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Activity Stereotypes, or How to Cope with
Disconnection during Trust Bootstrapping
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Abstract—Trust-based systems have been proposed as means to fight against malicious agents in peer-to-peer networks, volunteer
and grid computing systems, among others. However, there still exist some issues that have been generally overlooked in the
literature. One of them is the question of whether punishing disconnecting agents is effective. In this paper, we investigate this
question for these initial cases where prior direct and reputational evidence is unavailable, what is referred in the literature as trust

bootstrapping. First, we demonstrate that there is not a universally optimal penalty for disconnection and that the effectiveness of this
punishment is markedly dependent on the uptime and downtime session lengths. Second, to minimize the effects of an improper
selection of the disconnection penalty, we propose to incorporate predictions into the trust bootstrapping process. These predictions
based on the current activity of the agents shorten the trust bootstrapping time when direct and reputational information is lacking.

F

1 INTRODUCTION

T RUST-based systems have been proposed for a large
variety of applications, ranging from mobile ad-hoc

networks, Grids and P2P networks. At present, despite
their maturity, some fundamental questions have still left
unanswered. One of these important questions relates to
the notion of disconnection as a trust diminishing event or
punishable action. In open environments like P2P systems
and Grid platforms like BOINC [1], disconnection affects
the quality of service (QoS). To wit, in a P2P streaming
service, QoS can be achieved as long as a continuous and
uninterrupted data flow is maintained. It is basically for
this reason that streaming systems like ripple-stream [2]
and trust systems like [3], [4], [5] issue negative feedback
for agents that are supposed to be providing the service
but cannot do so because they are disconnected. The key
problem is that in open environments it is not possible to
differentiate between negative feedback due to malicious
behavior and negative feedback due to disconnection; an
agent can disconnect at any time and the trustor cannot
tell whether the disconnection was intentional or not.

By the above discussion, one could infer that the most
convenient method is to heavily penalize disconnection.
However, contrary to intuition, as we show in this work,
punishing disconnection might be counterproductive. This
is especially true in those initial situations where no prior
direct and reputational evidence is available. One case is
when a new agent enters the system for the first time. In
this situation, it is generally not possible for any trustor
to form a reliable opinion on that agent. This also occurs
when users form an ad-hoc group around a shared goal
and disband once the pursued goal is met. In such cases,
evidence can only be obtained through direct interaction,
when some trustors are willing to take a chance and risk
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interacting with unknown trustees. It is the risk inherent
in bootstrapping trust that can lead to applying little or
no penalty on disconnecting agents.

For instance, consider the case that multiple unknown
agents offer the same file to download. In this context, a
transaction may simply be the transfer of a file piece to a
trustor. Since a priori all agents have the same unknown
disposition to good action, the first interacting trustee is
chosen at random. Now suppose that after completing a
certain number of transactions, the interacting trustee is
unresponsive. At that point, the trustee may accumulate
a certain amount of positive feedback and present a good
trust level. Then it is not hard to imagine that the trustor
gets confronted with the decision of whether to wait for
the trustee to recover or take a chance on another agent.

The magnitude of the penalty determines the outcome
of that decision. If the penalty is large, the odds to take a
chance on a new agent are higher. In this case the trustor
will maximize interaction. But it will be more exposed to
abuses. On the contrary, if the penalty is low, the trustee
may come online before getting low trustworthiness and
continue providing good service. This will minimize the
risk of bad interaction but at the expense of more service
interruptions.

Our first contribution is to examine this trade-off, and
more generally, to assess to which extent the amount of
penalty given to disconnection affects the bootstrapping
of trust. To make the analysis tractable, we assume that
T time units must elapse after disconnection in order to
prefer an unknown agent. A smaller value of T implies a
greater penalty, i.e., a higher probability for the trustor to
take a chance on a new trustee. Using this parameter, we
develop a stochastic model to estimate the expected time
to obtain the first confident trust evaluation on an agent,
provided that all the agents implementing the service are
unknown to the trustor. By “confidence” we refer to the
event that the trustor acquires enough direct evidence to
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form a risk perception. This time, we simply called it the
trust bootstrapping time, is a good indicator of the efficacy
of a trust system. If this time is short, trustors can quickly
form an impression to guide their future interactions.

As a result of our analysis, we arrive at the conclusion
that there is not a universally optimal penalty. The optimal
penalty is too much dependent on the exact amount and
type of churn, or the term coined to refer to the collective
effect of the continuous arrival and departure of users in
the system [6]. The direct consequence of this is that an
unfortunate choice for the penalty given to disconnection
can lengthen the trust bootstrapping time. To the best of
our knowledge, we are the first to analyze the effect that
disconnection punishment has on trust bootstrapping.

Our second contribution is to incorporate availability
predictions into the trust bootstrapping process to reduce
the effects of a bad selection of the disconnection penalty.
The key feature of our predictions is that they are based
on the activities of users. Returning back to our example,
a trustor may simply learn that the trustees downloading
files between 1-4 GBs tend to have long sessions, and use
this knowledge to choose between the candidates based
on their downloading activity. We call these predictions
activity stereotypes. While one can argue that this concept
is similar to the “classical” concept of stereotypes [7], [8],
the specifics of user connection habits require specialized
treatment, making activity stereotypes a novel approach.

The remaining of the paper is structured as follows. In
Section 2, we overview related work. We introduce our
analytical model of trust bootstrapping and dynamics in
Section 3. Section 4 describes the analytical results that
demonstrate the lack of a universally optimal penalty for
disconnected operation. Section 5 describes the notion of
activity stereotypes and Section 6 provides an evaluation
of their effectiveness. Conclusions are drawn in Section 7.

