive”, and the corresponding app would be “ZIP Extractor”.
The user would choose this app among other apps that are listed with their descriptions in
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Figure 6: Decision prompt shown in each task

an interface similar to the actual Google Chrome Web Store. Only one app of those listed
satisfies the given goal, and it is highlighted in the interface. This part of the setup only
serves a gamification purpose in order to keep the user interested. Once the user selects the
app, she is presented with the Decision Prompt, shown in Figure 6, positioned on top of a
Permissions Interface. The decision prompt asks the user whether or not the permissions are
acceptable. The permissions interface was varied according to the experimental group the
user is assigned to.

The apps used in the experiment were obtained from the Google Drive section of the
Chrome Web Store. Unlike in the store, we removed elements such as ratings, reviews, and
screenshots and kept a minimal interface, allowing the users to focus solely on the app per-
missions. We also avoided using apps from popular vendors to avoid the bias resulting
from users being influenced by famous brands. This is because we wanted to study the ef-
fect that the risk communication model has on the user’s decisions, without the influence
of extraneous factors4. Moreover, the apps were presented to the users in randomized or-
der to compensate for the effects of learning and fatigue. For experimental purposes, we
modified the permissions of these apps to be able to test various metrics. For reference, the
permissions that each app requested are presented in Table 2.3a.

For the first part of this experiment, we had two groups:

1. Baseline Group: Users in this group were presented with a clone of the original inter-
face that Google shows upon installing the app (shown in Figure 1). This group serves
as the control group.

2. SRN Group: Users in this group were presented with the modified interface, previ-
ously shown in Figure 5.

2.3.2 Results

We got 97 users in total who successfully completed this part of the experiment. Out of
them, 49 were in the Baseline Group and 48 in the SRN Group. In Figure 7, we plot, for the
different apps, the Acceptance Likelihood AL defined as:

AL =
#(Accepts)

#(Accepts) + #(Rejects)
, (1)

where Accepts denotes the cases where users were fine with the permissions and Rejects
denotes the cases where they found them too invasive. In order to compare the effect of

4Incidentally, the user might confront a scenario exactly as in the experiments, if she does not find the app
from the store, but lands on a certain site that has the option of authenticating with Google and requires access
to Google Drive.
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Table 2.3a Permissions of apps in experiment, R: Requested, N: Needed, U: Unneeded, NR:
Not Requested

App DRIVE_PHOTOS DRIVE DRIVE_METADATA DRIVE_FILE
ZIP Ex-
tractor R, U R,N

Xodo
PDF

Viewer
& Editor

R,U R,N

Who-
HasAc-

cess
R,U R,N

Video
Con-
verter

R,U

Loupe
Collage N,NR R,U

Cloud
Convert R,U N,NR

the group on AL for each app, we used Pairwise Fisher’s Exact tests of significance, which
allows testing the null hypothesis of no difference in any pair of proportions. Surprisingly,
for each of the six apps, the tests did not show statistically significant differences between
the two groups. Upon aggregating all the users’ responses to all these apps, we obtained
AL values of 0.385 and 0.392 for the Baseline and the SRN groups respectively. In this case,
Fisher’s exact test for the group-aggregated responses also did not show any statistically
significant difference (p− value = 0.928). This indicates that simply telling the users that
an app requests extra permissions is not enough to deter them from installing the app.

Data vs. Metadata Access: Comparing the fraction of installations of Xodo PDF Viewer
and WhoHasAccess in the SRN Group in Figure 7, we can refer to Table 2.3a and observe
that users are more deterred when they discover that the unneeded permission involves
full data access (DRIVE) compared to metadata only access (DRIVE_METADATA) (Fisher’s
exact test p-value=0.002).

2.4 Designing Personalized Insights

Based on the findings of the first experiment, specifically the failure of SRN in deterring
users from installing misbehaving apps, we decided to investigate other approaches to bet-
ter communicate the risk of app installation to the users. Instead of only showing what the
extra requested permissions are, we had the following hypothesis:

When the users are shown the possible data that can be extracted from the unneeded permissions
granted to applications, they are less likely to authorize these applications

Accordingly, our next strategy is based on presenting users with insights that, in addition
to indicating the misbehaving apps via SRN, give the users an idea on what the application
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Figure 7: AL measured across apps in SRN and Baseline groups

developer can do with those extra permissions. Towards that aim, we differentiate between
two types of insights:

1. Immediate Insights: These are randomly selected data examples, directly extracted
from the user’s Google Drive, such as excerpts of text or image files, photo locations,
or people she collaborated with.

2. Far-reaching Insights: These are insights that go beyond examples and include what
can be inferred by running more involved algorithms, such as sentiments towards
entities, objects identified in photos, faces detected, etc.

An example of this new interface is shown in Figure 8. On the left, we have the same
previous SRN interface. On the right, we have a question that says: “What do the unneeded
permissions say about you?”, followed by an answer in the form of a visual with short
explanatory text.

In this section, we detail the different insights that were used as risk indicators and ex-
plain the algorithms used for generating each of them. Towards that goal, we highlight two
file categories of interest: (1) textual files, such as PDF documents, word-processing docu-
ments, spreadsheets, presentations, text files, etc., and (2) image files, such as JPEG, PNG,
TIFF, etc. We represent the set of textual files as TF = TF1, TF2, .., TFK and the set of image
files as IF1, IF2, ..., IFL.
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Figure 8: Modified interface with Personalized Insights

2.4.1 Far-reaching Insights

We begin by describing the algorithms for generating the far-reaching insights.

Entities, Concepts, and Topics (ECT):
The first type of insights we form is based on applying various NLP techniques to extract
named Entities (E), Concepts (C), and Topics (T) from users’ textual files. We combine these
together due to the similar nature of these insights. Any one of E, T or C can be randomly
displayed to the user in the interface.

i. Entities: We get the top named entities (e.g., people, places, companies, etc.) present
in the user’s textual files. Such entities are recognized using Named Entity Recognition
(NER), which is a traditional problem in natural language processing that involves locating
and classifying elements in text into pre-defined categories [6]. Our hypothesis was that
displaying such information to the user might serve as a good indicator of risk as these
entities might include people the user works with, companies she talks about, places she
plans to visit, etc. For this task, we perform text extraction on each file, and we then pass the
text to an external web service, namely AlchemyAPI. Given the text of file TFj, this service
returns a set of entities, along with the frequency of occurrence fi,j of each entity ei in TFj.
We normalize this frequency for each entity by dividing it by fmaxj, which is the frequency
of the most of recurrent entity in TFj:

fnormi,j =
fi,j

fmaxj
(2)

Then, we compute an overall score for entity ei across all the files in TF, by summing its
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(a) Named Entities visual (b) SharedInterests
visual

(c) FacesWithContext
visual

(d) FacesOnMap visual

Figure 9: Example visualizations of Personalized Insights

individual normalized frequencies:

score(ei) =
K

∑
j=1

fnormi,j (3)

As shown in Figure 9(a), we visualize the entities with the highest scores as a set of circles,
each of a diameter proportional to the score of the corresponding entity. Different types of
entities (e.g., people, places, etc.) have different circle color.

ii. Concepts: We also extract concept tags from users’ documents. These concepts are
high-level abstractions, not necessarily mentioned in the text. For example, the sentence
“My favorite brands are BMW, Ferrari, and Porsche”, would be tagged by the concept “Au-
tomotive Industry”. Our rationale behind this insight type is that concepts can serve for
profiling the users’ interests. Hence, knowing that they can be potentially leaked can con-
tribute to more user awareness. AlchemyAPI was again used for this task, returning, for
each file TFj, a set of concepts, each denoted as ci along with a relevance score ri ∈ [0, 1]. We
used the following scoring method to rank the concepts across the user’s documents:

score(ci) =
K

∑
j=1

ri,j (4)

Similar to the case of entities, we represent concepts by circles, each of a diameter propor-
tional to the score of the concept.

iii. Topics: Topics are used to classify documents into high level categories, such as
technology, art, business, etc. Our motivation behind displaying such information to the
user is similar to the case of concepts, i.e., alerting her to profiling risks, although topics
are at a higher level of abstraction than concepts. We used AlchemyAPI, which returns a
maximum of 3 topics per file TFj (each denoted as ti), along with a relevance score ri ∈ [0, 1]
for each of them. A topic comes in the form of “a1/a2/ . . . /an”, representing a hierarchy
among the labels (e.g., “/hobbies and interests/astrology” or “/finance/investing/venture
capital”). In order to extract the top topics based on a user’s documents, we use the same
scoring method as that of concepts:

score(ti) =
K

∑
j=1

ri,j (5)
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We represent topics by circles, similar to the case of entities, where the diameter of a circle is
proportional to the score of the topic. Topics sharing the top level label are colored similarly.

