
StackSync: Bringing Elasticity to Dropbox-like File
Synchronization

Pedro Garcia Lopez
Universitat Rovira i Virgili

Tarragona, Spain
pedro.garcia@urv.cat

Marc Sanchez-Artigas
Universitat Rovira i Virgili

Tarragona, Spain
marc.sanchez@urv.cat

Sergi Toda
Universitat Rovira i Virgili

Tarragona, Spain
sergi.toda@urv.cat

Cristian Cotes
Universitat Rovira i Virgili

Tarragona, Spain
cristian.cotes@urv.cat

John Lenton
Canonical Ltd.
London, UK

john.lenton@canonical.com

ABSTRACT
The design of elastic file synchronization services like Dropbox
is an open and complex issue yet not unveiled by the major com-
mercial providers, as it includes challenges like fine-grained pro-
grammable elasticity and efficient change notification to millions of
devices. In this paper, we propose a novel architecture for file syn-
chronization which aims to solve the above two major challenges.
At the heart of our proposal lies ObjectMQ, a lightweight frame-
work for providing programmatic elasticity to distributed objects
using messaging. The efficient use of indirect communication: i)
enables programmatic elasticity based on queue message process-
ing, ii) simplifies change notifications offering simple unicast and
multicast primitives; and iii) provides transparent load balancing
based on queues.

Our reference implementation is StackSync, an open source elas-
tic file synchronization Cloud service developed in the context of
the FP7 project CloudSpaces. StackSync supports both predic-
tive and reactive provisioning policies on top of ObjectMQ that
adapt to real traces from the Ubuntu One service. The feasibility of
our approach has been extensively validated with an open bench-
mark, including commercial synchronization services like Dropbox
or OneDrive.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/Server; H.3.4 [Information
Storage and Retrieval]: Distributed Systems

General Terms
Design, Performance, Measurements

Keywords
Cloud Computing; Middleware; Elasticity; Storage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Middleware’14 , December 08-12 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-2785-5/14/12 ...$15.00
http://dx.doi.org/10.1145/2663165.2663332

1. INTRODUCTION
In the last years, we have witnessed a rush of Personal Cloud

Storage services offering file synchronization to millions of users.
In this line, Dropbox [1] has achieved massive scalability thanks
to a decoupled architecture that separates control flows (Dropbox
sync servers) from data flows (Amazon S3 Object Storage).

While the elasticity of Cloud Object Storage Services like Ama-
zon S3 is ensured, the design of elastic and scalable file synchro-
nization protocols is complex [2]. Among the major challenges,
we outline the following two issues: fine-grained programmable
elasticity and efficient change notification to millions of users.

The first challenge is related to the observation that scaling up
some types of cloud applications is not straightforward using tradi-
tional VM resource utilization metrics (CPU, RAM, etc.) [3], be-
cause, for instance, they are not CPU or memory intensive, but I/O
bound, as is the case for file synchronization [2]. In those cases, it
is better to rely on metrics such as the average and message han-
dling response times exhibited by VM instances to cope with the
varying demand. This implies that fine-grained elasticity manage-
ment components must be built for the synchronization service as
argued in the paper.

The other challenge is that the high read-write ratio of file sync-
ing services makes it more suitable to make use of one-to-many
push communication for rapid notification. Analogously, to ef-
ficiently maintain the consistency of files, any change performed
elsewhere must be advertised as soon as they occur to reduce con-
flicts [1], in particular, when a file is susceptible to be modified by
more than one client at the same time. This requires the file sync-
ing service to operate as quickly as possible to commit changes,
along with an efficient notification service to inform clients about
file mutations.

To face the above challenges, we propose a novel architecture
for elastic file synchronization. The major contributions of our
work are:

1. ObjectMQ: a lightweight framework for providing program-
matic elasticity to distributed objects using message queues
as their underlying communication middleware. The effi-
cient use of indirect communication in our middleware re-
moves the need for pre-processing client stubs for scaling
out and down, it provides transparent load balancing mecha-
nisms based on queues, it simplifies one-to-many communi-
cations, and it enables flexible programmatic elasticity based
on queue message processing.

2. StackSync: an elastic file synchronization architecture de-
coupling metadata and data flows in structured and object
storage services. StackSync implements predictive and reac-
tive provisioning policies on top of ObjectMQ that adapt to
real traces from the Ubuntu One service. Furthermore, the
ObjectMQ unicast and multicast communication primitives
have considerably simplified the code of the synchronization
protocol. It also enables efficient change notification in a
transparent way on top of the underlying messaging service.

3. StackSync has been extensively tested using real traces from
the Ubuntu One system to validate its elasticity and efficient
use of resources. Furthermore, we extended an open bench-
mark [4] for Personal Clouds which provides trace generators
and test scripts. Using this benchmark, we compared our
service with Dropbox, Box, OneDrive, and Google Drive.
StackSync is a stable open source project after two years of
development that is being used in several public institutions
and data centers.

The rest of the article is structured as follows. We review related
work in Section 2. We introduce ObjectMQ in Section 3. Section
4 describes the StackSync architecture. We evaluate our reference
implementation in Section 5 and conclude in Section 6.

2. RELATED WORK
Elasticity is the ability of a distributed application to dynamically

augment or reduce its use of computing resources, to preserve its
performance in response to varying workloads. In this line, elastic-
ity is important in cloud settings for coping with demand but also
to reduce costs by avoiding over-provisioning and using only the
required resources.

Programmatic elasticity has been recently proposed [3] as a mech-
anism to provide fine-grained adaption to a group of distributed ap-
plications where traditional cloud elastic services (Amazon Auto
Scaling) are not enough. In such applications like key-value stores,
distributed lock managers and consensus protocols, the externally
observable resource utilization metrics (CPU, RAM, etc.) are in-
sufficient to achieve an efficient use of resources.

In this line, ElasticRMI [3] is a framework for engineering elastic
object-oriented distributed applications. It follows the RMI scheme
and masks the low level details of elasticity like monitoring, load
balancing and self-adjusting mechanisms. Our ObjectMQ middle-
ware achieves many of the goals of Elastic RMI but using Message
Queues as the underlying infrastructure. This simplifies the over-
all architecture since load balancing is provided by the messaging
middleware and we avoid the use of custom load balancing and
leader election mechanisms. Furthermore, the indirect communi-
cation middleware moves load balancing to the server side and thus
avoid preprocessors in client stubs. Finally, we provide additional
services like one-to-many communications (@multi), flexible pro-
grammatic elasticity based on queue message processing, and per-
sistent message handling to cope with bursts of demand.

We must outline that the use of MOM-RPCs and queued method
invocations is not the novel contribution of our middleware. Other
approaches like [5], [6] already rely on such invocations mediated
by message queues. Furthermore, existing projects are using mes-
sage queues as a load balancing mechanism in web applications
[7].

There have been some previous attempts in the literature to com-
bine message brokers and remote objects. We can outline [8], [9],
and [10] as prominent examples of previous research. But again,
they are not offering the novel call abstractions and elastic middle-
ware that we provide in ObjectMQ.

Applications servers like JBoss also offer RMI Clustering and
load balancing services. But again, like [3] they rely on dynamic
client stubs that require preprocessing and updates by the server.
The client stubs must know the IP addresses of all available server
nodes, the algorithm to distribute load across nodes, and how to
failover the request if the target node is not available. With every
service request, the server node updates the stub interceptor with
the latest changes in the cluster.

With respect to “live” file synchronization, little is known about
the design and implementation of commercial systems. According
to a recent characterization of Dropbox [1], file synchronization is
built upon third-party libraries like librsync. While the specific role
of this library is to calculate deltas values (the differences between
the immediate previous version), the exact details of the file syncing
protocol are still very murky, including metadata organization and
consistency, and the failure recovery method. The same argument
applies to the rest of Personal Clouds like Box, Google Drive, etc.,
whose file sync protocols have not been reversed engineered yet.

