
14-th IEEE International Conference on Peer-to-Peer Computing

Reducing Costs in the Personal Cloud:
Is BitTorrent a Better Bet?

Rahma Chaabouni, Marc Sánchez-Artigas and Pedro Garcı́a-López
Universitat Rovira i Virgili, Tarragona (Spain)

{rahma.chaabouni|marc.sanchez|pedro.garcia}@urv.cat

Abstract—Lately, Personal Cloud storage services, like Drop-
box, have emerged as user-centric solutions that provide easy
management of the users’ data. To meet the requirements of
their clients, such services require a huge amount of storage and
bandwidth. In an attempt to reduce these costs, we focus on
maximizing the benefit that can be driven from the interest of
users in the same content by the introduction of the BitTorrent
protocol. In general, it is assumed that BitTorrent is only effective
for large files and/or large swarms, while the client-server
approach is more suited for small files and/or small swarms.
However, there is no concrete study on the comparative efficiency
of both protocols for small files yet.

In this paper, we study the download time and offload ratio in
BitTorrent compared to HTTP. Based on this study, we propose
an algorithm for the management of these protocols. The choice
of the protocol is made based on the prediction of the efficiency of
BitTorrent and HTTP for each case. We validate our algorithm
on a real trace of the Ubuntu One file service, achieving important
savings in the cloud bandwidth without degrading the download
time.

Keywords-Personal cloud, bittorrent, content distribution

I. INTRODUCTION

Cloud storage services have become very popular these
days as a paradigm that enables individuals and organizations
to store, edit and retrieve data stored in remote servers and
which can be accessed all over the Internet. Such systems are
generally equipped with a set of features that allow sharing
and collaboration between the users. That is why, nowadays,
millions of users are putting their files into online cloud storage
systems (like Dropbox, Google Drive or Box . . .) in order to
be able to access them wherever they go or as a backup.

When a client adds a new file to his personal folder, the
content is divided into small entities called “chunks” that are
pushed to the storage servers while the meta-data is kept in a
different server. Once the file is uploaded, all the synchronized
devices will be notified of the addition of the new file and will
request a copy of it from the cloud storage servers. This will
result in the repeated distribution of the same content in a
short period of time. To avoid that, the cloud can benefit from
the clients upload capacities to save its bandwidth.

In this context, we propose to introduce the BitTorrent [1]
protocol when the load on a specific file becomes high. In fact,
the efficiency of the peer-assisted paradigm makes it especially
suitable for files shared between a set of devices. In such
scenarios, it is possible to benefit from the common interest
of users in the same file and use their upload bandwidth to
offload the cloud from doing all the serving.

Unfortunately, the use of BitTorrent may incur a longer
download time compared to HTTP especially for small files.
According to previous studies, these small files form a very
high percentage of the data stored in personal cloud servers;
99% of the files are of size smaller than 16 MB according to
[2]. The main challenge is to decide when it is worth switching
to BitTorrent. The key elements in making the decision are the
gain in download time and the peers’ contribution. The former
represents the difference in download time between HTTP and
BitTorrent. The latter measures the total amount of data that
can be obtained from the peers. To our knowledge, there were
no previous studies that compare the BitTorrent and HTTP
protocols for distributing small files. Thus, it comes the need
to draw a complete comparative study between both protocols.

In this paper, we first study the download time in HTTP
and BitTorrent and measure the efficiency of each protocol.
Then, we propose a dynamic switching algorithm that can be
applied in real personal cloud systems.
Our key contributions are the following:

• We conduct a comparative study between BitTorrent
and HTTP. We first confute the general statement that
BitTorrent is not effective for small files based on a
real experimental study. Then, we propose an analytical
estimation of the distribution time in BitTorrent that takes
into account the overheads related to the nature of the
protocol. In addition, we introduce two general metrics to
decide when it is better to use one protocol with respect
to the other: the gain and the offload ratios. The gain
measures the degree of improvement in download time of
BitTorrent relative to HTTP. The offload ratio quantifies
the amount of data that can be offloaded if the peers
adopt BitTorrent. We validate all the proposed formulas
with focus on small files.

• We propose a dynamic algorithm for the decision of the
most appropriate download protocol. The algorithm uses
simple parameters that can be collected by the system
and predicts the efficacy of HTTP and BitTorrent for each
case. The most suitable protocol is decided based on the
predefined constraints.

• We analyze a public trace of the Ubuntu One system and
study the users and files characteristics and the access
patterns. Later, we apply our algorithm on the trace and
measure the amount of data that can be offloaded based
on different time constraints. We notice that the overall

978-1-4799-6201-3/14/$31.00 c©2014 IEEE 1

14-th IEEE International Conference on Peer-to-Peer Computing

offloaded data volume exceeds 16% of the total amount
of data exchanged. From an economic point of view,
this corresponds to savings of the order of hundreds to
thousands of dollars per month. We also study the effect
of file bundling on the trace and notice that it can only
improve the overall offload by a small increment.

The remainder of this paper is organized as follows: we
discuss related work in Section II and we state the problem in
Section III. In Section IV, we propose an estimation of the dis-
tribution time in BitTorrent and introduce the metrics needed
to evaluate the efficacy of HTTP and BitTorrent. Section V
presents our proposed algorithm for the management of the
download protocols. In Section VI, we evaluate the accuracy of
the proposed formulas and the efficacy of the algorithm based
on a real trace of the Ubuntu One system. Finally, section VII
concludes the paper and presents our future plans.