Sentiments:
For each entity that occurs in TF, it is possible to also estimate whether the text relays a
positive, neutral, or negative sentiment about that entity. We hypothesized that visualizing
the most positive or most negative opinions that a user’s documents relay would have a
good alerting effect on the users’ app installation choices. Towards that end, we use the
sentiment analysis service of AlchemyAPI. For each TFi, we select the entities labeled with
positive or negative sentiments (each such entity also has a sentiment score si,j ∈ [−1, 1]
with 1 corresponding to the most positive sentiment and -1 to the most negative one.). We
then compute the overall sentiment score si of entity ei across the all the user documents TF:

si =
K

∑
j=1

si,j (6)

The sentiments with the highest positive and negative scores are then shown to the user, as
was presented in Figure 8.

Top Collaborators:
The next insight we added was displaying the top collaborators a user has, based on the
analyzed files. We define collaborators as people who share files with the user, regardless of
who initiates the sharing operation. We hypothesize that top collaborators typically include
close work colleagues, intimate friends, or people the user goes out with and shares pictures
afterwards. Hence, showing such information to the user as data exposed to leakage would
make her more alert about the potential risk. In the interface, this insight is visualized as a
horizontal bar chart of the top collaborators with the bar lengths representing the relative
frequency of the user’s collaboration with each of them.

Shared Interests:
In this insight, we try to represent the user’s mutual topics of interests with a group of
people. Specifically, we show the user a list of people alongside different topics that have
appeared in documents the user shared with these people. Towards that end, we perform
the following steps:

• We determine the top topics as we have done in the previous insight.

• Then we select from these topics a subset St that only includes the ones which appeared
in shared files.

• Via Google Drive API, we extract, for each topic ti, a list U(ti) of collaborators (based
on files it appeared in).

• We select from each U(ti) the most frequent collaborators (i.e., those appearing in most
documents with this topic).

Users then get a visualization similar to Figure 9(b), where we show the three top topics
from St along with the top collaborators for these topics.

Faces with Context:
We now come to the insights that are based on features inside the user’s images. The first
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insight in this category shows a group of faces, representing the most frequent people ap-
pearing in the user’s images, alongside the concepts that appear in the same images. Fig-
ure 9(c) shows an example of this insight. The rationale behind this visualization is that it
simulates a third-party trying to infer the people that the user is interested in or appears
with, in addition to objects that are inside these photos. One can imagine that such infor-
mation might be valuable, for example, to advertisers that aim to extract the user’s interests
in certain products and services. In order to achieve this visualization, we performed two
steps:

i. Face clustering: It is evident that showing the user random faces detected in her photos
will not create the same effect as when these faces are actually people she cares about. Our
plan to achieve the latter case involves three steps:

• We use a face clustering algorithm in order to group together photos of the same per-
son. As a result, we get a list of groups G, where each group Gi ∈ G is comprised of the
faces that belong to a person identified as pi. The algorithm used is by Zhu et al., [7]
implemented by the OpenBR framework. [8]

• From each group Gi, we exclude the faces with width (height) less than 1
15 of the total

image width (height).

• We exclude groups with less than 3 faces in total.

• We sort the groups by the number of faces in each of them.

ii. Image concept recognition: In order to identify the concepts inside each photo, we
used a classifier from the Caffe library [9]. The classifier uses a pre-built deep learning net-
work, that is based on the architecture used by Krizhevsky et al., [10] that won the Imagenet
2012 contest.

Based on the above, we show the user the top groups along with the top concepts asso-
ciated with those groups.

Faces on Map:
In addition to the image content itself, image metadata can be also sensitive, especially the
geographical location where the image is captured. Accordingly, our hypothesis was that
showing people the places where their photos are taken, in addition to the faces and items
in those photos, can serve as good indicators of risk. Figure 9(d) shows the visualization
that we made to test this hypothesis. It consists of showing the faces of people overlaid on
a map, centered at the geographical area where these faces appeared. Below the map is a
list of the top concepts that appeared in the photos taken in that area. In our actual im-
plementation, the visual is animated, moving between different areas to show the user the
places that different photos were taken at. In order to construct this visualization, we had
to cluster the images into different geographical areas. For that, we used the OPTICS algo-
rithm (Ordering Points to Identify the Clustering Structure) by Ankerst et al.,[11]. OPTICS
allows finding density-based clusters in spatial data and is tailored for detecting meaningful
clusters with data of varying density. After getting the cluster results, the zoom level on the
map is animated to show one cluster to the user at a time.
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2.4.2 Immediate Insights

In the following, we describe the design of the immediate insights.

Image: We randomly show an image selected from the set IF of image files.

Location: We randomly choose a photo from IF, such that it includes a GPS location in
its Exif data. Then we show that photo on a map centered at that location.

Text: We show the user an excerpt from the beginning of a randomly chosen textual file.

Collaborator: We show the profile picture and the name of a randomly chosen collabo-
rator.

We note that the reasoning behind designing lightweight insights such as Immediate
Insights was that we wanted to examine whether designing heavyweight insights such as
Far-reaching Insights is worth the effort for us and the potential adopters of our approach,
or do users respond equally favorably (or badly) to both the heavy and the lightweight
approaches, in which case Far-reaching insights need not be adopted.

2.5 Evaluating Personalized Insights

2.5.1 Experimental Setup

In order to assess the effect of these different visuals, we conducted a user experiment based
on the same methodology as in Section 2.3.1, with two new groups:

1. Immediate Insights Group: Users in this group were presented with the modified
interface of Figure 8, based on the Immediate Insights of Section 2.4.2.

2. Far-reaching Insights Group: Users in this group were presented with the modified
interface, of Figure 8, containing the insight described in Section 2.4.1.

In addition to the apps we had in Table 2.3a, we added new apps to these groups in
order to further compare the effects of the different insights described above. We fixed the
permissions of all the added apps to request both DRIVE and DRIVE_FILE access while
needing only DRIVE_FILE. Hence, in addition to ZIP Extractor app in Table 2.3a (which has
such permissions), users had 3 additional apps in the Immediate Insights group (to compare
the four types of Immediate Insights). Similarly, users in the Far-reaching Insights group had
5 additional apps (to compare the 6 types of Far-reaching Insights).

It is worth mentioning at this point that after generating these insights from a user’s files,
these files are deleted immediately from our apps’ servers. As per our displayed privacy
policy, only the insights’ data presented to the user is kept in the app database. Moreover,
the user is given the option to delete her insights data at any time with a single click in
the app’s menu. We also involved our university’s research ethics board in order to further
ensure participants’ privacy.
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Figure 10: AL for the different types of interfaces

2.5.2 Results

We got 98 users in total who successfully completed this part of the experiment. Out of
them, 48 were in the Immediate Insights group and 50 in the Far-reaching Insights group.

Efficacy of Insights:
We now present the first part of our results, where we investigate in detail the insights’ effect
on users’ privacy decisions.

a) Insights’ General Effect: We first found that, in general, the choice of the insight in the
modified interface has a significant effect on the Acceptance Likelihood AL (Fisher’s Exact
test: p− value = 2.2 ∗ e−16). In order to compare the effect of different insights, we plotted
in Figure 10 the Acceptance Likelihood for each insight and also for the Baseline and SRN
groups from the first part of the experiment.

b) The Power of Relations-Based Insights: In order to compare these likelihoods, we used
Pairwise Fisher’s Exact test, which allows testing the null hypothesis of no difference in any
pair of proportions. The results of the test are shown in Table 2.5a, where cells indicate the
p− value of the comparison test between the item defined by the row label and that defined
by the column label.