Either way, massive file synchronization protocols like Dropbox
[2] and many others seem to share two major architectural deci-
sions: (i) decoupling control flows from data flows and (ii) push-
based change notification. In this line, Dropbox relies on Amazon
S3 for their data flows and it uses its own massive private Cloud for
the control flows. Furthermore, the Dropbox client keeps contin-
uously opened a TCP connection to a notification server, used for
receiving information about changes performed elsewhere.

Our middleware uses messaging for providing both program-
matic elasticity of file synchronization and scalable change notifi-
cation. Messaging is highly suited for this kind of communications
because synchronization operations require significant server pro-
cessing time for ensuring consistency. In these scenarios, decou-
pling message dispatching from message processing is key for scal-
ability reasons [11]. During high demand peaks, message queues
can temporarily store incoming messages, so that the processing
components cannot be able to saturate the resources of the server
side (e.g., database). The processing of events can then be con-
trolled to never overwhelm the available resources.

3. OBJECTMQ
ObjectMQ is a framework which provides programmatic elastic-

ity to distributed objects using a message queue system. In Fig. 1,
we can see the basic architecture of our middleware, from left to
right:

• Client Stub: It allows to call a remote object by utilizing
the MOM communication layer. To make a remote call, the
stub sends a message to a queue where the remote object is
subscribed. Further, every stub has its own queue to receive
responses from the server side.

• MOM System: It is the communication layer between stubs
and skeletons. Every stub has its own queue to receive replies
from remote objects. Fig. 1 shows the two types of queues
a remote object is subscribed to. Specifically, the uppermost
queue is a global queue shared among all the different remote
objects. The lower queues correspond to the private queues
where each individual object is listening to incoming calls.

• Remote Objects: They are remote objects that listen to the
queues and execute RPCs. To add a remote object instance
into the system, our middleware provides the method: bind(
oid, remoteObject), which binds a particular object instance
with the identifier oid. Internally, ObjectMQ will create a

Figure 1: ObjectMQ architecture.

queue called oid where the remoteObject will be able to lis-
ten for new RPCs. If the queue already exists, the new in-
stance will be simply subscribed to the queue. This bind-
ing mechanism will help scale out the system by dynami-
cally creating new objects and subscribe them to a particular
named queue, with the MOM system providing automatic
load-balancing to all the objects subscribed to the queue.
Due to the fact that only one of the subscribed remote ob-
jects can consume a specific message, i.e., the same message
is not delivered to any other object, a separate private queue
for every object is needed to support multicast.

Fig. 1 also illustrates the two types of remote invocations sup-
ported by ObjectMQ: unicast and multicast. Unicast invocations,
issued by Client1 and Client2 in this example, are processed through
the global queue. For this type of call, the MOM system will de-
liver the RPC to the first remote object that is idle. In multicast in-
vocations, issued by Client3 in this example, the same RPC will be
sent to all the private queues bound with the same oid, i.e., Multi(N
queues, 1 object per queue). More technically, as our current im-
plementation of ObjectMQ is built over the AMQP protocol [12],
we simply use a type of exchange1 called fanout exchange to sup-
port multicast. This type of exchange broadcasts all the messages it
receives to all the queues that have been bound to a specified name
oid.

The major building blocks of our architecture are: (i) a lightweight
communication layer with small stubs and skeleton; (ii) novel com-
munication primitives offering stateless one-to-one and one-to-many
synchronous and asynchronous invocations, and (iii) an extensible
provisioning model enabling third parties to create their own poli-
cies controlling the size of server object pools.

3.1 Communication Layer
Our major aim is to create a minimalist communication layer del-

egating complex communications to the messaging services. The
programming model must be simple and it must completely hide
queue and message management from developers. Our middleware
avoids any stub compilation or preprocessing phase thanks to the
use of dynamic stubs. Although we are inspired in Java RMI, we
decided to create our own naming service and method decorators
in order to simplify the overall communication model.

Our middleware delegates as much responsibilities as it can to
the underlying MOM system. The underlying MOM system will be
the responsible for balancing load while avoiding the loss of mes-
sages. Further, it will help us implement a naming service for the
objects. Inspired by Java RMI, ObjectMQ also provides the meth-

1In the AQMP parlance, an exchange can be viewed as a mailbox,
distributing copies of the message to one or more queues according
to specified bindings.

ods bind, to bind a remote object to a specified name, and lookup,
to return the remote reference bound to a given name. However, in-
stead of using a centralized naming registry, we will use the queues
to bind objects with their identifiers. As a result, whenever a stub
wants to interact with a remote object, it will not need to look up
the registry. Instead, it will suffice to know the name of the queue
where it wants to send a message. Let us explain these functions
specified in the omq.Broker class:

• Broker.bind(oid, remoteObject): A call to this method binds
a remote object with the identifier oid. Once done, the object
will be ready to receive RPC requests. If necessary, a queue
named oid will be created to receive unicast invocations. It
will also create a unique private queue to receive multicast
requests.

• Broker.lookup(oid, aClass): An invocation to this primitive
will generate a Proxy object for the class aClass. This Proxy
will be used to submit messages to the queue named oid and
receive responses in the private queue of the client.

Observe that binding more than one object with the same iden-
tifier also means that the load from the clients will be evenly dis-
tributed among multiple remote objects. This will help us to scale
up and down the service by adding and removing remote object in-
stances dynamically. In this case, there is no need to modify client
stubs and they do not need to be aware of changes in the pool of
remote objects offering a service.

Let us show a simple HelloWorld example:

@RemoteInterface
public interface HelloWorld extends Remote {

@AsyncMethod
public void helloWorld();

}

Broker broker = new Broker(environment);
helloServer = broker .bind("hello" , new HelloServer()) ;

helloClient = broker .lookup("hello");
helloClient .helloWorld();

Figure 2: ObjectMQ HelloWorld example.

As shown in the figure, developing remote objects using Ob-
jectMQ is very simple. We omitted here the connection parame-
ters of the Broker object referring to the location of the messaging
service.

Since we aim to create a robust but very lightweight middleware,
we do not provide shared state or consistency mechanisms between
distributed objects. If many servers with the same identifier want
to maintain consistent shared state, they should rely on a database
or consistent data store. We consider that consistency is not re-
sponsibility of our middleware and that other services are ideally
suited to this end. We also want to avoid any implicit or transparent
state between servers and prefer to bet on a simple stateless model.

3.2 Communication Primitives
In the development of our communication abstractions, we de-

cided to treat the local and remote entities separately, following the
well known recommendation of Waldo et al. [13]. In ObjectMQ,
remote object transparency is not desirable, because developers
should be aware of when they are using remote or local entities

to program in a way that reflects the indeterminacy and concur-
rency constraints inherent in the use of remote objects. For this
reason, ObjectMQ offers explicit mechanisms using method deco-
rators to define method invocation primitives. In particular, we of-
fer three main invocation abstractions: asynchronous, synchronous,
and multi-calls. Let us define the three calls:

• @AsyncMethod: This is an asynchronous non-blocking one-
way invocation where the client publishes a message in the
target object request Queue (QRequest). By default, the client
expects to receive no response and it is even not notified if the
message was handled correctly.

• @SyncMethod: This is a synchronous blocking remote call
where the client publishes a message in the target object re-
quest Queue (QRequest), blocking until a response is received
in its own client response queue (QResponse). This call can
be configured with a timeout and a number of retries to trig-
ger the exception if the result does not arrive.