2 RELATED WORK

In general, the differentiation between a malicious and a
good user depends heavily on the nature of the system.
Misbehavior can be classified as deliberately malicious or
arise out of temporary outages or user connection habits.

Deciding whether to qualify such non-subjective factors
as misbehavior depends on the parameters of the system.
While many works on trust, either implicitly or explicitly,
have formerly classified ’No Response’ and disconnection
as a punishable event [2], [3], [4], [9], to name a few, the
consequences of punishing disconnected behavior have
not received sufficient attention. Typically, trust systems
like PET [3] and ripple-stream [2] fix a numeric constant
to penalize disconnection, thereby punishing agents in a
way completely irrespective of their connection patterns.
As we demonstrate in this work, this may be problematic
when interacting with strangers, and in general in those
cases where both direct and reputational evidence is not
forthcoming. The present article is the first to investigate
this important issue by studying the effects of punishing
disconnecting agents and proving the lack of an optimal
penalty for disconnection.

The general effects of dynamics on trust systems have
been studied in our prior works [10], [11], [12]. In these
works, we developed an analytical framework to assess
the difficulties of establishing trust in the absence of trust
information sharing among entities. Thus, no analysis of
disconnection punishment was conducted, and even less
the development of a new technique to bootstrap trust.

For trust bootstrapping, recently there have been some
efforts to develop tentative forms of trust in the absence
of direct and reputational experiences [7], [8], [13]. These
approaches propose to exploit stereotypical impressions
formed on “similar” agents in previous contexts in order
to make tentative trust evaluations on unknown agents.
Although the concept of stereotypes for decision making
was proposed previously (see, for instance, [14]), the first
computational stereotype model was introduced by Liu
et al. in [7]. Since then, other works like [8], [13] proposed
to exploit stereotypes for trust evaluation. In particular,
Burnett et al. [8] proposed to bootstrap trust of unknown
agents through stereotypes, which are built based on the
M5 tree learning algorithm and shareable as reputations.

The principal idea of the above described stereotypical
approaches is to utilize visible features of agents to make
generalized trust assessments. In this regard, “classical”
stereotypes resemble activity stereotypes. However, they
present two important differences. The first difference is
that activity stereotypes focus on service continuity rather
than on the trustworthiness of agents, as occurs in the case
of classical stereotypes. The other basic difference is that
activity stereotypes are always formed from information
available in the system, while classical stereotypes can be
built with featural evidence coming from external sources
of information like social networking systems. To inform
this argument, Burnett et al. [15] have recently discussed
what types of contextual knowledge can be used to build
stereotypes. Three feature sources are identified, but any
of them can be directly used to build activity stereotypes,
since they correlate with trustworthiness instead of with
service continuity, like the relationships between agents
in social networks and the experience of agents in certain
tasks. As a result, activity stereotypes require a different
and original treatment compared with prior approaches.

Finally, Sensoy et al. [16] argue that agents exhibiting
similar behavior share some patterns in the relationships
between their descriptive features and propose to exploit
them to bootstrap trust. As the above proposals, the main
flaw of this approach is the use of ontological knowledge
to describe agents in detail, information which is seldom
available in many scenarios. Like us, they use Subjective
Logic to represent trust [17] and the base rate to integrate
their predictions into the trust formation process as [8].

3 MODELING TRUST BOOTSTRAPPING

3.1 Agent Dynamics and Metrics

As in many important modeling works [18], [19], [20], we
model the alternating online and offline agent behavior
as a 2-state continuous-time Markov chain (CTMC) with
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transition rates ron and roff , respectively. That is, a user
stays connected for an average amount of time 1/ron and
then disconnects. The average amount of time the agent
stays offline before reconnecting to the system is 1/roff .
In systems dominated by user-driven interruptions like
Maze or Kad, it has been shown that this simple CTMC
provides a good approximation to user behavior [21].

Having described the model for agent churn, we now
turn to trust bootstrapping. Since we consider initial cases
where direct and reputational information is unavailable,
initial trust can only be obtained from direct encounters.
It may be unwise to aggregate the opinions of unknown
agents, as some may be malicious or unreliable in some
way. This is the fundamental reason why we characterize
trust bootstrapping as a stochastic process modeling the
occurrence of direct interactions. Concretely, we assume
that a trustor must interact at least ℓ times with a trustee
to be confident that the resulting trust evaluation is a good
predictor of future behavior. That is, the value of ℓ marks
the point at which there is little or no uncertainty about
the outcome of the next interaction, and when it is safe to
ask reputational queries to a trustee, among other things.

Further, the use of this parameter turns our study into
a generic analysis. That is, while the exact value of ℓ will
vary across systems, our approach will remain valid for
many of them. For instance, this includes those trust and
reputation systems that combine the numerical ratings of
past interactions to output a trust value, including those
based on belief models [17] and all the cited works in the
related work like [2], [3], [4], [9], [8], [16], to name a few.

Based on this parameter, we define a new metric called
the trust bootstrapping time to understand the influence of
punishing disconnection when interacting with unknown
agents. This measure focuses on the time it can take for
a trustor within a group of unknown agents to form the
first confident trust evaluation. Ideally, this time should be
as short as possible so that the trustor could benefit from
confident trust evaluations in their partners before group
disbandment.

Definition 1. Given a group of unknown agents U providing a
service, we define the trust bootstrapping time τℓ as the time to
complete the first ℓ transactions with any of the agents in U .

For analytical tractability, we assume that transactions
occur immediately one after another, according to a Poisson
process with parameter λ. In this way, transactions have
a similar duration, thus making unnecessary to calculate
the gain in trust on the basis to the amount of work done.
Also, this interaction model is very common in the trust
literature (see [22], [10], to cite a few examples).