The first interesting outcome from the comparison table and figure is that there is a cat-
egory of insights (Category 1) composed of {Image, Text, ECT, and Sentiments} that are all
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Table 2.5a Pairwise comparison (cells formatted in blue italics correspond to a statistically
significant difference with p− value < 0.05)

Collaborator FacesOnMap FacesWith-
Context Image Location Sentiments Text Top-

Collaborators
Shared
Interests Baseline SRN

FacesOnMap 0.017
FacesWithContext 0 0.755

Image 0.03 0.325 0.017
Location 0.032 1 0.735 0.411

Sentiments 0.037 0.333 0.005 0.882 0.298
Text 0.012 0.261 0.002 1 0.315 1

TopCollaborators 0 0.776 0.74 0.035 1 0.011 0.005
SharedInterests 0 0.743 1 0.038 0.725 0.022 0.014 0.84

Baseline 0.374 0.002 0 0 0.005 0 0 0 0
SRN 0.265 0.002 0 0 0.005 0 0 0 0 0.803
ECT 0.066 0.131 0 0.442 0.222 0.55 0.425 0 0.003 0 0

associated with a significantly higher acceptance likelihood than the category composed of
{FacesWithContext, TopCollaborators, and SharedInterests} (Category 2). The insights within
these two categories are adjacent to each other in Figure 105. Since this is a very interesting
result, we investigate further to analyze the defining characteristics of these two naturally
clustered categories. The main feature of Category 1, which includes both Immediate and
Far-reaching based insights, is that insights in this category are restricted to characterizing
the user herself, such as showing text excerpts from her documents, topics appearing in them,
or images she has in her files. On the other hand, the defining feature of Category 2 insights,
which are all Far-reaching, is that they extend to characterizing the relationships of the user
with other people. FacesWithContext shows the most important faces in user’s photos along
with the items appearing with them. SharedInterests shows the people who collaborate with
the user and the type of topics they share. Also, TopCollaborators identifies the most frequent
people the user interacts with. From this, one can conclude that users become especially
alert when insights go beyond specifying interests to describing relations with others.

c) Impact of Face Recognition: Delving deeper into more results brought forth the compar-
ison of different insights, one can notice that showing examples of user’s images is signifi-
cantly less alerting than showing the important faces and listing the concepts in the image
(p− value = 0.017). This highlights the fact that users are sensitive towards the output of
face detection and object recognition in photos. Given that services such as Google Photos,
OneDrive, and Flickr already apply such techniques to facilitate search, the above result
highlights that they can also be used by these companies to easily implement solutions such
as ours for raising users’ privacy awareness when sharing data.

d) Influence of High-Level Textual Insights: In the case of textual documents, showing the
high-level entities or concepts extracted from the text does not seem to have a significant
difference as compared to simply showing direct excerpts from the text (p− value = 0.425).
Only when the relationship factor is introduced does the AL significantly decrease (as in the
case of SharedInterests).

e) Inefficacy of Baseline and SRN: It is worth noting, however, that the SRN and Baseline
approaches had a significantly higher AL than all the insights, except for the Collaborator
insight. This highlights the fact that showing well-selected insights would almost always
result in a significantly higher user alertness and deter them from installing misbehaving
apps.

e) Superiority of Far-reaching Insights: By aggregating the results over all the experiments

5The number of users who had location-tagged photos was low; hence we could not obtain highly signifi-
cant results in the case of Location and FacesOnMap insights. Nevertheless, their ranking in Figure 10 suggests
they are both at the boundary between the two categories.
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with Far-reaching Insights, we found out that they result in a significantly lower AL than
those with Immediate Insights (AL = 0.165 and 0.232 respectively with Fisher Exact’s test
giving a p− value = 0.0017). However, as stated above, Immediate Insights are significantly
better than Baseline and SRN. Overall, these results corroborate the findings of [12], which
showed the goodness of an approach similar to Immediate Insights, and at the same time,
they also demonstrate the superiority of our novel approach of Far-reaching Insights.

Analyzing External Reasons behind User Decisions:
Aside from the general effect of insights which were a feature of our experiments, next we
seek to explore whether other factors, external to our experiment design, affect the likelihood
of acceptance.

a) Effect of User’s App History: One factor that we test is the number of Google Drive apps
that a user has installed in the past, apart from the ones that come by default (e.g., Google
Docs, Google Sheets, etc.). By requesting the permission “DRIVE_APPS_READONLY”,
we were able to get the list of apps that the user has authorized at some earlier point in
time. We represent the number of apps as a categorical variable of three possible values:
numberOfApps ∈ {0, 0→ 5,> 5}.

When analyzing the aggregated Acceptance Likelihood AL from the four groups of our
two experiments, we found that numberOfApps does not have a significant effect on AL
(Fisher’s Exact Test: p− value = 0.138). However, we also investigated how numberOfApps
affects the AL differently in the SRN and Baseline interfaces compared to the Personalized
Insights interface (comprising both Immediate and Far-reaching Insights). Towards that
end, we show in Figure 11 the AL for these interfaces for different values of numberOfApps.
We calculated the pairwise Fisher exact test among the different proportions. We discovered
that, in both the Baseline and SRN groups, there is no significant difference among the AL
values for different number of apps (Fisher’s Exact Test: p − value > 0.05). This lack of
difference implies that users with high number of apps installed, contrary to what one might
expect, do not install more misbehaving apps than other users. However, in the Personalized
Insights case, users who installed more than 5 apps in the past show a significantly lower AL
than those with less apps installed (Fisher’s Exact Test: p− value(>5 vs. 1→5) = 0.0015, p−
value(>5 vs. 0) = 0.0017). Thus, we can conclude that Personalized Insights causes those
“experienced users” to be drastically more alert given their previous usage of apps, while the
effect on relatively inexperienced users is less extreme, but still significant (all p− values <
0.05) as compared to the Baseline and SRN Groups.

b) Effect of Amount of Data: Another factor that had a similar effect is the number of
files a user has in her Google Drive (denoted as numberOfFiles). We transformed the num-
ber of files into a categorical variable by splitting the users into two categories: those with
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numberOfFiles ≤ 40 files and those with numberOfFiles > 40. We initially found that the
effect of numberOfFiles on AL, when the four groups from the experiments are combined, is
not significant (Fisher’s Exact Test: p − value = 0.0762). As in the case of numberOfApps,
we investigate in Figure 12 whether the Baseline, SRN, and the Personalized Insights are
affected differently by numberOfFiles. In the case of Personalized Insights, we find a signif-
icant drop in the acceptance likelihood for users with of with numberOfFiles > 40 (Fisher’s
Exact Test: p − value = 0.0328). In the other two cases, the change in the two directions
was not statistically significant (Fisher’s Exact Test: p − value = 0.2755 for Baseline and
p− value = 0.1351 for SRN).

We conjecture that this is because users with a large number of files are more sensitive
about granting access to applications when they become aware of the consequences of doing
so via the Personalized Insights. Second, having more files also allows our algorithms to
extract more information and infer more relations, and this can create a greater impact on
users’ decisions.

2.6 Solutions for Privacy Protection

2.6.1 PrivySeal: A Smart Privacy Assistant

Driven by the magnitude of the risk posed by misbehaving apps in Google Drive, we were
motivated to bring the advantages of the Personalized Insights interface to the user commu-
nity of this platform.

One approach to achieve that would be for Google itself to implement a scheme similar
to ours and to integrate it within the app authorization process. However, we decided not
to wait and chose an alternative approach, which is independent of the company’s plans
and is ready for user utilization immediately. We built the PrivySeal for Google Drive apps,
which is readily available at https://privyseal.epfl.ch. The Privacy Store allows users
to navigate a list of applications, click on those of interest, and check whether and how
they can misbehave via our Personalized Insights interface. Users can filter applications
by their (mis)behavior, and they can also search for apps. The component diagram for the
Privacy Store is shown in Figure 14. Similar to the app reviews we conducted, we have
included a “Review Wizard” inside the Privacy Store for indicating the requested, needed
and unneeded permissions along with the alternative permissions the developer could have
used. This responsibility is currently given to a small set of expert users and developers and
is moderated by the store administrators. Developers who would like to object to existing
reviews of their apps can submit rebuttals. Currently, the Privacy Store has more than 1350
registered users and 100 applications. We finally note that the Privacy Store gets access, as
is the case with other apps, to users’ data to generate insights. Hence, users are assumed to
trust the provider of such a “Privacy-as-a-Service” solution. However, this assumption of
trust will hold if a solution such as the Privacy Store is hosted by the Cloud provider itself
(which already possesses the data), or an enterprise protecting its documents from third-
party applications. The assumption of trust is also valid if the users choose to trust a single
entity (such as the Privacy Store) to protect themselves from multiple other unaccountable
misbehaving entities that they would otherwise be forced to trust.
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2.6.2 StackSync: Personalized Insights for user-to-user sharing

As our final contribution, we integrate Personalized Insights into one of this project‘s main
deliverables, Stacksync. Now, Stacksync users when they want to share some data with oth-
ers, can generate insights based on the data to be shared. They can then see what the sharee
could potentially know about them given that data. Thus, they can share data judiciously
on the Cloud and easily safeguard their privacy.