• @MultiMethod: This is a one-to-many invocation from one
client to many servers. This call can also be combined with
@AsyncMethod or @SyncMethod. The former produces a
non-blocking multiple invocation to many servers, whereas
the latter produces a blocking multiple invocation that col-
lects the results received from many servers in a determined
timeout.

On the one hand, asynchronous invocations fit seamlessly with
the underlying asynchronous messaging layer. They reduce the bur-
den of handling messages and queues and do not impose additional
overhead in the communication. On the other hand, synchronous
invocation imply that the proxy will block during a timeout to wait
for the result. Synchronous calls in our model must traverse an
intermediary (messaging server) that is not needed in direct client-
server models like Java RMI. This may impose a small communi-
cation overhead since messages must travel through the queues of
server and client objects. The benefit is that we delegate commu-
nication to the messaging layer, so the server object in ObjectMQ
cannot be saturated like in Java RMI, because our server layer only
handles the messages the server can process.

We also offer a new one-to-many communication primitive (@Mul-
tiMethod). In our case, when many servers listen in the same iden-
tifier (queue) they can receive group calls in a Multi queue. Since
we rely on the one-to-many communication services of the mes-
saging layer, the system is very efficient and achieves good perfor-
mance numbers (the ones provided by the messaging layer). This
abstraction has proven to be very useful for group communication
and it can be combined very easily with the previous abstractions
(@AsyncMethod, @SyncMethod).

Finally, an interesting advantage of one-to-many communica-
tions is the invocation of methods in a dynamic group of servers
that can grow or shrink due to elasticity decisions. Let us explain
how our middleware handles programmatic elasticity.

3.3 Programmatic Elasticity Framework
We have created an extensible framework that allows third-parties

to create their own provisioning policies of server object pools. Our
model follows a Master/Slave architecture where the Supervisor
represents the centralized Master entity that takes care of enforcing
Provisioner’s policies by launching or removing server objects
in RemoteBroker Slave servers.

The Provisioner interface is the hotspot or extensible hook
in our framework that must be inherited to offer a new provisioning

<<abstract>>
Provisioner

supervisor : Supervisor

startProvisioner() : void
calculateAllocation() : void

PredictiveProvisioner

historicalWorkload : file[]

<<override>> startProvisioner()
<<override>> calculateAllocation()

ReactiveProvisioner

historicalWorkload : file[]

<<override>> startProvisioner()
<<override>> calculateAllocation()

Figure 3: Class diagram of the provisioning framework.

policy. For example, in Fig. 3, we can see the predictive and reac-
tive provisioners that we will explain in the next section. A Provi-
sioner may use information from the HasObjectInfo introspection
class to take decisions on server object provisioning. For example,
it can observe that messages are not being processed at the ade-
quate speed and ask for another server instance. Or decide that one
server is idle and decide to suppress it.

In general, a provisioner will propose a number of server ob-
jects required to handle the demand. The Supervisor is the re-
sponsible entity of enforcing the provisioning policy. It will launch
(spawn) or remove (delete) server objects in RemoteBrokers.
RemoteBrokers are ObjectMQ servers that can launch or shut-
down remote object servers. The Supervisor uses multi call ab-
stractions with RemoteBrokers for fault tolerance and introspec-
tion information. It periodically ask them about the state of their
object servers and it maintains this information updated in HashOb-
jectInfo object for provisioners. If the Supervisor detects that one
server failed or that the number of servers is not the one required
by the supervisor, it will then spawn or shutdown object servers.
Of course, other technologies may be used to spawn or shutdown
available servers such as Apache Mesos.

One interesting advantage of our framework is that adhoc poli-
cies can be designed depending on the target application. This of-
fers a more fine-grained approach than the traditional coarse grained
elasticity offered by cloud providers. We could also use variable
like CPU load or memory, but we can also adapt to message pro-
cessing time in queues offered by our middleware. If we want to
enforce a determined processing time per server in an application,
we can easily design an adhoc provisioner to this end.

3.4 Fault Tolerance
Unlike RMI or ElasticRMI where objects reside in main memory

and any crash could lead to receive no response, ObjectMQ does
not lose any information piece. For instance, if a remote object
falls during a remote operation, this operation will be dispatched to
another server instance. In this way, no remote invocations can be
lost. This happens because every message sent to a remote object
will be stored in the queue system until the object sends an ACK
stating that the operation has finished. This occurs even if the oper-
ation is asynchronous. By using this approach, the message system
can also know which instances are busy or not to balance the load.

Another important property is that, when a remote object crashes,
it can be monitored by a Supervisor. Every second, the Super-
visor asks the Brokers if they have a particular instance using

a multicall. If some of the objects have failed, the Supervisor
will then react by remotely binding a new object to any Broker
missing that object.

Also, the Supervisor can crash. If this occurs, it will be im-
possible to know which objects are alive or not. To address this
issue, every Broker in the system will periodically check if the
Supervisor is up and running. Whenever the actual Supervisor
crashes, a leader-election algorithm will be called using the unique
identifier of the Brokers. Finally, to tolerate Broker failures,
the messaging system can be instrumented to store all the messages
present in the queues, so that when the system is restarted, the un-
processed messages can be recovered. Either way, high availability
can be achieved by using clusters of messaging brokers.

Finally, we must outline that we have a stable implementation of
ObjectMQ in Java https://github.com/cloudspaces/
objectmq that uses AMQP protocol [12] and RabbitMQ as the
messaging middleware. ObjectMQ supports different transport pro-
tocols (Kryo [14], Java Serialization, JSON) and it also handles all
the error management and communication services on top of the
MOM broker. Our architecture is generic so that we could use
other cloud scalable messaging services such as Amazon SQS or
Microsoft Service Bus.

4. STACKSYNC: ELASTIC FILE SYNCING
SERVICE

Here we describe StackSync, our open source implementation of
a Personal Cloud. We put the emphasis on the file syncing protocol
and how it can be made elastic by letting ObjecMQ handle all the
low-level mechanics, though our current implementation has all the
software components to run a Personal Cloud.

At a very high level, its architecture is similar to a three-tier Web
application, where the queues are the presentation/load balancing
tier, the syncing service is the business logic tier and the metadata
DB is the only stateful tier.

As any Personal Cloud service, such as Dropbox, Google Drive,
and OneDrive, StackSync is characterized by two main compo-
nents: a front-end client that runs on user devices, and a back-end
service that has two main functionalities: storage of the user files,
typically hosted in huge data centers, and the management of the
metadata associated with the files, including versioning informa-
tion, attribute change times, last modification, etc. Following the
same approach as Dropbox, StackSync decouples metadata from
the storage flows, splitting the back-end service into two separated
components: the Storage back-end, which hosts the user files
and objects, and the Metadata back-end, which is respon-
sible for managing the file syncing metatada. The Metadata
back-end may be a non-relational data store like Cassandra2 or
Riak3. However, we opted for a relational database to benefit from
the ACID semantics, and this way simplify the maintenance of con-
sistency. At the time of this writing, StackSync utilizes PostgreSQL
as the Metadata back-end and OpenStack Swift object stor-
age as the Storage back-end, though others are also possible.
In fact, StackSync presents extension hooks to ease the replace-
ment of the Storage back-end, the Metadata back-end,
as other components like the message broker, the synchronization
protocol or even the chunking and deduplication strategies.

The key component that interacts with the Metadata back-end
is the file syncing service, referred to as SyncService for short
in the rest of the paper. This service processes the commit requests
from the clients. Mainly, it checks if the proposed changes by the
2http://cassandra.apache.org/
3http://basho.com/riak/

Desktop client

Indexer

Chunker
Middleware

(ObjectMQ)

Control

flow

Sync Service

Metadata DB Object Storage

Data

flow

Figure 4: StackSync architecture.

clients preserve consistency, and then applies all the changes in the
affirmative case.