II. RELATED WORK

Integrating BitTorrent with the cloud is not a new idea in
the literature. Several previous studies have tried to combine
BitTorrent content distribution technologies with Cloud envi-
ronments. For instance, in [3], the authors evaluate the use
of Amazon S3 services for Science Grids. They pay special
attention to the use of BitTorrent in S3 as a cooperative cache
that may reduce costs when transferring large amounts of
data. Their experiments with an Amazon S3 seed and several
external seeds show that S3 contributes a large percentage of
the data volume (around 50% with three external seeds). They
also cancel the S3 seed and show that with their external seeds,
they only incur in an 8% increase in download time while
eliminating cloud transfer costs.

Many previous works have focused on reducing download
times for large contents using BitTorrent in Cloud settings.
BitTorrent has proven its efficiency not only for bulk syn-
chronous content distribution [4] but also for reducing transfer
times for cloud virtual images [5], [6], [7]. For example, in
[7], authors demonstrate that their BitTorrent-based solution
for distributing virtual machines delivers up to an 30x speedup
over traditional remote file system approaches.

In our previous works [8] and [9], we presented some
techniques that can be used to apply the approach particularly
in cloud storage systems. In [8], we propose to transparently
switch from HTTP to BitTorrent upon detection of a certain
critical mass demand on a specific content. The threshold
is placed on the number of users requesting the same files.
The system tests with each new request whether the current
number of requesters of the corresponding file passes the
predefined threshold or not. When the threshold is reached,
the system decides to adopt BitTorrent instead of HTTP in
order to avoid bottlenecks from the one hand, and to save the
cloud bandwidth from the other hand. In [9], we focus more
on the allocation of the data-center bandwidth. This paper is
a continuation of this previous work with more analysis and
experimental evaluation of the threshold at which the system
should switch from HTTP to BitTorrent.

For such analysis, it is essential to study both protocols and
draw a full comparison of client-server versus peer assisted
file distribution. In this context, Wei et al. [10] compared
experimentally the BitTorrent and FTP protocols. They used
the comparison to evaluate the use of a decentralized archi-
tecture for distributing data in grid systems. They come to the
conclusion that BitTorrent outperforms FTP when the file size
is greater than 20 MB. However, this limit is only relative to
their specific deployment setup and cannot be generalized in
other settings such as regular clients in a wide area network.
Another prominent work is the estimation of the minimum
distribution time of Kumar and Ross in [11]. Such estimation
is useful to get a prediction of the time needed to distribute a
certain content from a set of seeds to a set of leechers.

Finally, there are few studies related to the data character-
istics and usage patterns in personal clouds systems. Drago
et al. present in [12] a characterization of Dropbox including
typical usage, traffic patterns, and possible performance bot-
tlenecks. Another example is [2] where the authors study the
characteristics of the data stored in a personal cloud system for
campus students. They notice that 99% of the files are smaller
than 16 MB, and that most of I/O requests are for small files.

III. PROBLEM DESCRIPTION

We consider a classic personal cloud system where the
storage server is responsible for storing the clients files and
managing the corresponding requests. Each client i has an
upload bandwidth ui and a download bandwidth di.

The two following common file distribution scenarios could
benefit from our hybrid download strategy:

1. Synchronization: User A is adding a new file f to his
personal account. During the synchronization process,
the same file will be download by all the other synchro-
nized devices of the user. (Part (a) of Fig. 1)

2. Sharing: User A is sharing a file f with other users.
In this case, the file will be downloaded by all the
synchronized devices of the users. (Part (b) of Fig. 1)

(a) (b)

User A

User A

User B
User C

Fig. 1: Synchronisation and sharing in personal cloud systems

Both cases can be modeled by the problem of distributing a
file f of size F from the cloud server to L distinct nodes. We
denote by S the set of cloud seeds serving f and by u(S) their
aggregated upload speed dedicated to f . In personal clouds,
file synchronization and content distribution follow a client-
server model centralized in the cloud storage provider. The
download protocol adopted by these providers is HTTP. The

2

14-th IEEE International Conference on Peer-to-Peer Computing

TABLE I: Measured download times for small files using HTTP and BitTorrent. The seed bandwidth is limited to 5 Mbps and
the clients are homogeneous each having an upload and download speed of respectively 1 and 2 Mbps.

Clients
1 MB file 5 MB file 10 MB file

HTTP BT Time Data from HTTP BT Time Data from HTTP BT Time Data from
count difference peers difference peers difference peers

2 4 s 5.51 s -1.51 s 236.13 KB 20 s 21.52 s -1.52 s 2.9 MB 40 s 42.06 s -2.06 s 6.08 MB
3 4.8 s 5.47 s -0.67 s 819.6 KB 24 s 21.69 s +2.31 s 6.02 MB 48 s 42.73 s +5.27 s 11.97 MB
4 6.4 s 6.03 s +0.37 s 1.57 MB 32 s 23.06 s +8.94 s 7.84 MB 64 s 42.83 s +21.17 s 17.6 MB
5 8 s 6.25 s +1.75 s 1.64 MB 40 s 24.05 s +15.95 s 11.59 MB 80 s 44.68 s +35.32 s 23.64 MB

choice of this protocol is made because it uses the port 80
which is generally kept open. While this kind of architecture
(client-server) is appropriate for some uses cases, it is not
optimal when the number of nodes requesting the same content
is high, as it might result in bandwidth bottlenecks in the cloud.

A possible solution is to benefit from the high number
of requests and use the clients’ spare upload bandwidth to
offload the server. The main idea is to switch from HTTP to
BitTorrent upon detection of an increasing number of requests
on a specific content. While this switch seems to be very
convenient for big files, it might incur a significant increase
in download time for the small ones.