2.7 Related Work

To our knowledge, this is the first work that studies the problem of user privacy in the con-
text of third-party applications on top of Cloud storage providers. Several works have previ-
ously studied the problem of direct information sharing to providers themselves (e.g., [13]).

2.7.1 Privacy in Other App Ecosystems

In the case of other ecosystems, there are related works that have studied the current state
of privacy notices. For instance, Chia et al., conducted a large scale analysis of Facebook
apps, Chrome extensions, and Android apps to study the effectiveness of user-consent per-
missions systems [14]. Similar to our findings, they also observed that the community rat-
ings are not reliable indicators of app privacy in these ecosystems and showed evidence
of attempts at misleading users into granting permissions via free apps or apps with ma-
ture content. Huber et al., developed AppInspect, a framework for automating the detection
of malpractices in third-party apps within Facebook’s ecosystem and used network traffic
analysis to spot web trackers and identify leaks of sensitive information to other third par-
ties [15]. The case of third-party apps in Google Drive differs from these platforms in that
it is not possible to perform large scale analysis, firstly due to the absence of a standard ap-
plication format and secondly due to the difficulty of automatically finding the triggering
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button for permission requests in different applications. Aside from the above, client-side
traffic analysis is not sufficient to detect all Cloud data leaks as the applications can send
data to third parties after it arrives at the server side, to which outsiders do not have access.

2.7.2 Improving Current Privacy Notices

A few works have recently suggested improvements to the existing permissions schemes,
with a special focus on the case of Google Play Store. Kelly et al., argued that the privacy
information should be a part of the app decision making process and should not be left till
after the user makes her decision [16]. Hence, they appended a list of “Privacy Facts” to
the app description screen, textually indicating that the app, for example, collects contacts,
location, photos, credit card details, etc., and found that it assisted users in choosing apps
that request fewer permissions. Harbach et al., proposed to integrate examples from user’s
data in the permissions request screen to expose the data apps can get access to [12]. This
involved showing random pictures, call logs, apps, location, and contacts from user’s data
that correspond to each permission. In this work, we go steps farther, and we show that
well-crafted visuals showing far-reaching insights extracted from users’ data can be more
effective than randomly selected data. We also show through pairwise-comparisons among
the insights themselves that the choice of the displayed risk indicators highly affects the
interface’s effectiveness. Furthermore, in both [16] and [12] the methodology involved users
choosing between two apps where one requests a subset of the other’s permissions. This
does not tackle the general case where permissions are not necessarily subsets of each other,
which was one of the reasons for adopting a different methodology in our experiments. It
is also worth mentioning that, in our experiments the number of users who were involved
with their personal accounts in the experiment was more than five times the number of users
in [12] and [16]. Furthermore, we also provide a readily available solution for the public in
the form of the Privacy Store.

Moreover, our work is in line with the best practices recommended by the recent work
of Schaub et al., who developed a design space for privacy notices to assist researchers in
increasing the impact of their schemes [5]. For instance, we implemented the multi-layered
notice concept by showing data of textual and visual modalities. We also developed var-
ious visuals to ensure that the permissions dialogue is polymorphic, which was also shown
recently to have an effect on reducing the habituation effect in the user’s brain [17]. Personal-
izing warning notices, as we do in this deliverable, has been studied before in the context of
LED signs [18] and was shown to significantly increase compliance compared to impersonal
signs.

2.8 Conclusion and Future Work

In this document, we characterized the various factors that have an impact on user privacy in
the ecosystem of third-party apps for the Cloud. We considered Google Drive as an example
case study, and comprehensively anatomized the ecosystem from the viewpoint of users,
developers and the Cloud provider. For users, we carefully devised a set of experiments and
tested existing and novel risk communication models to analyze the factors that influence
users’ decisions in app installation. Our results provide interesting insights into how user
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privacy can be improved and how Cloud providers can develop better risk indicators. We
also present a privacy aware store for Cloud apps, which already has over 1350 registered
users. From our store users and people who took part in our experiments, we had the
unique and unprecedented opportunity to first hand study real users Cloud data. Based on
this data, we were able to characterize the current behavior of third-party app developers
and also point out avenues for developer misbehavior. Finally, based on our analysis, we
provide several suggestions for Cloud providers that can help in safeguarding users’ privacy
and protecting their data from needless leakage and exploitation. In the future, we aim to
build on the Privacy Store and develop a recommendation system that suggests apps of
similar functionality but superior privacy. Finally, it would be interesting to study how our
findings on the best risk indicators generalize to other ecosystems, such as Android or iOS.
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3 Privacy-aware data sharing with Attribute Based Encryp-
tion

3.1 Introduction

In the context of a scalable Personal Cloud like that of StackSync, our approach for privacy-
aware data sharing involves the design of a cryptographic component ready to be adapted
to an existing architecture and able to work efficiently as an extension to our software. Data
privacy in the Personal Cloud can easily get compromised, because clients typically delegate
tasks such as protection and honest use of the files to remote storage servers that are out of
their control. But, what if their information is sensitive enough not to take the risk of trusting a
third party?

Filling this security gap is more challenging than it seems. As we try to avoid any unau-
thorized access to user information by adding extra complexity to our system, the proper
encryption of such data implies a great challenge when it comes to generate, manage and
distribute keys, particularly when data has to be shared among a large number of users.
Thus, any attempt to keep the data reliably encrypted from the very first moment it leaves
the user device (e.g., through its storage and sharing) is susceptible to impact the scalability
and efficiency of our system in a relevant manner.

Our approach aims to overcome some of the greatest Personal Cloud sharing challenges,
i.e., privacy-aware data sharing, whilst preserving efficient fine-grained access control over
the outsourced data.

Achieving privacy-aware data sharing means designing a system able to gather user
preferences on what data to share and with whom to share it, along with a trustworthy
policy management infrastructure that ensures the proper and efficient enforcement of those
preferences, without compromising the privacy of any of the users or data involved.

For this aim, we will adapt the proposal described by Yu et al. [19] to a Personal Cloud
setting. Concretely, [19] introduces a fine-grained access control scheme that is very suited
for the Personal Cloud, which combines Key-Policy Attribute Based Encryption (KP-ABE) with
Proxy Re-encryption (PRE) and Lazy Re-encryption.

KP-ABE is a public key cryptography specially designed for data-sharing environments.
By using its encryption technique, any data encrypted gets associated with a set of attributes.
On the other hand, each user is provided with an access structure composed of a logical
definition of attributes. The secret key of any user reflects the access structure in such a way
that a user will be able to access certain content if and only if the data attributes satisfy his
access structure.

While KP-ABE provides our system with a fully-fledged access control layer achieving
both fine-grainedness and data confidentiality, some eventual operations must be delegated to
the Cloud servers in order to offload users from some heavy crypto computations. In order
to reduce the impact of these tasks, two complementary mechanisms are being implemented
at the Cloud side:

• Proxy Re-Encryption: allows our Cloud Storage logic to manage specific changes or
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Figure 15: Data owner sharing a file between two different users with different access trees

updates over stored encrypted data efficiently while preserving data confidentiality,
since the underlying plaintext remains withheld from the Cloud servers throughout
the whole process; and

• Lazy re-encryption: alleviates the burden on Cloud servers by “aggregating” multiple
successive re-encryption operations into one, thus statistically saving the computation
overhead.

While at the time of this writing the basic access control logic has already been coded and
tested, some parts are still missing, particularly concerning user revocation. Consequently,
we mainly provide here an overview and complete specification of the operations required
to integrate the approach of Yu et al. [19] with a Personal Cloud system, and to StackSync in
particular. We will start with a description of the main actors participating in the system.

3.2 Models: Entities, System and Communication

The design of our component relies on the existence of three main entities or actors: the data
owner, many data consumers or users, and the Personal Cloud server.

• In our access control model, every single user will play the role of data owner for
his personal data and run a separate instance of the KP-ABE protocol. Consequently,
as data owner, he will be responsible for setting up the system, generating keys and
giving permissions to users. As its name suggests, the data owner will be able to create,
store and share data.

• The data consumers will be the users of our system. They will access the files shared
by the data owner, download data and decrypt it. In the original model described
by Yu et al., users are assumed to have very limited access privileges since they can
only read data. We will modify their model in order to enable users to have write
permission, thus adapting it to a Personal Cloud model. It is worth pointing out that
neither the data owner nor the regular users will be always online, as it happens in
traditional Cloud models.
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• The Cloud server will store all encrypted data remotely in a scalable and efficient way.
As we already know, StackSync will also be responsible for management tasks like file
synchronization, chunking or authentication. Moreover, the new component added to
the system will store, update and distribute all metadata related to the new protocol.
All issues raised by the adaptability of the new security concept to our original model
will be widely discussed later.