3.2 Stochastic Model

Since all agents in the group are new and unknown, all
are assigned the same default trust value. In practice, this
value represents how much trust the trustor places in an
agent before any evidence has been received. Because all
agents have the same trust value, we assume that trustor
chooses one agent uniformly at random to interact with.
At that moment, the trust bootstrapping process starts.

For analytical tractability, we assume that the outcome
of a transaction is always satisfactory to initiate a new one
with the current trustee. Therefore, our stochastic model
considers only one type of trust decreasing event: the ‘No
response’, which occurs when the trustee, intentionally or
not, fails to complete a transaction due to disconnection.
This corresponds to the case where agents provide good
service but receive punishment due to their online-offline
oscillatory behavior, the subject of study of this work. We
observe that this is the right way to isolate the effects of
dynamics from the effects of malicious behavior in trust
bootstrapping, which has been already studied [7], [8].

Also, it must be noted that the effect of this assumption
is not significant. We notice that if trustees behave badly
by responding wrongly or even maliciously to transaction
requests, the trust bootstrapping time will be longer. The
reason is that it generally takes a few bad interactions to lose
trust but many good interactions to trust someone [23]. Then,
it is natural to expect that the trustor switches to a new
agent after experiencing a just few negative transactions,
lengthening the time to complete the first ℓ transactions
with some agent in the group. In practice, this makes our
results conservative but accurate enough to measure the
effect of disconnection. Indeed, our analytical predictions
are in good agreement with our simulation results where
half of the trustees were instrumented to misbehave. See
Section 6 for further details.

Last but not least, there remains the question of how
to punish disconnecting agents stochastically speaking. To
characterize the intensity of the penalty, we introduce a
new parameter into the model. This parameter, denoted
by T , specifies the number of time units needed to elapse
after disconnection of the current trustee to take a chance
on an unknown agent in the group:

Definition 2. A switch to an unknown agent is triggered after
the disconnection of the current trustee during T , T > 0, time
units. During this time, the disconnected trustee is assumed to
reject all attempted transactions issued by the trustor.

By this characterization, it is possible to make sure that
an unknown agent is always preferred over the trustees
who had been disconnected for more than T consecutive
time units, in an attempt to maximize service continuity.

Further, the value of T determines the aggressiveness of
the punishment. Smaller values of T represent a greater
penalty, i.e., a higher probability for the trustor to take a
chance on a new agent. On the contrary, larger values of
T decrease the risk of bad response. Considering that the
current trustee is offering good service, a larger T trades
off longer interruptions in the service against the risk of
switching to an unknown agent, who may be malicious.
By simply varying the value of T , our model allows us to
investigate how the intensity of disconnecting penalties
impacts the trust bootstrapping time.

The state transition diagram is given in Fig. 1. States
(ON, i) and (OFF, i) represent the case where the number
of completed transactions is i ≥ 0 and the current trustee
is ON and OFF, respectively. In state (ON, i), the process
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Fig. 1. State diagram for semi-Markov chain {Y (t)}t≥0.

can jump into either state (ON, i+ 1), which represents
that a new transaction has ended, or state (OFF, i), which
implies that the trustee is now offline. In this state, the
process can jump into state (ON, 0) if disconnection time
exceeds T , which implies a trustee switch, or to state (ON,
i) otherwise. The state of the process at time 0 is of course

(ON, 0). The kernel Q(t) =
[

Qξ,i
υ,j(t)

]

of this process we

denote by {Y (t)}t≥0 is as follows:

QOFF,0
ON,0 (t) = Pr {trustee recovers before or at time t, t < T ,

with no transactions completed}

= 1− e−roff t + e−roff tu(t− T ).

QON,i
OFF,i(t) = Pr {trustee logs off during transaction i+ 1}

= ron
ron+λ

(

1− e−(ron+λ)t
)

, ∀i = 0, ..., ℓ− 1.

QON,i
ON,i+1(t) = Pr {transaction i+ 1 completed before the

trustee goes to OFF state}

= λ
ron+λ

(

1− e−(ron+λ)t
)

, ∀i = 0, ..., ℓ− 1.

QOFF,i
ON,i (t) = Pr {trustee goes to ON state before

or at time t and t < T}

= 1− e−roff t −
(

e−roffL − e−roff t
)

u(t− T ),

∀i = 1, ..., ℓ− 1.

QOFF,i
ON,0(t) = Pr {trustee does not go to ON state

at time t and t ≥ T}

= e−roffTu(t− T ), ∀i = 1, ..., ℓ− 1.

where u(t− T ) is the unit step function at T .
Because we are interested in the time to complete the

first ℓ transactions with any of the unknown trustees, it
can be easily verified that the trust bootstrapping time τℓ
corresponds to the first-hitting time of process {Y (t)}t≥0

onto state (ON, ℓ) given that Y (0) = (ON, 0):

τℓ = inf {u > 0 : Y (u) = (ON, ℓ)|Y (0) = (ON, 0)} .

In the next section, we calculate the expectation of the
first-hitting time and use it to observe what happens to
the trust bootstrapping time as function of the intensity
of the penalty imposed on disconnection.

4 DISCONNECTION PUNISHMENT: ANALYSIS

We start by finding the average bootstrapping time E [τℓ]
and measure the influence of disconnection punishment
on trust evaluation when no prior evidence can be found:

Theorem 1. For user ontimes with CDF 1− e−ronx, user
offtimes with CDF 1− e−roffx and punishment intensity
T , the mean time to complete the first ℓ transactions with
a trustee in the group is given by:

E [τℓ] =
1

roffλℓ

ℓ
∑

i=0

(

rone
−Troff

)ℓ−i
Si,ℓ, (1)

Si,ℓ =
(

ηℓ,iroffλ
i−1 − ǫℓ,iλ

i + ǫℓ,iλ
ieTroff

)

,

where ron = 1/E[L], roff = 1/E[D], and E[L] and E[D]
denote the average online and offline session durations,
respectively. Further, ηℓ,i and ǫℓ,i satisfy the recurrence
relations: ηℓ,i = ηℓ−1,i+ ηℓ−1,i−1 for all i > 1, ǫℓ,i = ηℓ,i+1

for all i < ℓ. The initial conditions are: ηℓ,0 = 0, ηℓ,1 = 1,
ηℓ,ℓ = ℓ and ǫℓ,ℓ = 0.