The main challenge is to identify the best switching point
that will help avoiding bottlenecks without affecting signifi-
cantly the download time. There are many important param-
eters that should be considered when choosing this point,
including: the size of the shared file, the bandwidth of the
cloud allocated to that file, the number of peers downloading
the file and their corresponding bandwidth capacities. To this
extent, the choice of the switching point should be based on a
complete comparative study of BitTorrent and HTTP in order
to determine the most convenient one in each specific case.
This study should be able to answer the following question:
How much time would the clients gain (or lose) and how much
bandwidth could the cloud save, if the download protocol is
switched from HTTP to BitTorrent?

For the rest of the paper, we will consider the following
notation:

- F : size of the requested file f
- S: set of providers of f (seeder nodes)
- L: set of requesters of f (leecher nodes), L= |L| is the

number of requesters
- I: set of all the nodes, I = L ∪ S
- ui: upload speed of node i ∈ L
- di: download speed of node i ∈ L
- dmin = min

i∈L
(di): download speed of the slowest leecher

requesting f
- u(A) =

∑
i∈A

ui: aggregated upload bandwidth of A ⊆ I

- d(A) =
∑
i∈A

ui: aggregated download bandwidth ofA ⊆ I

- Cf = {(ui, di), ∀i ∈ L}: set of upload and download
bandwidths of all the leechers interested in f .

IV. CLIENT-SERVER VERSUS PEER-ASSISTED FILE
DISTRIBUTION

It is commonly believed that BitTorrent is not convenient
for the distribution of small files. But, to our knowledge, there
is no proof of such assumption. Wei et al. noticed in [10] that,
in their specific experimental settings, BitTorrent outperforms
the FTP protocol only when the file size is greater than 20
MB. However, in practice, we found that BitTorrent can be
efficient for small files. We ran several experiments distributing
files of sizes 1, 5 and 10 MB using a unique seed. We used
the following common ADSL bandwidth settings: the clients
had an upload bandwidth ui=1 Mbps, a download bandwidth
di=2 Mbps and the bandwidth allocated by the cloud to each
exchanged file was u(S)=5 Mbps. We measured the average
download time in HTTP and BitTorrent for each experiment
and calculated the corresponding gain or loss in download
time. We also measured the total amount of data contributed
by the peers. We report the results in table I. All the download
times in the table are in seconds. We notice that, with four
clients downloading a 1 MB file, BitTorrent can reduce the
download time compared to HTTP. The peers contribution can
reach 40% of the total data volume in some cases.

In this section, we present our estimation for the distribution
time of small files via BitTorrent. We also introduce the gain
and offload ratios in order to measure the trade-off between
this protocol and HTTP.

A. The Distribution Time for Small Files in BitTorrent

1) Background: To get an estimation of the download time
in BitTorrent-like systems, we borrow the following formula
proposed in [11] by Kumar and Ross:

Tpa (u(S), Cf , F) =
F

min
{
dmin,

u(I)
L , u(S)

} , (1)

where Tpa is the minimum time needed to distribute a file of
size F to L leechers. This time depends on the download speed
of the slowest peer dmin, the aggregated upload bandwidth
of all the nodes divided equally between all the L leechers,
and the upload bandwidth of the cloud seed(s). The authors
presented in their paper a complete proof of the download
time. The proof is organized into the following exhaustive
cases depending on the parameter that may be responsible for
the transfer bottleneck:

3

14-th IEEE International Conference on Peer-to-Peer Computing

Fig. 2: General distribution scheme structure: Leecher li (i ∈
{1, 2, 3}) downloads “fresh” data at the rate si(t) from the
seeds. The data is replicated later to the other 2 leechers at a
rate xi(t) < si(t).

1) Case A: dmin ≤ min
{
u(I)

L , u(S)
}

and dmin ≤ u(L)
L−1 :

In this case, the download speed of the peers is limited
by the download bandwidth of the slowest peer in the
swarm dmin.

2) Case B: dmin ≤ min
{
u(I)

L , u(S)
}

and u(L)
L−1 ≤ dmin:

In Case B, the transfer is limited by the maximum speed
at which a leecher can get data from the other leechers,
that is u(L)

L−1 .
3) Case C: u(I)

L ≤ min {dmin, u(S)}:
The transfer bottleneck in this case is limited by the
aggregated upload speed of the network u(I) divided
equally between the L leechers.

4) Case D: u(S) ≤ min
{
dmin,

u(I)
L

}
:

In this case, the upload bandwidth of the seed u(S) is
the maximum limit at which each peer can download
“fresh” content.

For each of the cases listed above, the authors in [11]
constructed a seeding rate profile si(t) which denotes the bit
rate at which the seeds send pieces to leecher i at time t.
The adopted distribution scheme is the following: As soon as
a leecher li begins to receive data from the seed, it replicates
it to each of the other (L− 1) leechers at a rate xi(t), where
xi(t) ≤ si(t), as shown in Figure 2. For each case, the
distribution scheme consists of L application-level multicast
trees, each rooted at a specific seed, passing through one of
the leechers and terminating at each of the L−1 other leechers.

To calculate the offload ratio in the following section, we
need to measure the volume of data offloaded from the cloud.
We present here the seeding rate for each case. This rate,
denoted by si(t) for the sake of clarity, depends on the time
t, the file size F , the upload speed of the seeds u(S), and the
set of upload and download speeds of all the leechers Cf . For

TABLE II: Estimated versus experimental distribution time
with BitTorrent of a 1MB file.

Clients count 2 3 4 5

Estimated time 4 s 4 s 4 s 4 s
Experimental time 5.51 s 5.47 s 6.03 s 6.25 s

Absolute error 1.51 s 1.47 s 2.03 s 2.25 s
Relative error 37.75% 36.75% 50.75% 56.25%

a complete proof and more details regarding these formulas,
we kindly refer the reader to the original paper [11].

si(t) =

ui×dmin

u(L) Case A
ui−u(L)

L−1 + dmin Case B
ui−u(L)

L−1 + u(I)
L Case C

ui×u(S)
u(L) Case D

(2)

2) Adding the BitTorrent overheads: One of the limitations
of (1) is that it does not take into consideration the overhead
that peer-assisted systems may present compared to the client-
server ones. These overheads may be neglected for large files.
However, they cannot be ignored for the small ones, for which
the download time is in the order of a few seconds.