Users will no longer have to worry about their information being compromised by any
entity in the system. In our model, the Cloud server is considered honest but “curious”, as it
could try to find out as much secret information as possible based on the data provided by
users. However, users will no longer have to blindly rely on the licit use of their data stored
remotely since it will be protected anytime by cryptographic primitives.

Furthermore, all communication channels among nodes in the system are assumed to
be properly protected under a suitable security protocol. StackSync already provides users
with an authentication and authorization layer. Thus, privacy and confidentiality against
malicious users will be preserved.

3.3 Preliminaries

This section will briefly describe the main concepts of our proposed scheme, most impor-
tantly the KP-ABE protocol. This chapter is intended as an overview of the relevant features
in order for the deliverable to be self-contained; for further details please refer to [20] and
[19].

3.3.1 KP-ABE

Key-Policy Attribute-Based Encryption (KP-ABE) is used to implement encryption to files
and selectively restrict their access to a desired section or party within the system. In KP-
ABE, the data owner defines a suitable set of available attributes and generates the cor-
responding public key (PK) and a KP-ABE master secret key (MK). The generated PK is
composed of a set of Public Key Components (PKCi) corresponding to each of the attributes
defined beforehand.

In KP-ABE, each user must hold an access structure defining its privileges, which is a
Boolean expression over attributes. This logical expression is often represented as a logical
tree, where the leafs are attributes and the interior nodes are threshold gates. For instance,
the data owner could choose to assign Alice an access structure. The data owner can define
her access privileges as (“C” AND (“A” OR “B”)), where “A”, “B” and “C” are attributes (e.g.
Accounting, Budgeting, Computing). The data owner would then generate and distribute to
Alice her new secret key (USK) including implicitly those three attributes. The correspond-
ing access tree would be represented as shown in Fig.15. Similarly, the data owner can also
define an access structure to Bob as (“A” AND (“B” OR “C”)) and provide him with his USK
accordingly. From now on, Alice and Bob should be able to decrypt files according to their
access policy.
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On the other hand, KP-ABE encrypted files must specify a set of attributes in order to
define in which context will be shared. For instance, the data owner can encrypt and upload
a file with the attributes “A” and “B”, as we can see in Fig. 15. After Alice and Bob download
the file, Alice cannot see the underlying plaintext while Bob is able to correctly decrypt it.
The KP-ABE construction ensures that only users with the proper access structure will be
able to decrypt data encrypted under a certain set of attributes. In this case, Bob satisfies
the condition (“A” AND “B”), where “A” and “B” are the attributes used in the encryption
of the downloaded file. Alice will nevertheless not be able to decrypt the content since her
access structure requires files to be encrypted under the attribute “C”, in addition to “A” or
“B”.

Data must be accessible exclusively to the data owner and to those users who have been
explicitly authorized by the owner. Data confidentiality will not be exposed to any risk any-
time during storage and sharing. Therefore, neither unauthorized users nor Cloud servers
themselves should be able to access any information in plaintext.

Another important issue is that of sharing flexibility, where our system should provide
our sharing logic with efficient fine-grainedness. The finer the granularity, the greater the
flexibility and control in access management. This is usually achieved by using Access Con-
trol Lists (ACLs) or similar methods. The problem here is that such access control concepts
severely affect the scalability of our system.

Although our system already implements user authentication as a measure of access
control and data protection, this cannot be the only access control logic since our goal is to
provide complete confidentiality of data, regardless of how reputable our Cloud server is.
We must take into consideration that any unknown vulnerability would compromise the
privacy of all the stored data.

We also need to take into account the key features of KP-ABE scheme, noting the fact
that our privacy model involves the exclusion of Cloud servers from any operation implying
access to unencrypted information. Thus, data must be encrypted at any time throughout
its lifecycle, except for its local use in authorized systems. This means that users should be
responsible for an essential part of the key generation and distribution logic.

KP-ABE allows our system to store all data properly and unfailingly encrypted using a
set of attributes. Only users who have been granted permission to access certain data will
be able to manipulate the underlying information. Each user holds a key that implicitly
contains his access policy. In this manner, software authentication and logging becomes a
secondary access control layer, and data remains protected to third parties during its storage
and sharing in lower levels.

We remind the reader that attributes represent a set of meaningful properties able to
describe a diverse context. Attributes will be linked together by building logical expressions.
In the KP-ABE model, each user is assigned an access structure, represented graphically as
an access tree. Each user secret key reflects his access structure, and each file is encrypted
using specific public key components that correspond to the attributes assigned.

Implementing this cryptography principle will enhance the original system in multiple
ways:

First, we achieve fine granularity and great flexibility in our access control. By setting
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a suitable universe of attributes, we are able to define a very complete access policy. The
combination of these attributes in logical expressions can generate a wide range of access
structures for the users. As mentioned earlier, data is encrypted by associating the desired
set of attributes to a file. Consequently, the efficiency of our system does not lie with the
number of users but with the number of attributes, hence its scalability.

On the other hand, we will make an important progress in terms of user privacy and
data confidentiality. Data remain protected through its storage and sharing, even for au-
thenticated users; they will not be able to access any readable information as long as do not
have the right access permissions set in their access structure. As will be pointed out be-
low, our Cloud server has access to neither file contents nor users’ specific privileges, since
essential information will not be disclosed.

Furthermore, both file management operations such as creation, update and deletion
and giving access to new users are stand-alone tasks, which means that unconcerned files
or users will remain unaffected.

One of the greatest challenges for the design of this new component is user revocation.
The revocation process will inevitably involve the re-encryption of all data files accessible to
the leaving user, using a new set of keys that should remain unknown to the revoked user.
Furthermore, our system will be able to distribute the new set of public keys in accordance
with the changes made.

Fortunately, users will be able to delegate most of the revocation complexity to the Cloud
servers, taking advantage of Proxy Re-Encryption. Additionally, Lazy Re-Encryption and
complementary design decisions will be considered in order to reduce the computational
burden.

3.3.2 Proxy Re-Encryption (PRE)

Proxy Re-Encryption technique allows us to delegate most of the computational burden
caused by user revocation to the Cloud. PRE scheme enables the Cloud server to efficiently
translate encrypted data under specific public key components to data encrypted by an up-
dated version of such components without disclosing the original plaintext. So, both data
confidentiality and integrity are not compromised throughout the process. The Cloud server
will also keep track of users’ secret keys by storing most of their components in its database.
Obviously, such personal data will remain encrypted and, most importantly, it is provably
secure against any threat since users will always keep secretly an essential component for
decryption. Secret keys will also be updated at the Cloud side following the same process.
Users will be adequately notified and provided with the new up-to-date components when
appropriate. Data owners will exclusively be responsible for generating a re-encryption key
for the updated public key components and then provide it to the server. On receiving this
data, our Cloud will be able to execute the described process of updating outdated stored
data when appropriate.
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3.3.3 Lazy Re-Encryption

Proxy Re-Encryption conveniently enhances user experience. However, it introduces a heavy
computation burden on the Cloud servers. So, we must compensate somehow such work-
load intensification.

Lazy re-encryption alleviates this computation overhead on the server side. Our Cloud
server will be able to “aggregate” multiple re-encryption tasks into one, reducing signifi-
cantly the computation costs of their management operations. This is accomplished by exe-
cuting PRE tasks only when needed. Re-encryption tasks are not executed whenever a data
owner generates a new re-encryption key. Instead, re-encryption keys will be kept provi-
sionally and used exclusively when an outdated file request from a user occurs. As a result,
the re-encryption overhead will be amortized progressively. Further, multiple re-encryption
keys can be recorded and later be merged into a single operation.

3.4 Architecture

The architecture of StackSync has been slightly modified to achieve security with a high
granularity when sharing files. As can be seen in Fig. 16, CloudABE will be deployed as
wrapper over the sync service.

Desktop clients will have the option to extend their services using this wrapper that will
manage all ABE notifications. The interaction between a client and CloudABE will pass
through the SyncService. All extra generated metadata flow will be exclusively managed by
the brand-new wrapper. In this manner, we preserve most of the original design, attaching
the new wrapper to the architecture in such a way that the key components of our system
remain decoupled.

Lastly, the metadata database design has been modified so it can store all extra meta-
data related to the new protocol. Evidently, such information will be stored adjacent to the
original design, and it will not have any impact on the database model managed by the
synchronization service.