One desirable property of the SyncService is that it was elas-
tic. As observed by several measurements [1, 15, 16], Personal
Cloud services present strong diurnal seasonality. The workload
typically peaks around noon every day and reaches its minimum
level in the middle of the night. Hence, provisioning for the peak
demand will result in excess of resources during off-peak phases,
incurring both capital costs and operational costs in terms of energy
and cooling.

However, since file synchronization is I/O-bound, rather than
CPU- and memory-intensive, traditional resource utilization met-
rics such as CPU and RAM can be misleading. Actually, the CPU
utilization of our current implementation of SyncService never
surpasses 30%, irrespective of whether the workload is light or
heavy. As one of the main driving forces behind “live” file sync-
ing is to exhibit an optimal synchronization time, we will use the
response time as SLA for the SyncService and the request ar-
rival rate observed in the queues as a fine-grained metric. This is
where ObjectMQ comes into play by providing a simple program-
ming model that masks the low level details of adding elasticity to
the SyncService.

An overview of our architecture with the main components is
shown in Fig. 4. The StackSync client and the SyncService
interact through the ObjectMQ middleware layer. The StackSync
client directly interacts with the Storage back-end to down-
load and upload chunks. The SyncService interacts with the
Metadata back-end to commit changes. For clarity, security
components such as the authentication and authorization services
have not been depicted in the figure.

Source code and data traces are available in https://github.
com/cloudspaces/stacksync. Both the server and client
code have been developed in Java: The client is a branch from
the Syncany [17] project and the server has been built upon Ob-
jectMQ [18], our novel elastic middleware. The current implemen-
tation has approximately 33, 000 lines of code (LOC), distributed
in the following way:

• ObjectMQ —2, 762 LOC.

• StackSync client —24, 400 LOC.

• SyncService —5, 800 LOC.

4.1 StackSync Desktop Client
Personal Clouds usually provide desktop clients that integrate

with the OS file explorer capabilities. The desktop client is a local
Java library that monitors the local folder and synchronizes it with

the remote repository. In our architecture, the client interacts with
two main remote services: the SyncService through the Ob-
jectMQ middleware and with the Storage back-end to keep
the files up to date and in sync. This decoupling of sync control
flows from storage flows implies that the client must be authenti-
cated with both entities. But it also enables a user-centric design
where the client directly controls its digital locker or storage con-
tainer.

Every desktop client has a local database and a thread that mon-
itors the state of the synced folders. We will refer to each of these
folders simply as a workspace. As many other Personal Cloud
services, internally, StackSync does not use of the notion of file,
but rather operates on a lower level by splitting files into chunks
of 512 KB, each treated as an independent object. Each chunk
is identified by a fingerprint, which by default is the 20 bytes of
its SHA1 hash. The local database maps the fingerprints to the
corresponding files. The reason to work at the sub-file level is to
transfer to the Storage back-end only those parts of files that
have been modified since the last synchronization, saving traffic
and storage costs. It must be noted that deduplication is applied on
a per-user basis, as cross-user deduplication has been proven to be
insecure [19]. This means that deduplication is carried out sepa-
rately for each user, and therefore, file chunks of other users are not
utilized to detect if an identical copy of the block is already at the
server.

Every time a change in any workspace is detected by the OS, the
Indexer component will look up the local database to identify the
affected chunks. Concretely, the Indexerwill call the Chunker,
which will partition the modified file into chunks and calculate the
hash values for each chunk. Then, the Indexer will compare the
hashes of the new chunks with those in the local database. If some
of the chunks already exist, only the new ones will be uploaded to
the Storage back-end. After uploading the unique chunks to
the Storage back-end, the Indexer will communicate the
changes to the SyncService using an asynchronous ObjectMQ
call.

Besides that, the client can receive notifications of committed
changes from the SyncService that will be immediately ap-
plied to the affected workspace. Thanks to our message-oriented
file syncing protocol, keeping the local database in sync with the
Metadata back-end is inexpensive, as any committed change
is advertised as soon as possible by means of asynchronous noti-
fications. In case of conflicting changes due to offline operations,
we follow the same policy as Dropbox: we create a copy of the
conflicted document and let the user decide about this.

A final remark is that the Chunker supports both fixed-sized
and content-based chunking [20]. By default, it uses static chunk-
ing, splitting the files into chunks of 512 KB. Although static chunk-
ing does not perform well due to the boundary-shifting problem [21],
it is useful to keep it as it incurs significantly lower computational
costs that their content-based counterparts. In any case, the chunks
are always compressed before transmission using Gzip or Bzip2,
albeit other compression algorithms can be easily plugged into the
system.

4.2 StackSync Synchronization Protocol
Because file synchronization lies at the heart of any Personal

Cloud service, we introduce here the file syncinc protocol that is
available in StackSync, whose novel feature is that it has been built
upon the ObjectMQ middleware, which masks all the low-level me-
chanics of handling persistent client connections, push-based noti-
fications, and asynchronous interactions. A middleware like Ob-
jectMQ fits well with these requirements, because of its support

to loosely coupled communication among distributed components
thanks to asynchronous message-passing.

4.2.1 SyncService
The SyncService is a server-side component implemented

as a remote object using ObjectMQ. This service directly bene-
fits from the invocation abstractions offered by ObjectMQ. In fact,
thanks to communication abstractions provided by ObjectMQ, the
core of the SyncService algorithm can be described in a few
lines of pseudocode, as shown in Algorithm 1.

As shown in Fig. 5, ObjectMQ is using a global request queue
for the current design of the SyncService, a response queue
for each device (SyncService Proxy), and a multi fanout for
each workspace. Each user device will bind each request queue to
the appropiate workspace to receive notification changes. Queue
message programming is abstracted thanks to ObjectMQ, so that
the protocol will be defined in terms of RPCs or method calls.

@RemoteInterface
public interface SyncService extends Remote {

@SyncMethod(retry = 5, timeout = 1500)
public List<ObjectMetadata> getChanges(Workspace workspace);

@SyncMethod(retry = 5, timeout = 1500)
public List<Workspace> getWorkspaces();

@AsyncMethod
public void commitRequest(Workspace workspace,

List<ObjectMetadata> objectsChanged);

}
public interface RemoteWorkspace extends Remote {

@MultiMethod
@AsyncMethod
void notifyCommit(CommitNotification notification);
}

Figure 6: SyncService interface.

In Fig. 6 we can see the interface definition of the SyncService.
Clients can request the list of workspaces they have access to with
the getWorkspaces operation. Once the client obtains the list of
workspaces, it can then perform two main operations: getChanges
and commitRequest. Furthermore, the client will be notified of
the committed changes by means of CommitNotifications.
getChanges is a synchronous operation (@SyncMethod) that

StackSync clients perform only on startup. This operation is costly
for the SyncService as it returns the current state of a workspace.
Once the client receives this information, it registers its interest in
receiving committed updates for this workspace. From that time
onwards, any change occurring on this workspace will be notified
to the client in a push style as a CommitNotification.
commitRequest is an asynchronous operation (@AsyncMethod)

that clients use to inform the SyncService about detected file
changes in their workspaces. This is a relatively cheap operation in
terms of processing time, though it must still guarantee a consistent
view of the affected files after the new changes.

Finally, the SyncService pushes a CommitNotification
to all out-of-sync devices in the workspace by calling the asyn-
chronous one-to-many operation (@MultiMethod) named as
notifyCommit in the RemoteWorkspace interface. This op-
eration is invoked by the SyncService only after the proposed
changes has been correctly committed in the Metadata back-end.
The SyncService interacts with the Metadata back-end
using an extensible Data Access Object. Our current implementa-

Figure 5: Message broker communication flow.

tion is based on a relational database, though the system is modular
and may be replaced easily.