To illustrate the important role that this overhead plays in
the distribution of small files, we ran several experiments
distributing a 1MB file to several clients. We considered
swarms whose size ranged from 2 to 5. We considered the
same bandwidth settings as in the experiments used in Table I.
We measured the experimental download times and compared
them to the estimated ones using (1). We calculated also the
absolute and relative errors. We group all these results in Table
II, where the estimated and experimental download times, and
the absolute error are all measured in seconds.

As we can see in Table II, the difference between the
estimated and experimental results can exceed 50% in some
cases, which proves that an accurate estimation should include
the protocol overheads. These overheads can be mainly of two
types, each related to a different phase of BitTorrent:

- Overhead related to the start-up phase: Before starting
the download, there are a few steps that each leecher
needs to perform: First, the leecher has to get and read
the .torrent file that contains all the meta-info data about
the requested content. And then, it needs to contact
the tracker(s) to get a list of other peers sharing or
downloading the same file. After locating and connecting
to the peers, the leecher can finally begin the transfer.
This overhead is relative to the architecture of the system.
It can be monitored and dynamically adapted based on
the load of the system. We experimentally studied this
overhead and noticed that it can be simply modeled as
a constant duration αbt added to the download time. For
more details about the experimental evaluation of αbt,
please refer to Fig. 3.

- Overhead related to the download phase: In BitTorrent,

4

14-th IEEE International Conference on Peer-to-Peer Computing

peers upload to each other even though they may only
have parts of the file. This can result in upload inter-
ruptions when the uploader has no pieces to offer to his
unchoked peers.
Fortunately, this problem has already been tackled in [13],
where the authors introduced a parameter to scale down
the upload speed of leechers. This parameter, denoted as
η ∈ [0, 1], measures the effectiveness of file sharing. It
can be computed as follows:

η = 1− P
{ downloader i has no piece that

his unchoked peers need

}
.

The authors derived this probability and came to the
conclusion that η can be expressed as: 1

η = 1−
N−1∑
ni=0

1

N

(
N − ni

N (ni + 1)

)k
,

where N is the number of pieces of the served file and
k the number connections a peer has.
The authors in [13] focused on the case of large files
and concluded that η ≈ 1 when N is high. Let us now
consider a small file of 1MB composed of k = 4 chunks
each of 256KB. For N = 2, the above equation yields
η = 0.7069, which means that there is a probability of
about 30% that a peer has no pieces for its unchoked
peers. This can affect the download time and make it
relatively longer. Thus, this overhead should be also con-
sidered when estimating the download time in BitTorrent.

Considering the above listed overheads, we were able to extend
Eq. (1) in order to provide an accurate estimation of the
download time in BitTorrent as follows:

Tbt (u(S), Cf , F) =
F

min
{
dmin,

u′ (I)
L , u(S)

} + αbt, (3)

where u
′
(I) = u(S)+η u(L) is the scaled aggregated upload

speed of all the nodes, including both the seeders and the
leechers.

B. Comparative Analysis of BitTorrent Relative to HTTP

We introduce here two metrics that measure the comparative
efficiency of HTTP and BitTorrent, especially for small files.
These metrics are the gain and offload ratios. The former repre-
sents the normalized ratio of the difference between download
times. The latter models the amount of data offloaded from the
cloud.

1) Gain Ratio: To measure the difference between the
download times of client-server and peer-assisted systems, we
introduce the gain ratio as follows:

Gain(u(S), Cf , F) =
Tcs(u(S), Cf , F)− Tbt(u(S), Cf , F)

Tcs(u(S), Cf , F)
,

where Tcs is the distribution time in a client-server architec-
ture. Tcs is limited by the download speed of the slowest peer

1The rectified version of [13] which contains the correct expression of η
can be found at: http://users.encs.concordia.ca/∼dongyu/paper/bittorrent.pdf

dmin or the bandwidth of all the seeds u(S) divided equally
between the L clients. Tcs can be simply defined as follows:

Tcs (u(S), Cf , F) =
F

min
{
dmin,

u(S)
L

} . (4)

Clearly, the gain can take negative or positive values and
can be also equal to zero. For instance, if the gain is positive,
this means that downloading the file via BitTorrent takes less
time than using HTTP. To derive the equation of the gain,
we distinguish four different cases based on the values of
min

{
dmin,

u′(I)
L , u(S)

}
and min

{
dmin,

u(S)
L

}
:

1) Case I: dmin ≤ u(S)
L and dmin ≤ min

{
u′(I)

L , u(S)
}

:
In this case, the bottleneck in HTTP and BitTorrent is the
download speed of the slowest peer. The corresponding
download times are: Tcs = F

dmin
and Tbt = F

dmin
+αbt.

2) Case II: u(S)
L ≤ dmin and dmin ≤ min

{
u′(I)

L , u(S)
}

:

In Case II, the bottleneck in HTTP is u(S)
L , while

it is equal to dmin in BitTorrent. The corresponding
download times are: Tcs = F×L

u(S) and Tbt = F
dmin

+ αbt.

3) Case III: u′(I)
L ≤ min {dmin, u(S)}:

In this case, the bottleneck in BitTorrent is u′(I)
L . And

since u(S) ≤ u
′
(I) and u′(I)

L ≤ dmin, this means that
u(S)

L is always ≤ dmin. Thus, in this case, Tcs = F×L
u(S)

and Tbt = F×L
u′(I) + αbt.