Proof: The proof has been deferred to Appendix A.

The first observation to be made is that the pure effect
of the alternating online-offline behavior of agents can be
predicted by taking Eq. (1) to the limit (T −→ ∞). Recall
that letting T → ∞ is equivalent to imposing no penalty
on disconnected agents. Hence, the trustor considers that
disconnection is temporary, e.g., due to the breakdown of
the Internet connection, and it is worthwhile waiting for
the trustee to recover. By taking T −→ ∞, we obtain the
following corollary from Theorem 1:

Corollary 1. When imposing no penalty on disconnected
agents, the mean bootstrapping time for ℓ transactions is
given by:

E [τℓ] =
ℓ

λ

(

roff + ron
roff

)

, (2)

where λ is the transaction rate, and ron and roff denote
the disconnection and reconnection rates, respectively.

Proof: A rigorous proof is given in Appendix B.

Eq. (2) has a very interesting interpretation: the mean
bootstrapping time is inversely proportional to the steady-

state user availability A = E[L]
E[L]+E[D] =

roff

ron+roff
.

Because there is no punishment in this case (T → ∞),
Eq. (2) suggests that the time spent in accruing enough
supporting evidence to make a confident trust evaluation
depends basically on the probability of the initial trustee
to stay connected. This carries consequences for trustors
who seek to minimize the inherent risk in bootstrapping
trust. A cautious trustor will prefer to impose little or no
penalty to minimize the number of switches to unknown
agents caused by the temporary outages of a cooperative
trustee. Such a “conservative” behavior will cause trust
evaluations to be highly dependable on agent availabilities. If
availabilities are low, it will be clearly advantageous to
select another agent after a short period of inactivity with
no way to reduce the inherent risk in bootstrapping trust.
This result is pessimistic for certain types of distributed
systems like P2P networks. In P2P systems, availabilities
tend to be low. Hence, imposing no penalty may convert
trust bootstrapping into a rather lengthy process. Taking,
for instance, the mean availability observed in BitTorrent
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[24], the average bootstrapping time E [τℓ] will be of 3.57
hours for ℓ = 10 and transaction rate λ of 10 interactions
per hour. More examples are reported in Appendix C.

4.1 Impact of Disconnection Penalty

As just elaborated above, it seems at first glance that an
aggressive punishment should shorten the bootstrapping
time and favor a more uninterrupted service. While the
latter is true since the periods of inactivity are shorter, the
former is not necessarily so. Contrary to intuition, a short
T may increase the trust bootstrapping time, specially if
the extended design principle that good behavior should
increase trust slowly is applied. In PET [3], for example,
the penalty incurred by not responding is 3 times greater
than the reward obtained for good behavior.

An example of this behavior is illustrated in Fig. 2(a).
In the figure, the predicted E [τℓ] is plotted against ℓ and
compared to the empirical E [τℓ] obtained via simulation.
For this example, the average ontime was E [L] = 1 hour,
the average offtime E [D] = 0.5 hours with a transaction
rate λ of 10 transactions per hour. As seen in the figure,
as the number of interactions ℓ needed to form a reliable
opinion increases, the average bootstrapping time under
an aggressive punishment (T = 6 minutes 1) may end up
becoming greater than when no punishment is imposed
on departing agents (T = ∞). The primary reason is that
disconnected agents present a strong tendency to return
sooner than later as observed in real systems [6]. Hence,
an aggressive strategy to support service continuity may
be counterproductive for trust establishment. In fact, the
probability of switching to a new and unknown agent at
least once is given by:

(

1− ρℓ
)

e−roffT , with ρ =
λ

λ+ ron
, (3)

which is dominated by ρℓ as T → 0 (as the punishment
intensity level is raised). To put in perspective, consider
that the number of transactions required to form a useful
trust opinion is ℓ = 10. In this scenario, Eq. (3) yields a
probability of switching of 0.61 when T = 0 (immediate
switch after disconnection), which is reduced to 0.41 for
T = 12 minutes, and to 0 when T → ∞ (no penalty).

Moreover, this numerical example clearly captures the
existing trade-off between quality of service and the risk
of interaction: optimizing service continuity may require,
in more or less degree, to take a chance on an unknown,
distrusted agent, which, in addition to increasing the risk
associated with interaction, may not help to shorten the
trust bootstrapping time. The same behavior can be seen
for other choices of parameters as illustrated in Fig. 2(b).
As can be seen in the figure, there exists a crossover point
(ℓ = 14 in this case) beyond which imposing no penalty
on departed agents is again more effective.

In fact, if we concentrate on the amount of punishment
T that minimizes the mean bootstrapping time, it can be

1. Note that T = 6 minutes is equivalent to the average duration of
a transaction: 1/λ, for λ = 10 interactions per hour.

shown that there exits an integer L with the property that

lim
T→∞

E [τℓ] < E [τℓ] (0), ∀ℓ ≥ L (4)

where E [τℓ] (0) denotes the average bootstrapping time
obtained when T = 0 (maximum penalty), i.e., when the
trustor switches immediately to an unknown agent after
the disconnection of the actual trustee. Loosely speaking,
(4) tell us that there exists a threshold L on the number of
transactions beyond which the imposition of no penalty
at all leads to a shorter bootstrapping time than the one
reached when imposing an aggressive penalty, which is
counterintuitive. Exact conditions of when this transition
happens are given in Appendix D.