Algorithm 1 Pseudocode of the commitRequest function in the
SyncService

1: function COMMITREQUEST(workspace, List < ObjectMetadata >
objects_changed)

2: notification← new instance of CommitNotification
3: for new_object in objects_changed do
4: server_object← metadata.get_current(new_object.id);
5: if not exists server_object then
6: /* To commit the first version of the new object */
7: metadata.store_new_object(new_object);
8: notification.add(new_object, confirmed = True);
9: else if server_object.version precedes new_object.version

then
10: /* No conflict, committing the new version */
11: metadata.store_new_version(new_object);
12: notification.add(new_object, confirmed = True);
13: else
14: /* Conflict detected, the current object metadata is returned */
15: notification.add(new_object, confirmed = False,
16: server_object);
17: end if
18: end for
19: workspace.notifyCommit(notification);
20: end function

In Algorithm 1, we give the pseudocode of the commitRequest
operation. When a commit request message is received in the global
request queue, ObjectMQ calls the commitRequest method in
the SyncService. This method receives a proposed list of changes
for a concrete workspace. For every change operation, this method
first checks if the current version of the object in the Metadata
back-end precedes the proposed change. If the case, the change
is persisted in the Metadata back-end and then confirmed in
the CommitNotification. If there is a conflict with versions,
the commitRequest is marked as failed and information about
the current object version is added to the CommitNotification.
The fundamental reason for adding the current object version to the
CommitNotification is to piggyback the information about
the “differences” between the two versions, such that the “losing”
client can identify the missing chunks and reconstruct the object to
the current version. In StackSync, a conflict occurs when two users
change a file at the same time. This means that the two clients will
propose a list of changes over the same version of the file. The
first commitRequest to be processed will increase the version
number by one, but the second commitRequest will inevitably
propose a list of changes over a preceding version, resulting in a
conflict.

To resolve the conflict, the SyncService adopts the simplest
policy in this case, which is to consider as the “winner” the client
whose commitRequest was processed first. Consequently, the
SyncService avoids rolling back any update to the Metadata

back-end, saving time and increasing scalability. At the client,
the conflict is resolved by renaming the “losing” version of the file.

Finally, the CommitNotification is pushed to all interested
devices in their incoming multicast queues.

As just discussed above, the CommitRequest is the most crit-
ical operation of the SyncService, since it involves scalable re-
quest processing, consistency, and scalable change notification in
just a single operation. Scalable request processing is achieved be-
cause the method is asynchronous and stateless. Multiple instances
of the SyncService can listen from the global request queue
and the message broker will transparently balance their load, which
allows for rapid elasticity. Consistency is achieved through the
ACID semantics of the underlying Metadata back-end. Fi-
nally, scalable change notification to the interested parties is achieved
using one-to-many push notifications (@MultiMethod).

4.3 Elastic File Synchronization
Here we show how an application developer can tap into Ob-

jectMQ to enable elastic scaling in file synchronization. Existing
commercial Cloud solutions typically fall back on observable re-
source utilization metrics such as CPU and RAM to drive scaling
decisions. For a Personal Cloud system, however, these metrics
are ill-suited, as one of the main driving forces behind “live” file
synchronization is to guarantee a maximum synchronization time.
This requires handling elasticity at the application level by exploit-
ing the knowledge of the application workload, so that it can be
utilized a more versatile set of scaling mechanisms.

In what follows, we show how a Personal Cloud system can ben-
efit from the simple programming model of ObjectMQ to achieve
elasticity in the file syncing protocol. Particularly, we adopt the
model of Urgaonkar et al. [22] for dynamic resource provisioning,
though many others could be chosen. The advantage of this model
is that it makes use of both a predictive and reactive approach, al-
lowing us to prove the versatility of ObjectMQ. The goal of the
predictive method is to allocate resources on large time scales, of
the order of days and hours, while the reactive approach is used
for shorter time scales, such as seconds and minutes. This allows
the system to correct prediction mistakes made by the predictive
model, such as unpredictable “flash crowd” patterns. Actually, the
predictive method is very useful for online file synchronization. As
reported by several independent studies [1, 15, 16] , Personal Cloud
systems exhibit strong diurnal and weekly patterns. This allows the
predictive provisioning method to allocate servers well ahead of
the expected workload peak, and dramatically reduce the odds for
clients to experience degraded performance. Indeed, the effective-
ness of predictive provisioning will be shown to be very high in
our trace-driven experiments with the UB1 cloud-based file sync-
ing service, confirming our intuition that predictive resource provi-
sioning is ideally suited for Personal Cloud systems.

As we set out to enable elasticity for control flows in this work,

we assume that the SLA is specified in terms of a suitable high
percentile of the response time distribution. We denote this value
as d. For instance, a SLA may specify that 95% of the commit
requests should incur an end-to-end response time of no more than
5 seconds. As in [22], we assume that all the different instances
of the SyncService run in homogeneous machines and model
each synchronization server as a G/G/1 queuing system, to allow
for an arbitrary arrival distribution and arbitrary service times. This
enables our elastic scaling scheme to adapt gracefully to changes in
the workload intensity caused by time-of-day effects, or even time-
of-hour effects. By well-known formulae, the rate δ at which a
synchronization server can process commit requests can be simply
computed as:

δ ≥
[
s+

σ2
a + σ2

b

2(d− s)

]−1

, (1)

where s is the average service time for a commit request, and
σ2
a and σ2

b are the variance of interarrival time and the variance of
service time, respectively.

Observe that d is known, while s as well as the variance of in-
terarrival and service time σ2

a and σ2
b can be monitored online and

adjusted correspondingly. By substituting these values into (1), we
can obtain a lower bound on the request rate δ that can be serviced
by a single server. Once the capacity of a single server is known,
the number of required instances η to service a peak request rate of
λ can be simply obtained as:

η =

⌈
λ

δ

⌉
. (2)

Depending on the value of η and the current number of instances
of the SyncService, the Supervisor will decide to add or re-
move instances to preserve the performance in response to varying
workloads. In practice, the decision of scaling up and down will be
performed periodically, once every t time units, to avoid unneces-
sary oscillations. We will denote by λobs(t) the actual arrival rate
seen during the time interval t. Note that the value of λobs(t) can
be obtained very easily in our file-sync architecture, since all the
commits are queued in a single request queue, as shown in Fig. 5.

4.3.1 Predictive Provisioning
This technique uses a workload predictor to anticipate the peak

demand over the next time period, and then uses (2) to determine
the number of instances that are needed to meet this peak demand.
Concretely, the predictor estimates the peak demand that will be
seen over the next period of T time units, at the beginning of each
period. To do so, it maintains a history of the observed arrival rate
for each time period t of duration T over the past several days.
From the history, the predictor then derives the probability distri-
bution of the arrival rate for that time period. The peak workload
λpred(t) for a particular period t is finally estimated as a high per-
centile of the arrival distribution for that period.

4.3.2 Reactive Provisioning
Even in the case that predictive provisioning was perfect, sudden

spikes or “flash crowds" are unpredictable phenomena. To react to
unforeseen events, reactive provisioning acts on shorter time scale
to handle short term fluctuations. Basically, it compares the current
observed arrival rate λobs(t) over the past few minutes to the pre-
dicted rate λpred(t). Specifically if λobs(t)

λpred(t)
> τ1 or drop rate τ2,

then corrective action is necessary. In this case, it recomputes the
number of instances by invoking (2).