• SyncService: It is in charge of managing the metadata involved in file synchronization.
As can be seen in the figure, it is using a database to store all the processed metadata.
Desktop clients communicate with the SyncService for two main reasons: 1) to obtain
the changes that took place when they were offline; and 2) to commit a new version of
a file.

• OpenStack Swift: OpenStack Swift is a highly available, distributed, eventually con-
sistent object store. The desktop client interacts with it to store and retrieve file chunks.

• Desktop client: The StackSync client is an application that monitors local folders and
synchronizes them with the Cloud. It interacts with the synchronization, storage and
encryption services. When a file change is detected, it first processes and encrypts the
file with the user attributes, and then, it uploads the raw data to OpenStack Swift.
Finally, the desktop client sends the associated metadata to the SyncService in order to
commit the change and distribute the notification to the affected devices.
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Figure 16: Integration of the CloudABE server with the StackSync architecture

• Metadata database: It is used to persist metadata related to users and files. The meta-
data database is currently a PostgreSQL database.

• CloudABE wrapper: This is the new component of the StackSync architecture. It
will be responsible of the CloudABE encryption. Desktop clients will interact with
it through the SyncService in order to exchange ABE metadata, such as attributes and
public keys.

3.5 Operations

The new component enhances the basic operations of our system, allowing users to manage
sharing preferences and access to resources. Most of the operations that will be described in
this section are attached to those analogous to the traditional StackSync operations, coupling
the KP-ABE scheme to the basic functionality.

In order to provide a high level vision of the implemented operations, we will avoid
the need to describe in detail some cryptographic operations that are common knowledge
like ASetup, AKeyGen, AEncrypt and ADecrypt. For more details on these cryptographic
algorithms, the reader is invited to look at [21] [20] [19].

Setting up the system

This operation is mainly executed by the data owner. First, a universe of attributes will
be defined. Such universe of attributes will be a complete set of meaningful properties able
to describe in proper detail the context in which the system will be deployed. This will allow
the data owner to enjoy fine-grained user access control over all data shared.
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Table 3.5a Notation used in the scheme description
Term Definition
dow Data Owner
PK System Public Key
MK System Master Key
PKCi Public Key Component for attribute i
USK User Secret Key
USKCdummy Dummy User Secret Key Component
AU Attribute Universe
AS Access Structure
ATS Attribute Set assigned to a file
M Content of a file in plaintext
SYMK Symmetric encryption key of a data file
ESYMK Symmetric encryption key of a file encrypted according to

the KP-ABE protocol
SYMEncrypt(SYMK, M) Encrypt a plaintext M with symmetric key SYMK using a

secure symmetric encryption method
SYMDecrypt(SYMK, E) Decrypt a ciphertext E with a symmetric key SYMK using a

secure symmetric decryption method
ASetup(k) Generate a system public key PK and master secret key MK
AKeyGen(AS, MK, PK) Generate a user secret key SK from a given access structure

AS
AEncrypt(M, PK, ATS) Encrypt a plaintext with an attribute set ATS given and the

system public key PK, using the KP-ABE protocol
ADecrypt(E, ATS, USK, PK) Decrypt a ciphertext E encrypted under attribute set ATS,

given the user secret key USK of a user and the system pub-
lic key PK, using the KP-ABE protocol
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System setup is based on a randomized algorithm that takes a security parameter k and
the given universe of attributes AU. This operation will output the public key components
PK corresponding to each attribute and a master key MK that will be kept in secret by the
data owner. The data owner will finally send all generated public components to the Cloud.

Algorithm 1 SystemSetup(AU, k)
dow: (PK, MK)←ASetup(k)
dow: sendToCloud(PK)

Example Usage: Let us recall the simple scenario shown in Fig. 15. The data owner must
have set up the system before interacting with users and sharing files. The data owner first
defines the universe of attributes as “A”, “B” and “C” standing for “Accounting, “Budget-
ing” and “Computing”, respectively. Then, it calls the algorithm ASetup(k), which outputs
PK and MK. The data owner then saves MK in order to keep it secretly and sends the gener-
ated PK to the Cloud, including its PKCi for each of the attributes belonging to the defined
AU.

Granting permission to users

The data owner will be responsible for choosing a suitable access structure AS for a new
user wishing to join the system. As we already stated, an AS can be defined as an access
tree over data attributes. Building the access policy for a new user becomes as simple as
depicting its privileges as a combination of those attributes.

Secondly, the data owner calls the algorithm-level operation AKeyGen, which outputs
the secret key USK for the new user. The data owner will then deliver the generated creden-
tials (AS, USK) along with the system public key PK securely to the new user.

Lastly, the data owner will send all the cryptographic components comprising the gen-
erated USK except for the one corresponding to a complimentary “dummy attribute”. This
essential component is contextless, and most importantly, it will remain undisclosed to the
Cloud server and kept as a secret exclusively by the new user. Such a design will allow the
Cloud server to store and manage secret keys, while this fact will not imply any vulnerabil-
ity to our system. These disclosed secret key elements will not give any extra advantage to
either the Cloud server or third parties in the decryption of any data stored, since there still
exists one undisclosed secret key component (USKCdummy), essential in decryption tasks.

Algorithm 2 UserGrant(user, AS)
dow: USK ← (AS, MK, PK)
dow: user.deliverCredentials(AS, USK, PK)
user: user.credentials.put(AS, USK)
dow: sendToCloud(USK− {USKCdummy}, PK)

Example Usage: Once the data owner has executed the system setup as described in the
previous section Setting up the system, it is ready for new users to join the system. The data
owner builds the access structures for the users Alice and Bob as (“C′′AND(“A′′OR“B′′))
and (“A′′AND(“B′′OR“C′′)), respectively. The data owner will then execute the crypto
algorithm AKeyGen for each of the users in order to generate their secret keys as follows:
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USK = AKeyGen(AS, MK, PK),

where AS is the defined access structure for each user. We note here that MK is only
known and kept secret by the data owner. The generated credentials (AS, USK) will be
delivered to each of the new users via a proper and secure out-of-band communication. On
receiving and verifying the credentials received, Alice and Bob would respectively accept
AS as their access structure and USK as their secret key for decryption tasks. The data
owner will then also send the credentials to the Cloud, making sure that the component
corresponding to the “dummy attribute” is not disclosed.

File upload

The following tasks will be performed by the data owner together with the basic StackSync
calls for file uploading (SyncService and Swift interaction). This process is enhanced in the
desktop client side in such a way that data owners will now be able to execute KP-ABE calls
against our brand-new CloudABE module.

The data owner will firstly perform previous data processing such as data chunking,
as executed in the traditional StackSync desktop client. The data owner will then select a
symmetric encryption key SYMK with which the data will be encrypted. Each chunk will
be encrypted using this SYMK and then sent to the Cloud along with the corresponding
generated metadata. SyncService and Swift modules will be responsible for managing the
storage of metadata and encrypted chunks, respectively.

The second stage of this operation is where the main KP-ABE encryption tasks are exe-
cuted. The data owner first defines a set of attributes ATS for the file, reflecting the scope in
which the file can be shared. This step is particularly important since it will determine the
subset of users that will have granted permission to access the data uploaded.

The last step will be to encrypt SYMK used in the encryption of data file chunks with the
chosen ATS, following the KP-ABE scheme. The data owner will call the algorithm-level
operation AEncrypt, which will output ESYMK corresponding to the SYMK encrypted un-
der the KP-ABE protocol. The data owner will finally send all metadata generated by the
described encryption tasks to the CloudABE module as follows:

FILE ID ATS ESYMK

The following algorithm will briefly describe the second stage of the file upload oper-
ation, including mostly the KP-ABE file encryption procedure. We will therefore skip the
earlier file processing tasks related to the SyncService and the back-end storage modules.

Algorithm 3 FileUpload(FILE ID, SYMK, PK, ATS)
dow: ESYMK ← AENcrypt(SYMK, PK, ATS)
dow: sendToCloud(FILE ID, ATS, ESYMK)

Example Usage: Let us recall the case shown in Fig.15. The data owner wishes to share
a new resource, such as a document or a report. The file is first processed by the native
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StackSync Client tasks, breaking it up into chunks, amongst other operations. In order to
encrypt these chunks, the data owner first defines a SYMK and then computes

SYMEncrypt(SYMK, M)

on each chunk, where M denotes the raw data in plaintext. The data owner sends all
metadata generated from the previous file processing to the SyncService and then sends the
encrypted chunks to the storage back-end. From this point onwards, the data owner will
exclusively interact with the CloudABE module during the rest of the file upload process.
The data owner decides that “Accounting” and “Budgeting” will define the context in which
the uploaded document will be shared. Therefore, “A” and “B” conform the ATS for the new
file. Then, the data owner computes

ESYMK = AEncrypt(SYMK, PK, {“A′′, “B′′})

and finally sends the ciphertext including the encrypted symmetric key (previously used
in the encryption of chunks) along with the attached attributes to the Cloud server. This call
will be directly served by the CloudABE module, where the KP-ABE metadata sent will be
properly stored for further management.