4) Case IV: u(S) ≤ min
{
dmin,

u′(I)
L

}
:

Since u(S)
L ≤ u(S) and u(S) ≤ dmin, this means that

u(S)
L is always ≤ dmin. In this case, Tcs = F×L

u(S) and
Tbt =

F
u(S) + αbt.

For each of the previous cases, we substitute Tcs and Tbt
to derive the gain ratio as follows:

Gain (u(S), Cf , F) =

−αbt×dmin

F Case I

1− u(S)
L.dmin

− αbt.u(S)
F×L Case II

1− u(S)
u′(I) −

αbt.u(S)
F×L Case III

1− 1
L −

αbt×u(S)
F×L Case IV

(5)
2) Offload Ratio: The offload ratio defines the amount of

data offloaded from the cloud seed. It is determined by the
total amount of data exchanged between the peers divided by
the total downloaded data volume:

Offload (u(S), Cf , F) =
data from peers
total data sent

= 1− data from cloud
total data sent

= 1−

∑
i∈L

∫ Tbt(u(S),Cf ,F)

0
si(t)dt

F × L
,

where si(t) is the seeding rate. Taking into consideration the
seeding rate as defined in (2), we can deduce the offload rates
as follows:

5

14-th IEEE International Conference on Peer-to-Peer Computing

Offload (u(S), Cf , F) =

1− 1
L Case A

η.u(L)
L×dmin

Case B

1− u(S)
u′(I) Case C

1− 1
L Case D

(6)

V. SWITCHING ALGORITHM

In this section, we first study the criteria that can be consid-
ered in the definition of the switching point. We present later
our proposed algorithm for the management of the download
protocols.

A. Switching Criteria

We presented in the previous section two key parameters
that can help us measure the tradeoff between HTTP and
BitTorrent. The gain ratio measures the gain or loss in time
that the leechers might experience when switching from HTTP
to BitTorrent. The offload ratio gives an estimation of the
amount of data that can be offloaded from the server thanks
to BitTorrent.

It is clear that if we neglect a potential increase in download
time caused by the switch to BitTorrent, the overall offload
ratio will always be the highest possible. However, it is equally
important to not degrade significantly the download service for
the clients. We distinguish the four following cases based on
the constraints that can be placed on these parameters:

i. The first possible solution is to put no constraints, that is,
BitTorrent is always used when the number of leechers
L≥ 2. In this case, the overall offload ratio will be
the highest possible. But, the clients might experience
a longer download time.

ii. Another possible solution is to put a limit on the offload
ratio: the cloud switches to BitTorrent only when the
offload is important. For example, the cloud can decide
to switch only when the estimated offloaded bandwidth
is above 50% of the total bandwidth, regardless of the
download time.

iii. The third possible case is fixing a gain limit: the cloud
decides to switch only when the download time in Bit-
Torrent compared to HTTP does not exceed a certain
threshold. This threshold can be put on the gain ratio
to ensure a minimal bound on the permitted loss in
download time.

iv. The last possibility is fixing both the gain and offload
ratios. While this case presents an efficient strategy to
avoid unnecessary switches, it might be too strict and
could limit the overall offload ratio.

After listing all the possible scenarios, we believe that the
most convenient procedure to manage the download protocols
is the third one. To this extent, we pose τ as the gain constraint.
If τ ≤ 0, it means that the system tolerates a potential increase
in the download time that could occur because of the switch.
However, a positive value of τ reflects a stricter constraint.

For instance, τ = −0.5 means that an increase up to 50% of
the download time is tolerated. Note that a constraint of this
magnitude is possible, because τ = −0.5 could represent, for
small files, a slight increase in the download time, in the order
of a few seconds, to be more precise.
τ can take different values depending on the type of the

user account. The choice of its concrete value is left up to
the system administrator depending on his needs. A possible
concrete example of τ is the following: Suppose that a given
service provider cannot gain in bandwidth at the expense of
worsening the download time for premium users who are
those who are paying money for the service. For this type
of clients, τ should be always ≥ 0. However, for free users,
which represent a significant portion of the overall user mass2,
it is possible to loosen that constraint, and tolerate delays of
up to 50% (which corresponds to τ = −0.5), for instance.

To get an idea about the tradeoff between HTTP and
BitTorrent, please refer to Table III in which we measured
the overall offload ratio based on different values of τ .

B. Implementation of the Switching Algorithm

For the management of the download protocols, we propose
Algorithm 1, which is executed upon the arrival of each new
download request on a certain file.

Algorithm 1 Protocol Decision Algorithm

Require: τ : the gain constraint
Require: switchedf : the state of file f
Require: F : the size of file f
Require: u(S): the upload speed of the seeder nodes
Require: Cf = {(ui, di), ∀i ∈ L}: set of upload and

download bandwidths of all the leechers interested in f .
if (not switchedf) then

calculate Gain(u(S), Cf , F)
if (Gain(u(S), Cf , F) ≥ τ) then

create a .torrent
launch a BT seed in the cloud
for all clients requesting f do

get the .torrent from the server
launch a BT leecher
start BT transfer

end for
switchedf=true

else
download the file via HTTP

end if
else

send the .torrent to the new requester
launch a BT leecher inside that requester

end if

We suppose that our system keeps track of the state of each
file f as a boolean value switchedf , where switchedf=true if

2 96% of Dropbox clients use the free version of the service (Souce:
http://www.economist.com/blogs/babbage/2012/12/dropbox)

6

14-th IEEE International Conference on Peer-to-Peer Computing

2 3 4 5 6 7 8 9 10
L: number of leechers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
lp
h
a
 (
in
 s
e
co
n
d
s)

Fig. 3: The overhead αbt: time before clients start downloading
for a file of 1 MB size

the current download protocol is BitTorrent (the switch has
already taken place) and false otherwise.