5. VALIDATION
We divide the evaluation into two parts. In the first part, we eval-

uate the performance of the SyncService without auto-scaling
and set out two basic questions: 1) How much overhead does the
system need to support? and 2) How much time is needed to have
multiple user devices in sync? In some of these tests, we compare
StackSync against other popular Personal Cloud services, includ-
ing Dropbox, Microsoft OneDrive, Amazon Cloud Drive, Google
Drive and Box.

In the second part, we evaluate the ability of the SyncService
to handle multi-time-scale variations seen in a real Personal Cloud
workload. Concretely, we evaluate the effectiveness of the differ-
ent provisioning techniques, as well as the fault tolerance of Ob-
jectMQ.

5.1 Testbed
For all the experiments, we used the following testbed. The

testbed included a front-end server and several desktop PCs act-
ing as clients. The front-end was an OpenStack Swift deployment
with one proxy node and 4 storage nodes. Unless otherwise noted,
the proxy node hosted the SyncService, and the PostgreSQL
database acting as the Metadata back-end. Let us review the
node specs:

• The proxy node was equipped with Intel Xeon CPU E5-2407
and 12 GB RAM.

• The storage nodes had Intel Xeon E5-2403 processors and 8
GB RAM.

• The desktop PCs had Intel Core i5 processors and 4 GB
RAM.

All the machines ran Ubuntu 12.04 except the desktop PCs that
ran Debian 7.3. Finally, the software versions were OpenStack
Swift (Havana); RabbitMQ 2.8.7 and PostgreSQL 9.1. Table 1
shows the software versions for the Personal Cloud desktop clients
used in the evaluation.

5.2 Performance without Elasticity

5.2.1 Setup and Benchmarking Tool
To evaluate the system with the auto-scaling feature disabled, we

developed a benchmarking tool to generate realistic workloads. We
implemented this tool because we found no publicly available trace
containing both the files and the history of modifications to those
files that allowed us to evaluate our file-syncing service.

To determine the size of the files, we used the distribution pre-
sented in [16], a five-month study involving around 20, 000 users.
Some of their conclusions were that the 90% of files are smaller
than 4 MB and that updated files tend to be read sooner rather than
later. Also, they noticed that most of files are read-only.

Imitating the real behavior of users, our tool creates a trace with 3
different actions: ADD representing the addition of a file, UPDATE
signaling a modification, and REMOVE meaning the removal of
the file from the workspace.

In order to determine the action to be performed to a file, we
applied the Markov model proposed in [23]. In this model, each
file can be in 4 possible states: N — new; M— modified; U — un-
modified; and D — deleted. For each of those states, a set of prob-
abilities govern the transition to the rest of states. To set up the
transition probability matrix, we extracted the transition probabil-
ities from the “Homes” dataset [23], which is the public trace that
most resembles the user behavior in a Personal Cloud service.

Client name Version
StackSync 1.6.4
Dropbox 2.6.33
Microsoft OneDrive 17.0.4035.0328
Amazon Cloud Drive 2.4.2013.3290
Google Drive 1.15.6430.6825
Box 4.0.4925

Table 1: Used Desktop Clients Version

To decide how to modify the files, we followed the same ap-
proach as in [23], which currently supports 3 modification types: B
— the file is modified in the beginning by prepending some bytes;
E — the file is modified at the end; and M — the file is modified
somewhere in the middle. As in [23], we also supported combina-
tions of these patterns, namely BE, BM, and EM. For the transition
probabilities, we used the change pattern of the “Homes” dataset:
the probability for a B change was of 38%; for a E change was of
8%, and for a M change was of 3%. The rest of the probability mass
was granted to combinations of these changes. We only applied
these probabilities in files smaller than 4 MB, since more than 90%
of the I/O requests are for these files, as just discussed above.

Our trace generator requires only 3 parameters: 1) initial number
of files; 2) number of training iterations; and 3) number of snap-
shots. For our experiments, we set the initial number of files to
20, and the number of iterations and snapshots to 5 and 100, re-
spectively. The resulting trace contained 940 ADDs, 72 UPDATEs
and 228 REMOVEs. The ADD operations generated a total data
volume of 535.41 MB whereas the UPDATEs only produced ≈ 14
KB. The average file size was of 583 KB. Fig. 7(a) plots the CDF
of file size for our trace.

Finally, to compare StackSync against other popular Personal
Cloud services, we modified the benchmarking tool developed by
Drago et al. [4] to conduct trace-driven experiments with the out-
put of our generator. More specifically, we adapted their tool to
measure the overhead of the different file syncing protocols under
a sequence of ADD, UPDATE, and DELETE operations using real
content.

5.2.2 Protocol Overhead
In this test, we compared the protocol overhead of StackSync

with the overhead of the commercial Personal Cloud services re-
ported in Table 1. As in [4], we defined the overhead as the total
storage and control traffic over the benchmark size, which was of
535.41 MB. For this experiment, our benchmarking tool consid-
ered each of the operations in the trace one at a time, to measure
the overhead accurately. That is, the next operation did not start
until the current one was successfully committed.

The results are shown in Fig. 7(b). As seen in this figure, Drop-
box exhibits the highest overhead, sending up to 150 MB of addi-
tional unnecessary traffic. This results agree very well with other
studies such as that of [16]. On the contrary, StackSync has a low
overhead, comparable to that of commercial Personal Cloud ser-
vices.

To gain a deeper understanding of the overhead, we prepared a
new variant of this test. In this new variant, we grouped all the
actions of the same type to generate 3 separate traces, and this
way study the overhead per type of action. In this case, we run
this experiment only for StackSync and Dropbox, mainly because
Dropbox is the most popular and well-studied Personal Cloud in
the literature. The results are depicted in Fig.7(c) for control traffic
and Fig.7(d) for storage traffic.

Batch size Control Storage Total

Dropbox

5 8.30 MB 633.06 MB 641.36 MB
10 5.13 MB 638.26 MB 643.39 MB
20 3.28 MB 635.82 MB 639.10 MB
40 2.23 MB 632.05 MB 634.28 MB

StackSync

5 2.14 MB 569.89 MB 572.03 MB
10 1.58 MB 570.10 MB 571.68 MB
20 1.37 MB 570.07 MB 571.44 MB
40 1.25 MB 567.77 MB 569.02 MB

Table 2: Effect of File Bundling

As shown in Fig.7(c), Dropbox produces a huge amount of con-
trol traffic when adding new files, about 25 MB of unnecessary
traffic, while StackSync only needs ≈ 3.2 MB. This indicates that
control signaling is significantly much lighter than that of Drop-
box. With respect to storage traffic, StackSync transferred a total
amount of 565.63 MB to the Storage back-end, which is sig-
nificantly smaller than the 660.32 MB of storage traffic incurred by
Dropbox.

For the UPDATEs, StackSync is negatively affected by the fact
that a modification of a few bytes requires to upload at least one
chunk of 512 KB, incurring a huge overhead. Since Dropbox uses
delta encoding [4], a specialized compression technique, it outper-
formed StackSync. It is important to note here that although the
overhead for StackSync is apparently high, in practice, StackSync
transferred only 5 MB and Dropbox 2 MB. Both values are rel-
atively high compared with the amount of modified data (13.50
KB).

As the setup of these tests were not favorable to Dropbox, be-
cause the actions were performed one after another without ben-
efiting from the Dropbox file bundling feature, we created a new
test that performs more one action at the same time. Table 2 lists
the results obtained after executing the trace for both Dropbox and
StackSync with different batch sizes. Dropbox reduces traffic over-
head in 30 MB but it continues to be much higher than the rest of
the Personal Clouds.