To wit, for the same choice of parameters of Fig. 2(a),
the value of L is 9, which marks the point beyond which
punishing disconnection becomes negative. This is better
reflected in Fig. 2(c) where the mean bootstrapping time
is plotted for different punishment intensities. The main
point to be made here is the presence of two differentiated
regions in the figure, separated by the crossover point L.
For ℓ = 1, . . . , L− 1, the minimum bootstrapping time is
achieved when the penalty is maximal (T = 0), while for
ℓ ≥ L, the optimal bootstrapping time is attained when
no penalty is applied. Intermediate values strike balance
between quick bootstrapping and service continuity.

In summary, our analysis proves the lack of a universally
“optimal” penalty for disconnection and formally shows that
the effectiveness of the punishment is strongly dependent on
the type and amount of agent turnover.

5 ACTIVITY STEREOTYPES

The lack of a global optimal disconnecting penalty demands
new techniques to improve bootstrapping of trust while
protecting the system from high agent turnover.

One way to do so is to incorporate predictions on peer
uptimes into the trust bootstrapping process. Among the
possible solutions, we concentrate on the current activity
of an agent as a predictive mechanism. By ascribing initial
peer selection to learned classes of agent activity, a trustor
can make use of prior experience in these classes to form
tentative evaluations on the dependability component of
trust, which is critical in the initial cases discussed in this
article. This concept is similar to the notion of “classical”
stereotypes [7], [8] but targeted at reducing the impact of
disconnections and service interruptions in initial cases
where prior evidence is unavailable.

To put it in a practical context, typical activities can be
the download of a file in pieces (Direct Connect, Gnutella,
...); the participation in a live streaming session (PPLive,
PPStream, ...). Concrete examples of activities and their
respective stereotypes are discussed in Appendix E.

A requirement for activity stereotypes is that they are
meant to complement, not replace, direct evidence about
an agent when it is available. While activity stereotypes
may facilitate useful predictions in initial cases, they are
based on empirical generalizations, and should carry less
weight than direct observation. Like in [8], we fulfill this
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Fig. 2. E [τℓ] plotted against ℓ for different mean ontime E [L] and offtime E [D] durations. λ = 10 transactions/hour.

TABLE 1
Trust model main notation.

Notation Description
wx

y Opinion of a trustor x about an agent y
P
(

wx
y

)

Trust value for agent y derived from wx
y

ωB Penalty for bad transactions
ωN Penalty for ‘No response’
ℓ Number of transactions to bootstrap trust
λ Transaction rate
~Ay Activity vector of an agent y

f( ~Ay) Stereotypical trust value for agent y
adef Default trust value without stereotypes
amax Threshold on stereotypical trust values

requirement by adapting default trust in unknown agents
to the behavior of the majority of agents carrying out the
same activity. Recall that default trust refers to the trust
put in a newly deployed trustee before any evidence has
been received [25]. If the agents participating in a given
activity Ai have historically tended to stay connected for
long periods of time, an unknown agent executing Ai can
be privileged by assigning a high initial trust to it.

Technically, the objective of our approach is to identify
a function f that maps the activity vector of an agent ~A to
an estimate f( ~A) on service continuity which increases or
decreases the default trust given to an unknown agent.

5.1 Trust Model

Regardless of the underlying model, the key requirement
of our approach is that the estimates function f produces
are compatible with the trust model being used. For this
reason, we describe next a concrete trust model to show
how easy it is to integrate activity stereotypes into a trust
system. The primary requirement is that the trust system
allows to assign neutral or default trust values to newly
joined agents, which holds in the majority of cases.

Specifically, we adopt the model proposed in [17] and
based on Subjective Logic. The reason is that it admits the
mapping of the estimates from activity stereotypes onto
default trust values, referred to as base rates in this trust
model. Deterring participation by those individuals who
are dishonest and encouraging trustworthy behavior are
matters of the underlying trust system. We have simply
augmented the trust model proposed in [17] with activity

stereotypes to demonstrate their effectiveness. Any trust
model using numerical ratings could be used in its stead.

5.1.1 Representation

In this trust model, an opinion held by a trustor x about
a trustee y is represented as a tuple wx

y =
〈

bxy , d
x
y , u

x
y , a

x
y

〉

,
where values bxy , dxy , and ux

y express the degree of belief,
disbelief, and uncertainty towards y, respectively. These
values satisfy bxy + dxy + ux

y = 1, with bxy , dxy , ux
y ∈ [0, 1].

Uncertainty measures the absence of evidence to support
either belief or disbelief, such that an opinion based on
ℓ = 100 transactions has a greater certainty than another
one based on just 1 observation. Clearly, certainty or the
confidence on a trust value is thus equivalent to (1−ux

y).
Worthy of special mention is the parameter axy ∈ [0; 1],

called the base rate, which corresponds to default trust. In
the absence of any specific evidence about a given agent,
the base rate determines the a priori trust that would be
put in any member of the group. For instance, if axy is set
to 0.75, we believe that the result of the first interaction
with agent y will likely to be favorable.