(a) Data Owner generates the symmetric key and
upload raw encrypted data to Swift.

(b) Data Owner uploads file metadata to the Sync-
Service.

Figure 17

File Access

Analogously, the file access operation has been modified in order to append the KP-
ABE functionality. StackSync will attend file download requests from authenticated users
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in a similar way as before. After the requesting user has downloaded the file chunks, extra
encryption metadata will be received from the new module as follows:

FILE ID ATS ESYMK

The requesting user will then perform the suitable operations for the decryption of the
received data. The client first decrypts data files by calling the algorithm-level operation
ADecrypt over ESYMK, using the secret key owned by the requesting user. Since the access
structure is implicitly included in the USK, ADecrypt operation will output the decrypted
SYMK if and only if the ATS related to the downloaded file satisfies the access structure
assigned to the requesting user.

Once ESYMK has been successfully decrypted according to the KP-ABE protocol, the user
will be able to decrypt data chunks using the obtained SYMK in order to access the data file
in plaintext.

Algorithm 4 FileAccess(chunks, ATS, ESYMK, USK, PK)
user: SYMK←ADecrypt(ESYMK, ATS, PK)
user: FILE←SYMDecrypt(SYMK, chunks)

Example Usage: Let us suppose that Bob sends a request for the previously uploaded
file by the data owner as shown in Fig.15. Bob receives the following information from the
Cloud server:

FILE ID encrypted chunks Sync metadata {“A”, “B”} ESYMK

On receiving this response from the Cloud, Bob recovers his USK and calculates

ADecrypt(ESYMK, {“A′′, “B′′}, USKBOB, PK)

We remind the reader that the AS assigned to Bob is (“A′′AND(“B′′OR“C′′)). Since the
(“A′′AND“B′′) clause is satisfied in his access structure, Bob will be able to decrypt SYMK
correctly using his USK. For the decryption of the encrypted chunks received, Bob will
compute

FILE← SYMDecrypt(SYMK, chunks)

and finally obtain the plaintext corresponding to the requested file. Note that in case
Alice requested the file she would not be able to decrypt SYMK on the first stage, since her
AS = (“C′′AND(“A′′OR“B′′)) would not be satisfied by the attribute set assigned to the
document.

User Revocation
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One of the most challenging design factors is that of implementing the user revocation
process. Fortunately, the KP-ABE scheme proposed in [19] includes a suitable and efficient
approach for the implementation of this feature in our system.

Removing a user from the system inevitably requires the redefinition of keys. However,
only a minimal set of key components will need to be re-computed. Besides, this process
will be mainly carried out on the server side, enabling data owners to delegate most of the
computation tasks to the Cloud server and go offline straight after executing a few simple
operations. We must also emphasize that this fact will not suppose a heavy computation
overhead for the Cloud, since re-keying and updating tasks will be executed in a “lazy”
fashion, as the system requires minimizing the impact on efficiency.

(a) Client receives notification. (b) Download and decrypt data.

Figure 18

3.6 StackSync ABE Integration

Here we describe the modifications we have to make to StackSync in order to integrate the
Attribute-Based Encryption into the synchronization protocol.

3.6.1 ABE Library

The first step in order to integrate our proposed KP-ABE protocol has been to develop an
stand-alone library that implements all the internal logic of the protocol such as key gener-
ation, encryption or decryption.

The library has been developed in the most flexible way in order to be able to use it
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without any condition such as an specific database, a determined file structure or file orga-
nization. In this way, integration will be much easier.

We differentiated between two user roles in order to make the library much more intu-
itive. The roles are the data owner and the invited users. The data owner has the required
methods to do the setup of the system, encrypt or generate keys, which are: ASetup(k),
AKeyGen(AS, MK, PK), AEncrypt(M,PK,ATS). On the other hand, the invites user has only
the required methods to decrypt, such as: ASetup(k), ADecrypt(E, ATS, USK, PK).

Furthermore, the library contains auxiliary methods such as lexical analyzers to interpret
access structure expressions, access tree builders or mathematical methods required for the
different ABE operations.

Finally, the library includes a graphic interface in order to let the user draw an access
tree that later will be interpreted by the library with the mentioned methods. An attribute
selector graphic interface has also been implemented in the library in order to let the data
owner choose which attributes will have the new shared file.

3.6.2 Commons, Communication and Contract

ABE introduces a set of new objects that must be included in the communication protocol
between desktop client and SyncService. The source code for this can be found in the "com-
mons" repository under StackSync’s github main page.

The contract gets directly affected by this changes. We are talking about the information
that our calls will now have to accept, transport and return. In order to ease the complexity
that this enhancement would introduce to the existent contract, we take advantage of some
of the most valuable techniques in Object Oriented Programming: inheritance, polymor-
phism and abstraction of classes.

Fortunately, our communication layer is completely tolerant to such techniques. Besides
the improvement in the modularity of our code, these techniques will improve code read-
ability and maintainability. The main changes introduced as well as the involved classes
within commons in this process will be described in detail below.

3.6.3 ABE Classes

SyncMetadata

This introduced object will represent the abstraction of what originally was an Item-
Metadata object, encapsulating as its name suggests all metadata related to the items to be
synchronised in the system (files, workspaces...).

SyncMetadata is an abstract object that includes the common basic attributes for any
existent metadata in the synchronisation process. This will allow us to abstract the original
tight dependency between the common contract and the ItemMetadata object, whereas any
object now inheriting from SyncMetadata will be valid to inject in our communication calls.
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As a result, we will have two classes extending from this parent: the original ItemMeta-
data object, that will keep including the exact same type of information, and the new ABEIt-
emMetadata object encapsulating all metadata related to the ABE protocol. At the same
time, ABEItemMetadata will extend from ItemMetadata, so its inheritance relationship with
SyncMetadata will be in this case implicit.

Figure 19: SyncMetadata class diagram.

ABEItem

Similarly to the relationship ABEItemMetadata - ItemMetadata, ABEItem will extend
from the original Item object. In this case we will not require an abstraction of this object
since our contract does not directly require neither of these objects but they will be accessed
in client and server modules of our system.

Figure 20: ABEItem class diagram.

ABEWorkspace

Similarly to the relationship between a traditional Item and an ABEItem, an ABEWorkspace
will extend from Workspace.

ABEMetaComponent and Attribute

These will be objects strictly necessary for the integration of the ABE scheme and spe-
cific for it. These are mandatory to appear in commons since both ABEItemMetadata and
ABEItem objects depend on them.

ABEMetaComponent defines each of the encrypted key components, whilst Attribute is
the corresponding object for an attribute in ABE. Find more details about these in the figures
below.
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3.6.4 SyncService

The new elements introduced in the contract must now be handled by the synchronisation
service side. Here, we will also make use of class polymorphism, abstraction and inheri-
tance. However, the most challenging question in the SyncService side is, in which layers
shall we abstract?

The answer is not trivial. The workflow begins at the boundary class SyncServiceImp,
which implements the contract defined by ISyncService that can be found within commons.
This last often forwards the synchronisation call to the handler, which receives the requested
operation including the necessary objects. This layer is represented by the interface Syn-
cHandler.

SQLSyncHandler, the class that implements the interface defined by SyncHandler, is re-
sponsible for handling the requested operations accordingly. It will mainly call the corre-
sponding Data Access Object in order to perform a suitable set of operations: persisting,
updating or retrieving metadata.

A particular Data Access Object (DAO) is defined for each of the models represented
in persistence. For instance, the DAO that executes the tasks against the synchronisation
database related to the persistence, update or access or Items will be ItemDAO. However,
ItemDAO will be defined as an interface in order to abstract the logic of the handler from a
specific database implementation.

We will therefore have an interface and at least a specific implementation for each of the
objects to store in the SyncService persistence. In our case, the specific implementation is
that of PostgreSQL database, therefore, PostgresqlItemDAO will be the class implementing
all SQL calls to our database, and returning the requested objects accordingly if applies. This
closes our information flow within the SyncService.