5.2.3 Synchronization Time
Another basic question to be examined is the delay experienced

by users to have their devices in sync. To answer this question,
we measured the time to synchronize 6 clients for each type of
workspace changes, i.e., ADD, UPDATE and REMOVE. The syn-
chronization time was measured as the time elapsed after the modi-
fication was detected by the Watcher of the client that performed
it until the local working copies of the other five clients were in
sync. In the case of ADDs and UPDATEs, this time included the
delay incurred to upload and download the unique chunks from the
Storage back-end, hosted in our local cluster.

The results are depicted in Fig. 7(e). As can be seen in the figure,
all the operations take only a few seconds to have all the clients in
sync, even in the case of the ADD operation where an appreciable
amount of time is taken up to access the Storage back-end.
Because the REMOVE operation does not trigger any data flow
to and from the Storage back-end, the synchronization time
becomes a good estimator of the processing time incurred by the
tandem ObjectMQ-SyncService.

As shown in the figure, the time to reconcile a file removal in five
clients is less than 2.6 seconds, which is quite good, assuming that
the Metada back-end is a SQL database. As a boxplot enables
to assess the dispersion of a given distribution, we gain important
qualitative insights from Fig. 7(e). One key observation is that the

64B 256B 1K 4K 16K 64K 256K 1M 4M 16M 64M256M
0

20

40

60

80

100

File Size

F
il

e
 C

o
u

n
t

(%
)

(a) File size vs file count distribution.

1

1.05

1.1

1.15

1.2

1.25

1.3

O
v
e
r
h

e
a
d

 r
a
ti

o

Dropbox

Cloud Drive

Google Drive

Box

StackSync

OneDrive

(b) Overhead

Add Update Remove
0.1

1

10

100

C
o
n

tr
o
l

tr
a
ff

ic
 (

M
B

)

StackSync

Dropbox

(c) Control traffic overhead

Add Update Remove
0.1

1

10

100

1,000

O
v
e
r
h

e
a
d

 r
a
ti

o

StackSync

Dropbox

(d) Storage traffic overhead
Add Update Remove

2600

2800

3000

3200

T
im

e
 (

m
s)

(e) Boxplots of synchronization time

1M 1.5M 2M 2.5M 3M 3.5M 4M
2400

2600

2800

3000

3200

File size

T
im

e
 (

m
s)

(f) Synchronization time against file size

Figure 7: Performance of StackSync file-syncing protocol.

distribution of the synchronization time for the UPDATE operation
is right skewed, exhibiting file synchronization times significantly
greater than the median value of 2.75 seconds. This is evidenced by
the significant number of UPDATE operations exceeding the upper
whisker. This skewness is explained by the use of fixed-size blocks,
which suffer from the boundary shifting problem [21].

Since the time taken up by the ADD operation is affected by the
file size, one interesting question is to assess how file size affects
the synchronization time. Fig. 7(f) shows the synchronization time
as a function of file size. As can be seen in the figure, the larger
the file size, the longer the synchronization time. However, what
is most interesting is the fact that the increase in time is only lin-
ear when file size is larger than 2.5 MBs, which indicates that for
small files the time to transfer chunks from and to the Storage
back-end is not significant compared with the time incurred by
the tandem ObjectMQ-SyncService.

5.3 Performance of SyncService Auto-Scaling
In this section, we evaluate the performance of the SyncService

when the ObjectMQ auto-scaling feature is enabled. To evaluate it,
we conducted three experiments. The first experiment evaluates the
behavior of the SyncService when both the predictive and reac-
tive provisioning algorithms are in use. The second experiment re-
peats the first test but with the predictive method misestimating the
workload pattern. Finally, the third test gauges the fault tolerance of
ObjectMQ auto-scaling when the instances of the SyncService
crash.

5.3.1 Setup
For all the experiments, we set the response time for committing

a request to d = 450 msec. The PredictiveProvisioner
was called every 15 minutes while the ReactiveProvisioner
was invoked once every 5 minutes.

To compute the mean service time s and the variance of the ser-
vice time σ2

b , we conducted several offline measurements on the
desktop PCs that hosted the instances of SyncService during
the tests. The variance of interarrival times σ2

a was updated once

Parameter Value
d 450 msec
s 50 msec
σ2
b 200 msec
τ1 20%
τ2 20%

Table 3: Parameters for the UB1 Workload

every 15 minutes based on online measurements of the global re-
quest queue. The parameters can be found in Table 3.

Testbed. For all the experiments in this section, we used the
same experimental testbed as in the first part of the evaluation.
However, instead of deploying the SyncService as a single in-
stance in the Proxy node, we added a pool of desktop PCs to host
multiple instances of the SyncService as dictated by the
Supervisor. Recall that the instances are server objects which
are activated and passivated by the Supervisor through calls to
the RemoteBrokers.

Workload. Instead of a synthetic workload as in previous works
[3], we preferred to use a trace from a real system. More concretely,
the workload was generated based on a (anomymized) traces from
Ubuntu One (UB1), a popular Personal Cloud service operated by
Canonical Ltd. which shut down on April 2014. The trace contains
detailed information about the files uploaded to UB1 on November
2013.

Based on this trace, we created two new traces to drive our tests.
The first trace contained the number of arrivals per second to the
UB1 control servers over a one week period. The objective of this
trace was to feed the predictive provisioner with a sufficiently large
history to calculate accurate summaries. The second trace was the
input trace for the experiments and only contained the number of
commit request arrivals seen on day 8. This day was a typical day,
meaning that the workload closely resembled that observed on the
previous week. This enabled us to determine whether the prediction
algorithm captured well the time-of-day effects and if it was able to

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6
x 10

4

Time (minutes)

N
u
m

 C
o
m

m
it
s

1

2

3

4

N
u
m

 I
n
s
ta

n
c
e
s

Instances

Commits

(a) Number of instances

0 200 400 600 800 1000 1200 1400 1600 1800

1

2

3

4

Time (minutes)

N
u
m

 I
n
s
ta

n
c
e
s

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Response Time

Instances

(b) Response time

10 20 30 40 50 60
0

5000

10000

15000

Time (minutes)

#
 C

o
m

m
it
 R

e
q
u
e
s
ts

Observed

Predicted

(c) Predicted versus observed workload

0 10 20 30 40 50 60
0

1

2

3

Time (minutes)

#
 I
n
s
ta

n
c
e
s

Predictive

Reactive

(d) Number of instances (only reactive)

0 10 20 30 40 50 60
−2

0

2

4

6

8

10
x 10

4

Time (minutes)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
e
c
s
)

(e) Response time (only reactive)

0

500

1000

1500

Error Normal

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
e
c
s
)

RunningUpon Failure

(f) Fault tolerance

Figure 8: Effectiveness of ObjectMQ auto-scaling for file synchronization.

assign sufficient capacity to the SyncService at all times. The
exact workload for day 8 can be seen in Fig. 8(a). The peak demand
for this trace was of 8, 514 commit requests per minute.

5.3.2 Both Reactive and Predictive Provisioning
In this test, we measured the effectiveness of ObjectMQ auto-

scaling when both the predictive and reactive provisioning mech-
anisms are enabled. The workload for the experiment was that
for day 8 after feeding the PredictiveProvisioner with 15-
minute arrival rate summaries from the previous week.

The results are shown in Fig. 8(a) and 8(b). As seen in Fig. 8(a),
the number of instances mimics the workload pattern at all times
thanks to the accurate estimations of the predictive method. If we
look at the resultant response times, plotted in Fig. 8(b), we can see
that no commit request exceeds the targeted response time of 450
msecs. The presence of spikes indicate the moments of arrival and
removal of instances. For example, if we consider the minute 600,
the response time was high because the Supervisorwas about to
add a new instance to meet our SLA of 450 msecs. Overall, we can
conclude that ObjectMQ auto-scaling is clearly effective.