5.1.2 Evidence Aggregation

Opinions are formed upon the basis of evidence amassed
by interacting with other agents, which is represented as
observed frequencies of positive and negative outcomes.
A body of evidence held by a trustor x is a pair

〈

rxy , s
x
y

〉

,
where rxy is the number of positive transactions received
from y, and sxy is the number of negative experiences.
Using these parameters, an opinion is produced as [17]:

bxy = rxy/
(

rxy + sxy + 2
)

, dxy = sxy/
(

rxy + sxy + 2
)

,

ux
y = 2/

(

rxy + sxy + 2
)

. (5)

Notice that Eq. (5) guarantees that uncertainty decreases
as more evidence is accumulated. Alternatively, evidence
could be obtained from third parties who had interacted
with this specific individual before. However, since we
are examining the problem of establishing trust when no
historical information is available, evidence is acquired
first hand by each trustor.

To treat no responses as a bad action like in PET [3] and
[4], so that the users who continuously join and leave the
system receive low trustworthiness, we classify negative
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experiences in two different categories: ‘No Response’ and
‘Bad Behavior’. ‘No Response’ describes the situation where
a trustee rejects or fails to complete a transaction request
due to disconnection. Because it cannot be distinguished
whether a disconnection was intentional or not, this class
includes both cases. The reason is that, irrespective of the
cause of the disconnection, the result is the same: a service
interruption. The term ‘Bad Behavior’ encapsulates all the
other negative experiences, mostly malicious responses.

To materialize this distinction, we calculate sxy as linear
combination of the observed frequencies of each type of
outcome: sxy = ωB·s

x
y:B+ωN·s

x
y:N, where sxy:B is the number

of wrong transactions, sxy:N is the number of transactions
that received no response, and ωB and ωN are the weights
attached to each type of negative action. These weights
are used to assign different levels of importance to each
type of negative experience.

5.1.3 Trust Metric

A single-valued trust metric, useful for ranking agents,
can be derived from a specific opinion wx

y as follows [17]:

P
(

wx
y

)

= bxy + axy · ux
y , (6)

where the trust value is the probability expectation value
P
(

wx
y

)

calculated from wx
y . Observe that the base rate axy

determines the effect that the parameter ux
y will have on

the resultant trust value.
In many trust systems, the default value of the base

rate is usually 0.5, which signals that before any evidence
have been received, both outcomes are equally likely to
occur. Also in this case, P

(

wx
y

)

= 0.5, which is the least
informative value about an agent when no evidence have
been acquired. Further, in this case uncertainty will be
maximal (ux

y = 1). Values of axy > 0.5 will result in more
uncertainty being converted to belief, and vice versa.

5.1.4 Reputation.

Reputation in probabilistic trust systems is calculated by
aggregating the evidence in form of

〈

rxy , s
x
y

〉

from trustful
providers [3], [17]. However, since we analyze the effects
of disconnection in those initial situations where no prior
evidence is available, we also assume that no reputational
evidence exists anywhere within the society. Moreover, it
is pretty obvious that aggregating the evidence provided
by the unknown agents in the group may lead to weak or
unreliable reputations. Hence, for peer selection, we only
use the local trust values computed at each trustor.

5.2 Stereotype Function

To incorporate our estimates into the trust bootstrapping
process, we use the base rate as in [8]. For a given trustee
y, the base rate axy = f( ~Ay). When no evidence has been
accrued for trustee y we have maximum ambiguity, i.e.
wx

y = 〈0, 0, 1, 0.5〉. In this case, axy alone determines the
value of P

(

wx
y

)

. However, as more evidence is obtained,
the value of ux

y decreases, and so does the weight carried
by axy in the trust value. This fulfills the requirement that

the effect of our estimates diminishes as direct evidence
is accrued. We refer to this condition as Requirement 1.

Another central observation to be made is that activity
stereotypes are useful to form a tentative estimate of the
‘No Response’ component of trust evaluation. This means
that the increase of the base rate above its default value
adef must never preclude the estimated trust value from
reducing quickly if the agent misbehaves just in the first
interaction. Otherwise, a malicious agent can perform an
activity where agents have historically stayed connected
for long time to attract trustors, and then behave badly.

Although such a requirement is inherently subsumed
by Requirement 1, we have derived an upper bound on
the base rate axy that ensures that estimated trust values
rapidly fall below the default trust value adef . That is, in
the absence of evidence and stereotypical knowledge, the
default trust value for any unknown agent in the society
is P

(

wx
y

)

= bxy+adef ·u
x
y = adef , since bxy = 0 and ux

y = 1.
The upper bound ensures that a stereotypical estimate

for P
(

wx
y

)

drops below adef after just I consecutive bad
transactions. The value of I can be seen as an expression
of the misprediction risk. A small I signals that malicious
trustees can be rapidly discarded. We take as a reference
the value of adef because stereotypes never decrease the
value of axy below adef . This is explained in detail in the
next section. We term this requirement “Requirement 2”.

Lemma 1. Given default trust value adef ∈ [0, 1], fulfilling
Requirement 2 requires the base rate axy to be:

axy ≤ min

{

adef
(I + 2)

2
, 1

}

. (7)

Further, there exists an upper bound Imax on the number
of negative interactions I beyond which Requirement 2
is always satisfied: Imax = 2

adef
− 2.

Proof: A rigorous proof is given in Appendix D.

As in many trust systems the default trust value adef
is usually 0.5 to keep neutrality, it is interesting to know
how many interactions are needed to drop P

(

wx
y

)

below
0.5. From (7), it follows that I = 2 consecutive negative
interactions are sufficient, even if stereotypical prediction
raised P

(

wx
y

)

= axy = f( ~Ay) from 0.5 to 1. This certifies
that predictions on the ‘No Response’ component of trust
do not affect the trust formation process in initial cases.

5.2.1 Stereotypical Estimation

Based on the above observations, we are ready to discuss
on the shape of the stereotypical function f . The function
takes as input a vector of activities ~Ay that are currently
being executed by an agent y and returns a prediction of
its susceptibility to participate continually.