The algorithm works as follows: Whenever there is a
new download request on a file f , the system verifies the
download protocol already in use to distribute f . If it is
being downloaded by the default protocol (HTTP), the system
computes the estimated gain and compares it with τ . If the
resulting gain is below the constraint, the file will be sent to
the requester via HTTP. Otherwise, the distribution protocol
will be switched to BitTorrent. A .torrent file will be created
and sent to all the clients requesting f . In parallel, a seed will
be launched in the cloud. Upon the reception of the .torrent
file, a BitTorrent leecher will be launched inside each of these
clients. After this phase, the clients will start downloading the
file in BitTorrent, while offloading the cloud from doing all
the serving.

VI. VALIDATION

In this section, we present our experimental results. In the
first part of this section, we verify the accuracy of the pre-
viously proposed formulas: the distribution time in BitTorrent
and the gain and offload ratios. The second part is dedicated to
the validation of the algorithm: we study a trace of the Ubuntu
One (UB1) system and measure the amount of bandwidth that
can be saved if we apply the algorithm.

A. Part I: Validation of the formulas

1) The Overhead αbt and the Download Time in BitTorrent:
To validate our extended formulas of the download time, we
run repeated experiments using a 1 MB file. The experimental
scenario is to distribute the file via BitTorrent starting with a
unique seed. The reasons behind the choice of such a small
file lies in the fact that in personal cloud systems most of the
files are in the order of a few megabytes in size.
The experimental setting is the following: the upload band-
width of the cloud dedicated for the file is u(S) = 5 Mbps.
The number of clients ranges from 2 to 10. Each of them has

2 3 4 5 6 7 8 9 10
L: number of leechers

0
1
2
3
4
5
6
7
8
9

10
11
12

Do
w
nl

oa
d

tim
e

(in
 s

ec
on

ds
)

KR Estimation Our Estimation

Fig. 4: Comparison of the experimental download time (box-
plot), our estimation and the estimation proposed in [11] (KR
Estimation)

Number of leechers

2 4 6 8
10

12
File

 siz
e in MB

5
10

15
20

25

Ga
in

 R
at

io

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6

Estimated Gain
Exprimental Gain
τ=0 Plane

Fig. 5: Experimental versus estimated gain ratios and the τ = 0
gain plane

an upload bandwidth of 1 Mbps and a download bandwidth
of 2 Mbps.

We repeated each experiment 5 times and measured the
average values of the download time and the overhead αbt for
each client. Figure 3 represents a box-plot of the time interval
between the moments when the clients are launched and when
they start downloading the file. This time interval corresponds
to αbt. We notice that the average value of the overhead is
about 2.5 seconds for our architecture. Using this value for
the discovery overhead (αbt = 2.5), Figure 4 compares our
estimation, the one proposed in [11] and the experimental
results. We can clearly see that the error can reach 40% in the
case of Kumar and Ross’s estimation. This error is reduced to
about 10% using the estimation we propose.

2) Gain and Offload Ratios: Since the gain is a key
parameter in the protocol decision algorithm, it is important
to verify the accuracy of our estimation compared to real
experimental values.

We ran experiments using the same bandwidth distribution

7

14-th IEEE International Conference on Peer-to-Peer Computing

2 4 6 8 10 12
L: number of leehers

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Experimental Gain
Estimated Gain
Experimental Offload
Estimated Offload

(a) 1 megabyte file

2 4 6 8 10 12
L: number of leehers

0.0

0.2

0.4

0.6

Experimental Gain
Estimated Gain
Experimental Offload
Estimated Offload

(b) 5 megabyte file

2 4 6 8 10 12
L: number of leehers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Experimental Gain
Estimated Gain
Experimental Offload
Estimated Offload

(c) 25 megabyte file

Fig. 6: Estimated versus experimental gain and offload ratios for files with different sizes

(a) File sizes distribution (b) CDF file sizes

1 2 >3
Number of devices

0

20

40

60

80

100

Pe
rc
en

ta
ge

 o
f u

se
rs
(%

)

(c) Number of devices per account

Fig. 7: Data and User characteristics

as mentioned above. The goal is to compare the experimental
and the estimated gain ratios when distributing a file to a set of
nodes whose size range from 2 to 12 nodes. The file size varies
from 1 to 25 MB. Figure 5 represents a 3-dimensional plot of
the results. The Gain= 0 plane represents the threshold τ = 0.
As we can see , the experimental and estimated surfaces are
very close and the difference between them is slight.

Figures 6a, 6b and 6c present some vertical sections of the
previous plot for files of size 1, 5 and 25 megabytes along
with the corresponding estimation and experimental values of
the offload ratio. We notice that the estimations are very close
to the experimental results in most cases. For instance, for the
smallest file of size 1 MB, the error in the gain estimation is
moderate for very small swarms with only 2 or 3 clients. That
error could represent an increase in the download time of a
few seconds. However, we notice that the bigger the swarms is,
the closer the estimation gets, in a way that the error becomes
negligible for swarms of size ≥ 4 clients. For bigger files, the
estimation is very accurate and the error does not exceed 5%
in most cases.