5.3.3 Misprediction of Predictive Provisioning
We repeated the same experiment as above but with the predic-

tive provisioning method making a great mistake on the optimal
number of instances. To do so, we fooled the PredictiveProvi-
sioner into thinking that the expected workload pattern is that of
hour 30 of the day-8 trace when it is that of hour 20. In Fig. 8(c), we
depict the difference between the expected request arrival pattern
and the observed one by the ReactiveProvisioner through-
out this experiment.

As can be seen in Fig. 8(d), the ReactiveProvisioner is
able to correct the erroneous prediction made by the predictive
method. This is clearly observable in the first 5 minutes of the
trace. For this time period, the PredictiveProvisioner al-
located just one SyncService instance when more were needed,
leading to high response times during this period as reported by
Fig. 8(e). After this lapse of time, the ReactiveProvisioner
reacted and added the right number of instances, resulting in a sharp

reduction of the response time as shown in Fig. 8(e).

5.3.4 Fault Tolerance
Finally, we evaluated the fault tolerance of ObjectMQ auto-scaling.

One central advantage of ObjectMQ is that the underlying queueing
systems takes care that messages do not get “lost” in the event of
a system failure, which tremendously simplifies the task of making
auto-scaling fault-tolerant. In this sense, handling the failure of a
SyncService instance consists of creating a new one whenever
possible. Concretely, the Supervisor checks every second if all
required instances are up and running. If an instance is missing, the
Supervisor immediately starts a new one.

To test the responsiveness of the Supervisor in the presence
of failures, we executed the first 10 minutes of the day-8 trace,
which requires a single instance of the SyncService. The in-
stance was programmed to crash every 30 secs. We recorded the
response time of the SyncService when the instance was run-
ning and down, respectively. The results are shown in Fig. 8(f). The
boxplots show that although the response time increases notably in
the presence of failures, in practice it does not introduce delays
greater than 1 sec, meaning that ObjectMQ provides enhanced re-
liability with a slight penalty on the system performance.

6. CONCLUSIONS
In this article we present StackSync, an elastic file synchroniza-

tion architecture for open Personal Clouds. A core contribution of
our architecture is to rely on a lightweight communication frame-
work for providing programmatic elasticity to distributed objects
using message queues as their underlying communication middle-
ware. StackSync implements predictive and reactive provisioning
policies on top of ObjectMQ that adapt to real traces from the
Ubuntu One service. Also, the ObjectMQ unicast and multicast
communication primitives have considerably simplified the code of
the synchronization protocol. It also enables efficient change noti-
fication in a transparent way on top of the underlying messaging
service.

StackSync provides a reference implementation and useful tools
for rapid prototyping and evaluation. It has been extensively tested
using real traces from the Ubuntu One system to validate its elastic-
ity and efficient use of resources. Furthermore, extending an open
benchmark [4] of Personal Clouds, we obtained good results com-
paring our service with Dropbox, Box, and OneDrive. StackSync
is a stable open source project after two years of development that
is being used in several public institutions and data centers.

Finally, an interesting open question is if our model and invo-
cation abstractions can be generalized for offering programmatic
elasticity to cloud applications. Since major cloud providers al-
ready offer scalable messaging services, it could be possible for
them to offer equivalent programmable middleware and abstrac-
tions on top of their infrastructures. Messaging services could then
become part of the existing load balancing fabric in the data center.

7. ACKNOWLEDGEMENTS
This work has been partially funded by the EU FP7 project Cloud-

Spaces (FP7-317555) and Spanish research projects DELFIN (TIN-
2010-20140-C03-03) and Cloud Services and Community Clouds
(TIN2013-47245-C2-2-R) funded by the Ministry of Science and
Innovation.

8. REFERENCES
[1] I. Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and

A. Pras, “Inside dropbox: Understanding personal cloud
storage services,” in Proc. of ACM Internet Measurement
Conference (IMC), 2012, pp. 481–494.

[2] “How we have scaled dropbox,”
https://www.youtube.com/watch?v=PE4gwstWhmc.

[3] K. Jayaram, “Elastic remote methods,” in
ACM/IFIP/USENIX Middleware 2013, 2013, pp. 143–162.

[4] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras,
“Benchmarking personal cloud storage,” in Proc. of ACM
Internet Measurement Conference (IMC), 2013.

[5] R. Dievendorff, P. J. Helland, G. Chopra, and
M. Al-Ghosein, “Queued method invocations on distributed
component applications,” Jul. 23 2002, US Patent 6,425,017.

[6] A. Lima, W. Cirne, F. Brasileiro, and D. Fireman, “A case for
event-driven distributed objects,” in On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA, GADA,
and ODBASE, 2006, pp. 1705–1721.

[7] “Mongrel: message-queue-based-load-balancing,” http://zef.
me/4502/message-queue-based-load-balancingMongrel2.

[8] P. Eugster, “Type-based publish/subscribe: Concepts and
experiences,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 29, no. 1, p. 6, 2007.

[9] P. T. Eugster, R. Guerraoui, and J. Sventek, “Distributed
asynchronous collections: Abstractions for publish/subscribe
interaction,” in European Conference on Object-Oriented
Programming (ECOOP), 2000, pp. 252–276.

[10] C. Pairot, P. García, and A. F. G. Skarmeta, “Dermi: a
decentralized peer-to-peer event-based object middleware,”
in Proc. of IEEE International Conference on Distributed
Computing Systems (ICDCS), 2004, pp. 236–243.

[11] D. A. Menasce, “Mom vs. rpc: Communication models for
distributed applications,” IEEE Internet Computing, vol. 9,
no. 2, pp. 90–93, 2005.

[12] OASIS, “Amqp: Advanced message queueing protocol,”
http://www.amqp.org/.

[13] S. C. Kendall, J. Waldo, A. Wollrath, and G. Wyant, “A note
on distributed computing,” Mountain View, CA, USA, Tech.
Rep., 1994.

[14] “Kryo: Fast, efficient java serialization and cloning,”
http://code.google.com/p/kryo/.

[15] R. Gracia-Tinedo, M. Sánchez-Artigas, A. Moreno-Martínez,
C. Cotes-González, and P. García-López, “Actively
Measuring Personal Cloud Storage,” in Proc. of IEEE
CLOUD’13, 2013, pp. 301–308.

[16] H. F. G. Y. Songbin Liu, Xiaomeng Huang, “Understanding
data characteristics and access patterns in a cloud storage
system,” in Proc. of IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing (CCGRID), 2013, pp.
327–334.

[17] P. Heckel, “Syncany open source file synchronization,”
http://www.syncany.org/.

[18] “Objectmq mom-rpc middleware,”
https://github.com/cloudspaces/objectmq.

[19] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels
in cloud services: Deduplication in cloud storage,” IEEE
Security & Privacy, vol. 8, no. 6, pp. 40–47, 2010.

[20] A. Muthitacharoen, B. Chen, and D. Mazières, “A
low-bandwidth network file system,” ACM SIGOPS
Operating Systems Review (OSR), vol. 35, no. 5, pp.
174–187, 2001.

[21] K. Eshghi and H. K. Tang, “A Framework for Analyzing and
Improving Content-Based Chunking Algorithms,” http:
//www.hpl.hp.com/techreports/2005/HPL-2005-30R1.pdf,
2005.

[22] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood,
“Agile dynamic provisioning of multi-tier internet
applications,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 3, no. 1, pp. 1:1–1:39, 2008.

[23] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning,
and E. Zadok, “Generating realistic datasets for
deduplication analysis,” in Proc. of USENIX ATC, 2012, pp.
24–24.