The computation of the predicted value is as follows.
For each activity Ai in ~Ay , the trustor first calculates the
probability that an agent conducting activity Ai remains
connected for a duration of ℓ transactions. Formally, the
time for the ℓth arrival is distributed as an Erlang-ℓ and
has mean ℓ

λ . For simplicity, we will use the mean as an

input time to compute this probability, denoted by p
ℓ/λ
i .
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TABLE 2
Activity profile.

Activity ron Mean ontime roff Mean offtime
A1 0.2 5 hours 1 1 hour
A2 4 15 minutes 2 30 minutes

We consider that this value is obtained by asking one
of the trusted parties who keep a record of the session
durations of the prior agents that performed the activity.
Notice that from the uptime session durations of agents,

probability p
ℓ/λ
i can be easily obtained by computing:

F c
Ai

(ℓ/λ) = Pr
(

L > ℓ/λ
∣

∣

∣
Ai

)

,

where F c
Ai

denotes the empirical complementary uptime
distribution for the agents who participated in activity Ai

in the past. For the acquisition of uptime session lengths,
we assume the existence of a secure monitoring protocol
for agent availability like AVMON [26] augmented with
proof of interactions [27]. These signed certificates can be
presented to prove engagement in a specific activity.

Next, the maximum of the probabilities p
ℓ/λ
i is picked

and normalized to fit the real interval [adef , amax], where
amax is the threshold on the base rate calculated from (7).
We chose to use the maximum because it is reasonable to
expect that an agent who is involved in several activities
at the same time stays connected until completion of the
longest activity.

The reason of the normalization is to avoid favoring
the new agents for which no activity is known, as these
agents are assigned the default base rate adef . As a result,
agents who show participation in classified activities will
always be preferred over agents for which no activity is
known. This should encourage newcomers to participate
in known activities. Putting all pieces together, f is given
by:

f( ~Ay) = max
{

p
ℓ/λ
i

}

Ai∈ ~Ay

(amax − adef ) + adef . (8)

As an example, consider a P2P file sharing application
and a agent who is performing two activities: A1 and A2.
A1 consists of downloading an MP3 file of a famous song
while A2 consists of downloading a large video file. After
asking experienced trustors for stereotypical predictions,

we get that p
ℓ/λ
1 = 0.01 while p

ℓ/λ
2 = 0.8, since activity A2

requires, in general, more time to accomplish. Assuming
amax = 0.75 and adef = 0.5 (totally ignorant opinion), the

predicted P
(

wx
y

)

is f( ~Ay) = p
ℓ/λ
2 (0.75− 0.5) + 0.5 = 0.7.

Finally, it is worth noting that activity stereotypes are
little intrusive to trust management. Clearly, stereotyping
does not affect the management of the trustworthiness of
relationships among agents. The underlying trust system
can operate without them. Stereotypes only reshape trust
evaluation of unknown agents to avoid experiencing too
many disconnections during trust bootstrapping. Only in
the particular situation that stereotypical opinions could
be communicated within the society, a more specific trust
management will be needed, as it happens with classical
stereotypes [8].
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Fig. 3. Mean bootstrapping time E [τℓ] as ℓ is varied, with
and without stereotypes, for two distinct penalties for ‘No

Response’: ωN = 1 (moderate) and ωN = 3 (aggressive).

TABLE 3
Simulation parameters.

Parameter Value Description
Ngroups 250 Ad-hoc group count
Gsize 10 Ad-hoc group size
pB 0.5 Fraction of malicious trustees
λ 10 Transactions per hour

adef 0.5 Default trust value
amax 0.75 Threshold on base rate
ωB 1 Penalty for bad response

6 EVALUATION

6.1 Experimental Setup

We validated our approach with exhaustive simulations.
Here we only report a subset of the results. It is worth to
note here that because we have been the first to tackle the
problem of disconnection during trust bootstrapping, we
found no way of fairly benchmarking activity stereotypes
against the existing literature. A clarifying discussion on
this issue is given in Appendix G.

In our experiments, we simulated a system composed
of Ngroups = 250 groups. In each group, a trustor wanted
to receive service from Gsize agents from whom no direct
and reputational evidence was forthcoming. The goal of
the trustor was to produce accurate trust evaluations.

6.1.1 Activity Profiles and Threat Model

Each of the Gsize agents in each group was assigned an
activity profile which specified how long it will be online
and disconnected. Each profile specified two parameters:
the parameters of the two exponential distributions from
which online and offline durations were drawn. Activies
profiles can be composed of none, one, or two activities.
The test profiles used in our experiments are reported in
Table 2. As reflected in the table, agents who historically
carried out activity A1 exhibited ontime durations drawn
from CDF 1−e−0.2x and disconnection durations drawn
from CDF 1− e−x, which corresponds to a mean ontime
and offtime of 5 and 1 hours, respectively. Conversely,
the agents who historically participated in activity A2 in
the past presented a high turnover rate with an average
ontime and offtime of 15 and 30 minutes, respectively. To
make the identification of the agents with longer ontimes
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Fig. 4. Effectiveness as ℓ is varied, with and without stereotypes, and for two distinct penalties for ‘No Response’: ωN =
1 (moderate) and ωN = 3 (aggressive). (a) Mean number of switches. (b)-(c) Mean number of negative transactions.

harder, only 20% of the trustees within each group were
assigned activity A1. In practice, this represented that the
probability of bootstrapping trust with little interruption
was at most of 20% in the absence of stereoytpes. Such a
of activities is enough to approximate real user behavior
in P2P applications such as BitTorrent, where a swarm is
nothing but a group of unknown users, or in file-sharing
systems such as Gnutella and Kazaa [28], to name a few.