B. Part II: Validation of the algorithm

1) Ubuntu One trace: To validate our proposal and measure
how much bandwidth can be saved using our algorithm, we
used a real trace 3 of UB1 [14]. The trace was collected based

3 Inquires about the trace should be sent via Email to the first author.

on the behavior of real users, each represented by a hash code
for privacy reasons. Each line of the trace represents an opera-
tion of download or upload performed by a user on a file. For
each operation, several information were collected, including:
the time-stamp, the type of operation (‘up’ or ‘down’), the
hash and size of the file in question and finally the identifier
of the user. For a period of 30 hours, 3,318,950 operations
on 1,887,247 distinct files were logged including 2,231,791
upload operations (67.24%) and 1,087,159 (32.76%) download
operations. The total downloaded volume was about 1,240.25
GB. The total number of different users involved in this trace
was 19,319.

a) Data and User Characteristics: In this section, we
study the file distribution based on the data collected in the
trace. Figure 7a represents the sizes of all the files included
in the trace. These sizes range from 0 bytes (for folders) to
over 7 GB. Figure 7b represents the portion of the CDF of the
file sizes smaller than 1 MB. We notice that about 90% of the
files are less than 1 MB in size. To be more concrete, we find
out that 92.88% of the files are smaller than 1 MB, 4.53% are
between 1 and 5 MB and only about 2.59% of files are over
5 MB. Figure 7c presents the distribution of the number of
devices per client. We notice that 72.32% of the clients have
only one device, 25.64% have 2 devices and only 2.04% have
more than 3 devices.

It is important to signal here that the trace is not very

8

14-th IEEE International Conference on Peer-to-Peer Computing

0
1000
2000
3000
4000
5000
6000
7000
8000

Upload Operations

0 500 1000 1500
Time in minutes

0

500

1000

1500

2000

Download Operations

N
u
m
b
e
r
o
f
O
p
e
ra
ti
o
n
s

(a) Upload vs. download operations

0
5

10
15
20
25
30 Uploaded Volume

0 500 1000 1500
Time in minutes

0
1
2
3
4
5
6
7
8
9 Downloaded Volume

Da
ta
 V
ol
um

e
(in

 G
B)

(b) Uploaded vs. downloaded data volume

Fig. 8: Input/Output traffic over 30 hours

favorable to us since more that 70% of the clients use the UB1
service to upload content only, thereby limiting the benefits of
our switching mechanism to a reduced number of cases.

b) Input/Output Patterns: To characterize the UB1 work-
load, we plot in Figure 8a the total number of upload and
download operations per minute. Also, the total amount of
data uploaded and downloaded during the same time interval
is plotted in Figure 8b.

We notice that the upload operations are more frequent
than downloads and the gap between the two curves is high
especially in terms of data volume. This indicates that there
are few accesses to the files after being uploaded, which leads
to the conclusion that most of the users are using this service
only for backup.

2) Results: We applied our algorithm on the trace using the
following settings:
• The upload speed of the seed: u(S) = 2 Mbps. We

remind our reader that u(S) does not refer to the total
upload bandwidth of the cloud, but to the portion of its
bandwidth allocated to the each specific file/swarm.

• The clients are homogeneous and have an upload and
download speed of 512 Kbps and 1 Mbps, respectively.

• The peers discovery overhead is αbt = 2.5 seconds.
We went through the trace focusing on the files that have

been downloaded more than once. Our goal was to identify the
files with collapsing download times which are the candidates
for the switch to BitTorrent. In other words, for each file,
we checked if there were consecutive download operations
(at time stamps t1 and t2) that came before the end of the
theoretical download time in HTTP: t2 − t1 ≤ Tcs. Tcs
is calculated based on the settings listed above. After the
identification of these files, we calculated for each case the
gain ratio using (5). Depending on the gain value and the τ
constraint, we identified the files that were subject to switching
and measured the corresponding offloaded volume of data
using (6).

Table III presents the results of the application of Algorithm
1 on the trace. The overall offload percentage is calculated

TABLE III: Offloaded volume and offload percentage resulting
from the application of Algorithm 1 using different τ values

Constraint Offloaded Volume Overall Offload%

τ = −1.0 207.35 GB 16.7183%
τ = −0.5 207.33 GB 16.7170%
τ = −0.2 207.04 GB 16.6938%
τ = 0.0 137.64 GB 11.0979%
τ = 0.2 137.59 GB 11.0942%
τ = 0.5 90.60 GB 7.3055%
τ = 1.0 0.0 GB 0.0%

based on the percentage ratio between the offloaded volume
and the total downloaded volume (1,240.25 GB). We varied
the values of the switching constraint τ in order to get a global
idea of the gains, and we noticed that if we fixed τ to tolerate
losses of 20% (τ = −0.2), the cloud load could be reduced
up to 16%. In the case of stricter constraints, e.g., no loss
is tolerated (τ = 0), or no switch unless we gain 20% in
download time (τ = 0.2), the overall offload percentage falls
down to around 11%.

Even though the UB1 system is not very popular, our
algorithm could achieve savings up to 16% in terms of cloud
bandwidth. We strongly believe that this offload would be
higher on other systems, like Dropbox or Google Drive, which
have more users and more file sharing.

Monetary Cost: To measure the amount a money that can
be saved using our algorithm, we consider a cloud storage
system that uses Amazon Simple Storage Service (S3) as a
storage back-end.
At the time of writing this paper, the standard charging rates
for data transfer were4:
• $0.0 per GB for the first 1 GB/month
• $0.12 per GB for transfers up to 10 TB/month
• $0.09 per GB for the next 40 TB/month

4More information about the complete and updated rates can be found at
http://aws.amazon.com/s3/pricing/

9

14-th IEEE International Conference on Peer-to-Peer Computing

TABLE IV: Results using file bundling

Bundling Period Constraint Offloaded Volume Overall Offload%

10 seconds
τ = −0.2 213.97 GB 17.2526%
τ = 0.0 140.95 GB 11.3658 %

30 seconds
τ = −0.2 214.43 GB 17.2895 %
τ = 0.0 140.95 GB 11.3658 %

Using these rates, the overall data transfer cost is ap-
proximately $3, 000 per month. Fixing the gain constraint to
τ = −1 would lead to savings of about $450 per month which
is about $5, 374 per year. These savings will be higher for
systems that involve more sharing than UB1.