Now, we can not create an extra call for ABE in the boundary SyncServiceImp methods
since it is tied to the contract defined, and we have already abstracted the dependency flow
in that layer by our progress made in commons.

We could create an extra Handler implementation exclusively responsible for handling
ABE requests, but that would introduce heavy replication in the lower level layers.

Information flow will be therefore abstracted until it hits the DAO layer. The DAO layer
will be our extension point for ABE in the SyncService logic.

ABEItemDAO and PostgreSQLABEItemDAO classes

ABEItemDAO is our main extension point for ABE synchronisation metadata storage
and retrieval in the server side.

ABEItemDAO is indeed an interface that extends from the existent ItemDAO interface,
meaning that every implementation of this interface will have to implement the same meth-
ods as ItemDAO, handling all ABE metadata accordingly, plus its specific ones, in this case,
the getABEItemsByWorkspaceId method.

PostgresqlABEItemDAO is for now our default implementation of the ABEItemDAO
interface. This class will execute the operations against PostgreSQL database handling ABE
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metadata accordingly.

3.6.5 PostgreSQL database

Minimum changes have been added to PostgreSQL by the SyncService in order to fit all ABE
metadata for further management.

Table Attribute

Storage of all metadata related to the attribute concept in the ABE scheme. This includes
a unique generated identifier (UUID), the name of the attribute, its latest version, its public
key component and a json including the history list for versions referent to this attribute.

Table ABE Component

Storage of a component of metadata related to the ABE encryption of a file. This includes
a unique generated identifier (UUID) as well as the identifier of the item the metadata refer-
ences to, and the attribute ID used in this component encryption, the encrypted public key
component and the version.

This constructs a simple relational dependency between tables as described in the Fig. 21.

Figure 21: ABEItem class diagram.

3.6.6 Desktop client

The new privacy approach concentrates a great part of the logical complexity of its opera-
tions on the client side. Thus, it is imperative for us to keep the StackSync desktop as light
as possible whilst preserving its original architecture and functionality.

All standalone logic related to the ABE, containing most client-side necessary algorithms
implemented in Java language, has been tweaked and formatted in such a way that it is
ready to be utilised as a client-side library within the StackSync Desktop Client as well as
other future projects.

Obviously, some extra implementation has been added to the original desktop client. In
this case, abstraction has been brought to the encryption layer, which will be explained in
detail next.
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The most relevant change introduced in addition to minor extensions in the desktop
client core implementation is that of abstraction of the Encryption class. The original en-
cryption technique implemented in the client side, based mainly on symmetrical encryption,
will now become BasicEncryption, implementing a simple Encryption interface including
the two basic operations within all encryption processes:

Figure 22: Encryption interface.

Then, our new encryption implementation on the client side will be named ABEEncryp-
tion and will indeed implement the Encryption interface, hence the abstraction depicted in
Fig. 23.

Figure 23: Encryption diagran.

We must although take into consideration that such abstraction contains certain depen-
dent classes in the interface level. If we have a closer look at the Encryption Interface above,
we can see at least two involved classes: CipherData and PlainData. Those are the classes
encapsulating all necessary data and metadata necessary for the execution of the encryption
tasks.

Now we will have two different extensions for each of these abstractions: BasicCipher-
Data and ABECipherData for the CipherData abstract class; BasicPlainData and ABEPlain-
Data for the PlainData abstract class. The class diagram is depicted in Fig. 24 .

3.7 Evaluation

3.7.1 Methodology

In this section we will explain how we correctly evaluate the cost that will assume a real sys-
tem such as StackSync after integrating ABE as a privacy enhancement. In order to achieve
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Figure 24: CipherData and PlainData class diagrams.

that, we first set up a simulated environment where we later executed a battery of monitor-
ized stress tests using a wide range of configurations.

The benchmarking process is focused on the extraction and processing of useful data via
monitorization from a set of tests executed in a controlled environment. Such data should
be able to provide us with certain information, following the requirements that will be de-
scribed later.

Hundreds of tests were executed, monitorized and processed in order to extract a mean-
ingful set of values for the benchmarking of the results.

The first step is to create a specific target or set of requirements defining the criteria used
for the benchmarking: First, we need to know how efficient is ABE data sharing compared
to the baseline or original data sharing in StackSync. Secondly, we shall extract information
about how costly is ABE in every stage of the workflow. Lastly, we want to know which
part of the total cost represent each of the ABE features, breaking down the analytics into
the different operations.

During the stress testing execution, we made sure all processes in the system had been
shut down except for those essential ones to run the tests: system, SyncService and the two
desktop clients.

A Wireshark process had also been added although the data gathered has not been plot-
ted as it is not as meaningful as the rest of the benchmarking process. The evolution of the
introduced data overhead by ABE can be easily deduced from the captions and has not been
considered as interesting as its actual performance benchmarking, focusing instead on time
resources and efficiency.

Tests are run by a shell script, which triggers certain repetitions for a set of actions with
waiting intervals. The actions performed are basically to copy a file of defined size into the
workspace of our client running as data owner. This, at the same time, will trigger all the
synchronisation logic implemented, uploading the file and updates to the Cloud, which, in
this case will be the SyncService and Swift running in local environment.

After this, the desktop client playing the role of a consumer will be notified of the changes
in the shared workspace, downloading the raw data, and decrypting it using ABE thereafter.

After a defined cooldown period, this process is repeated by the bash script using a
different set of parameters for a different set of features, that will be further described in the
next section.
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3.7.2 Cases and Scenarios

We have designed a suitable set of cases using different scenarios for our tests, in order for
the output to be generated including data that we consider meaningful in our analysis.

First, we have defined a set of dynamic parameters, system properties or features for the
execution of our tests.

• Encryption type: None or ABE.

• File Size: 1KB, 1MB and 10MB.

• ABE attribute set: 3, 6 and 9.

A particular combination of these parameters will define a specific scenario for every test
case, depending on the feature to be observed.

Generally, we will be observing the two most significant stages of the workflow of our
system: packing and unpacking. Packing is the stage where data gets encrypted and com-
pressed and thereafter sent to the Cloud. In the opposite way, unpacking is the stage where
data gets uncompressed and decrypted, and thereafter sent to the Cloud.

3.7.3 Results

Encryption and Decryption Overhead

(a) Encryption stage. (b) Decryption stage.

Figure 25: Encryption and Decryption Overhead

By observing both box plots from Fig. 25 we can see how, in general terms, computational
cost has been introduced by the new privacy approach.

We can also observe how the unpacking stage (downstream) takes roughly half the time
for the packing stage (upstream), and also the variance for the data collected for the packing
stage is considerably higher. Nevertheless, this does not give us any meaningful information
regarding the target of this study.
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Impact of Attribute set size

In Fig. 26 we can see how both plots have clearly different tendencies: encryption has a
linear evolution as we increase the attribute set used in the encryption, whereas decryption
follows a logarithmic one. This confirms then the assumptions made in conceptual research.

The specific properties of these line regressions will be nevertheless subject of further
research.

(a) Encryption stage. (b) Decryption stage.

Figure 26: Impact of attribute set size.

3.8 Use Manual

Share a folder

Sharing a folder is a very easy and simple process. We must look for our stacksync icon
in the taskbar and right click over it to select share folder option.

Figure 27: StackSync desktop client tray.

This will open a window that will ask us about the folder we want to share and the
people we want to share the folder with. In this windows we will also be able to choose
ABE encryption.

After filling the window, another one will appear to set the access structure for each
written email.
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Figure 28: Panel to share a folder.

Figure 29: Access tree generation.

We can drag any attribute from the attribute tree to drop it into the drawing zone. At-
tributes can be connected with logical operators as the + and | that can be seen in the figure
in order to construct an access policy, as the one in the following example:

Figure 30: Access tree example.

Once it is done, access policy will be saved and the Cloud will do the rest.

Share a file

Sharing files in an ABE workspace is a very simple task. We only have to put a file into
the shared folder and a windows with an attribute selector will appear.

As simple as clicking onto the different attributes we want to assign to a determined file.
Once done, just click OK, and let the computer do the rest.

Page 47 of 50



FP7-ICT-2011-8 STREP
06-10-2015 CloudSpaces

Figure 31: Example on how to select attributes to encrypt a file before synchronization.

3.9 Conclusions

In this section, we have presented the privacy-aware data sharing with Attribute Based En-
cryption in StackSync. With ABE and StackSync, users can share folders without worrying
about the content of the files. Furthermore, it allows a fine-grained file encryption which
can be useful for large companies where sharing data with many users is a must.
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