Regarding the threat model, while the list of potential
attacks is myriad, we use the simplest form of threat that
can be identified in any trust system: a group of malicious
agents who always give fraudulent service, or with sufficient
degradation to be qualified as a negative interaction. The
main reason for using such a simple model was to isolate
any effect caused by the trust model from stereotyping,
whose aim is not to predict trustworthiness but minimize
disconnection.

Specifically, a fraction pB of the agents were disposed
to act maliciously in each simulation run. By default, we
set pB to 0.5 in order to have half of the agents in activity
A1 provide bad service and evaluate if Requirement 2 is
fulfilled. If true, this implies that our approach is able to
react quickly against the trustees who were predicted to
stay connected but render poor service, that is, when no
activity-behavioral correlations exist.

6.1.2 Trust Model

Before interacting with any agent in a group, uncertainty
on the trustworthiness of each agent is maximal. Hence,
the opinion held by a trustor x about each agent y in the
group is wx

y =
〈

0, 0, 1, axy
〉

. When stereotypes are applied,

the base rate axy = f( ~Ay), which may favorably bias trust
evaluation P

(

wx
y

)

. When stereotypical prediction is not
possible, axy is simply equal to adef . In our experiments,
we set adef to the uninformative prior 0.5, which meant
that before any interaction took place, both positive and
negative outcomes were considered equally like.

According to Lemma 1, we fixed amax to 0.75 to ensure
that stereotypical misprediction could be corrected if the
result of the first interaction with an unknown agent was
negative.

By default, the penalty for bad response ωB was set to
1, to equalize it with positive interaction. Observe that in

the underlying trust model, the degree of belief, disbelief
and uncertainty that constitute an opinion are calculated
by operating directly on the number of observed positive
and negative experiences, which implicitly assumes that
the magnitude of reward obtained and penalty incurred
is of 1. Values of ωB > 1 will result in greater punishment
for bad response compared with the reward received for
positive behavior. Default parameters for simulations are
summarized in Table 3.

Last but not least, we assume that the trustor in each
group selects the most trusted agent at every interaction,
i.e., the agent with the highest trust value P

(

wx
y

)

, which
is the most common decision model in trust literature.

6.2 Results

Here we present the result of our experiments. The main
hypothesis to validate is whether trust bootstrapping will be
better with stereotypes than without stereotypical information.
In this sense, there are two important aspects to evaluate.
On one hand, if stereotypical biases are present, then trust
bootstrapping times should be shorter, and on the other
hand, if stereotypes reduce the number of unsatisfactory
interactions.

Due to space constraints, we report here a small subset
of the compiled results to give a sense of the advantages
of activity stereotypes. The rest of the results are given in
Appendices H-J. Appendix H examines the effect of the
fraction of malicious agents pB. Appendix I studies what
happens when the penalty ωB is greater than ωN. Finally,
Appendix J shows the time evolution of no responses.

6.2.1 Experiment I: General Effectiveness

Fig. 3 illustrates the average bootstrapping time for two
values of the disconnection penalty: ωN = 1 and ωN = 3,
which represent a normal and an aggressive punishment,
respectively. Recall that the penalty for malicious service
ωB was fixed to 1. Therefore, a disconnection penalty 3X
greater than ωB can be considered aggressive. Besides the
obvious conclusion that informed trustee selection based
on activity stereotypes performs significantly better, one
important observation should be made about this result.
Such an observation is the empirical evidence that contrary
to intuition but consistent with our analysis in Section 2,
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an aggressive punishment can increase the trust bootstrapping
time, instead of reducing it. As in the figure, the average
bootstrapping time is longer for ωN = 3 than for ωN = 1.
The reason is that the trustees present a marked tendency
to return sooner rather than later in both activities, which
favored waiting for a trustee to come back online in front
of switching to a new trustee. Recall that a higher level
of punishment means a larger number of switches due to
stronger drops in trust values. This is further evidenced
in Fig.4(a), where the number of agent switches increases
with the intensity of the punishment. More importantly,
activity stereotypes reduce the number of agent switches
caused by disconnections, which explains the reduction
in trust bootstrapping times.

Another interesting indicator is the average number
of negative transactions experienced by a trustor during
the trust bootstrapping process. The added value of this
indicator is that gives us a clear hint about the effect that
disconnection punishment has on service continuity.

Fig. 4 illustrates this effect and gives a clear picture of
the existing tradeoff between service continuity and risk.
This tradeoff is easy to observe by visual comparison of
Fig. 4(b) with Fig. 4(c). Fig. 4(b) plots the average number
of negative transactions for moderate punishment across
all groups. Fig. 4(c) does so for aggressive punishment.
By comparing Fig. 4(b) with Fig. 4(c), it is easy to observe
that although a higher penalty reduces the occurrence of
service interruptions, it unfortunately heightens the risk
of receiving a wrong response, and vice versa for lower
penalties. Notice that while in Fig. 4(b) the portion of the
bars for bad responses is comparatively smaller than in
Fig. 4(c), the inverse result is obtained for no responses.
Either way, activity stereotypes are able to reduce the presence
of service interruptions, making more attractive moderate
punishment because of the smaller risk of bad interaction
it entails.

Overall, our results show that activity stereotyping offers
a clear improvement in the initial cases where prior direct and
reputational evidence is lacking, and we believe it is a line of
work to be further explored.

7 CONCLUSIONS

In this work, we have analyzed to what extent punishing
disconnection affects trust formation in these initial cases
where prior evidence is not available, an issue that has
been overlooked in the literature. First, we have proven
analytically the lack of a universally optimal disconnection
penalty and shown its dependence on the connection and
disconnection habits of users. Second, we have presented
a new mechanism based on activity stereotypes to make
trust bootstrapping quicker and less dependent on the way
trust systems punish disconnection.
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