Effect of file bundling: Bundling consists in grouping
a batch of small files that need to be transferred as a single
object. This technique is used by Dropbox [15] in an attempt
to reduce both transmission latency and control overhead.

If we take a look at equation (5), we notice that the gain
ratio and the file size F are related in a way that if F increases,
the gain will increase too. Similarly, file bundling should
presumably increase the overall offload too. Here, we study
the effect of applying this technique in our trace. For a given
“bundling period”, we group the files that are requested by the
same users and consider them as a single file, so that a single
.torrent file is created for all of them.

Table IV shows the results of grouping files considering
2 different bundling periods. We notice that, compared to the
previous results, bundling is not very effective in this scenario:
a slight improvement of the overall offload percentage in the
order of 0.55% for τ = −0.2 and about 0.26% for τ = 0. Even
with a long grouping period of 30 seconds, the increase of
the overall offload percentage remains limited: in the order of
0.03% compared to a bundling period of 10 seconds. However,
these results do not imply that the use of this technique could
not be effective in increasing the offload rate in other systems.

VII. CONCLUSION

In this paper, we presented two metrics that can be used to
measure the efficacy of HTTP and BitTorrent for file transfer:
the gain and the offload ratios. They can be used in many
scenarios as a means of evaluation of the most appropriate
download protocol for each case. We used these metrics
to develop a solution for reducing costs in personal cloud
systems. The cloud server can benefit from the spare upload
bandwidth of the clients by switching the transfer protocol
from HTTP to BitTorrent. Our proposed algorithm for the
management of download protocols studies for each specific
case the benefit that can be driven from the switch. Based
on the threshold fixed on download time, it decides the best
protocol to use.
We studied a trace of the access pattern of UB1 collected over
30 hours. We measured the overall amount of data that can be
offloaded using our switching algorithm. Our results show that
about 16% of the provisioned cloud bandwidth can be saved
without degrading the download time service.

Our future plans include the study of the allocation of the
cloud’s upload bandwidth to the different swarms. We focus
on optimizing the usage of cloud resources by studying the
relationship between the file size and the swarm characteristics
in defining the minimum amount of bandwidth needed to
distribute the requested file.

ACKNOWLEDGMENTS

This work has been partially funded by the EU in the context
of the project CloudSpaces: Open Service Platform for the
Next Generation of Personal clouds (FP7-317555) and spanish
research project DELFIN (TIN2010-20140-C03-03) funded by
the Ministry of Science and Innovation.

REFERENCES

[1] B. Cohen, “Incentives Build Robustness in BitTorrent,” 2003.
[2] S. Liu, X. Huang, H. Fu, and G. Yang, “Understanding data character-

istics and access patterns in a cloud storage system,” in Cluster, Cloud
and Grid Computing (CCGrid), 2013 13th IEEE/ACM International
Symposium on, May 2013, pp. 327–334.

[3] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
s3 for science grids: a viable solution?” in Proceedings of the 2008
international workshop on Data-aware distributed computing, ser.
DADC ’08. New York, NY, USA: ACM, 2008, pp. 55–64. [Online].
Available: http://doi.acm.org/10.1145/1383519.1383526

[4] S. Priyanka, R. Kalpana, and M. Hemalatha, “Reducing upload and
Download Time on Cloud using Content Distribution Algorithm,” In-
ternational Journal on Recent and Innovation Trends in Computing and
Communication, vol. 1, pp. 101–105, 2013.

[5] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, and
U. Schwickerath, “Image distribution mechanisms in large scale cloud
providers,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, 2010, pp. 112–117.

[6] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben, “Efficient
distribution of virtual machines for cloud computing,” in Parallel,
Distributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, 2010, pp. 567–574.

[7] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh, and
D. Rubenstein, “VMtorrent: virtual appliances on-demand,” in SIG-
COMM, 2010, pp. 453–454.

[8] R. Chaabouni, P. Garcia-Lopez, M. Sanchez-Artigas, S. Ferrer-Celma,
and C. Cebrian, “Boosting content delivery with bittorrent in online
cloud storage services,” in Peer-to-Peer Computing (P2P), 2013 IEEE
Thirteenth International Conference on, Sept 2013, pp. 1–2.

[9] X. Leon, R. Chaabouni, M. Sanchez-Artigas, and P. Garcia-Lopez,
“Smart cloud seeding for bittorrent in datacenters,” Internet Computing,
IEEE, vol. 18, no. 4, pp. 47–54, July 2014.

[10] B. Wei, G. Fedak, and F. Cappello, “Scheduling independent tasks
sharing large data distributed with bittorrent,” in Grid Computing, 2005.
The 6th IEEE/ACM International Workshop on, Nov 2005, pp. 8 pp.–.

[11] R. Kumar and K. Ross, “Peer-assisted file distribution: The minimum
distribution time,” in Hot Topics in Web Systems and Technologies, 2006.
HOTWEB ’06. 1st IEEE Workshop on, Nov 2006, pp. 1–11.

[12] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside dropbox: Understanding personal cloud storage services,” in
Proceedings of the 2012 ACM Conference on Internet Measurement
Conference, ser. IMC ’12. New York, NY, USA: ACM, 2012, pp. 481–
494. [Online]. Available: http://doi.acm.org/10.1145/2398776.2398827

[13] D. Qiu and R. Srikant, “Modeling and performance analysis
of bittorrent-like peer-to-peer networks,” in Proceedings of the
2004 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, ser. SIGCOMM ’04. New
York, NY, USA: ACM, 2004, pp. 367–378. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015508

[14] “Ubuntu one file services,” http://one.ubuntu.com/.
[15] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking

personal cloud storage,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 205–212.

10

