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Abstract. Due to the abundance of attractive services available on the
cloud, people are placing an increasing amount of their data online on
different cloud platforms. However, given the recent large-scale attacks
on users data, privacy has become an important issue. Ordinary users
cannot be expected to manually specify which of their data is sensitive,
or to take appropriate measures to protect such data. Furthermore, usu-
ally most people are not aware of the privacy risk that different shared
data items can pose. In this paper, we present a novel conceptual frame-
work in which privacy risk is automatically calculated using the sharing
context of data items. To overcome ignorance of privacy risk on the part
of most users, we use a crowdsourcing based approach. We use Item Re-
sponse Theory (IRT) on top of this crowdsourced data to determine the
sensitivity of items and diverse attitudes of users towards privacy. First,
we determine the feasibility of IRT for the cloud scenario by asking work-
ers feedback on Amazon mTurk on various sharing scenarios. We obtain
a good fit of the responses with the theory, and thus show that IRT,
a well-known psychometric model for educational purposes, can be ap-
plied to the cloud scenario. Then, we present a lightweight mechanism
such that users can crowdsource their sharing contexts with the server
and determine the risk of sharing particular data item(s) privately. Fi-
nally, we use the Enron dataset to simulate our conceptual framework
and also provide experimental results using synthetic data. We show that
our scheme converges quickly and provides accurate privacy risk scores
under varying conditions.

1 Introduction
1.1 Motivation and Challenges

Cloud computing platforms have become a ubiquitous presence in our digital
lives. Given the pervasiveness of useful cloud services such as storage, online
document editing, media streaming, etc., data which would normally be on the
user’s local machine, now invariably lies in the cloud. Recent large scale leakage
of data [1] has raised serious concerns about users privacy. Prior to designing
privacy mechanisms, it is important to identify the challenges of privacy provision
in the cloud, which can inform potential solutions. In particular, we notice three
major stumbling blocks towards privacy provision in the cloud:

a) Privacy vs Services Dilemma: To tackle privacy concerns, some cloud
computing companies provide the users with the option of client-side encryp-
tion to protect the data before it leaves the users’ device, thus preventing any
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other entity from data decryption, including the cloud provider itself. However,
while this approach eliminates most of the data privacy concerns, its main disad-
vantage is that the user cannot readily utilize existing cloud services. For some
services, attempts exist at designing alternatives that operate over encrypted
data, benefiting from the recent breakthroughs in homomorphic encryption [2].
In addition to resulting in services orders of magnitude less efficient than their
counterparts, homomorphic encryption is provably not sufficient for construct-
ing several essential services involving multiple users [3]. Furthermore, resorting
to homomorphic encryption as the ultimate solution requires rewriting most of
the cloud applications’ code to operate over the encrypted data. New versions
of existing LATEXcompilers, photo filters, music recommenders, etc., based on
homomorphic encryption, will need to be programmed with the goal of keeping
all data private, which is evidently non-realistic.

b) Difficulty of manually assessing data privacy levels: Users cannot
be expected to individually assess the sensitivity level for each item before they
share it as that can require a lot of investment in terms of time and effort,
coupled with technical expertise. A recent survey [4] has shown that, in one out
of four organizations, the management has little or no understanding of what
constitutes sensitive data. Evidently, this fraction is expected to be significantly
higher for individual users.

c) General lack of awareness about privacy: This includes limited no-
tions about privacy being restricted to hiding ‘sensitive’ content, such as personal
identification numbers, credit card details etc. Often, the metadata associated
with the data item, the location and device from which the item is shared, the
entity with whom the data is shared, etc., can be as important as the content of
the data itself.

In our solution for privacy provision in the cloud, we seek to overcome these
above hurdles.

1.2 Approach and Contributions

How do we address the ‘stumbling blocks’ that we identified in Section 1.1?
First, we show how we can use a centralized solution to facilitate crowdsourcing
for privacy without requiring revelation of users preferences. We argue that to
achieve this, cryptographic methods are infeasible, and we present a novel design
that allows users to reveal their preferences to the central server privately. We
show how an existing psychologically grounded method for analyzing users pref-
erences and data properties, can be rigorously used to analyze this crowdsourced
information. Users can then reap the benefits of this crowdsourced information
as the server analyzes it to provide them with sensitivity indicators when they
share new data.

By crowdsourcing the solution, users are no longer isolated individuals who
lack privacy awareness. They can now be guided by the Wisdom of the Crowd.
Also, they do not have to exert manual effort to find the sensitivity associ-
ated with each item they share, as the server can guide them automatically.
Furthermore, they need not worry about getting stuck with ‘bad’ crowdsourced
information, i.e., about majority of users being as clueless about privacy as them.
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This is because the psychometric method we use for analyzing this information,
Item Response Theory, ensures that computed parameters of data items do not
only apply to a specific sample of people. The solution would ensure, for exam-
ple, that sharing compromising photos of oneself with the public is deemed risky
even when majority of the people in the system are doing so. Only a few con-
servative users in the system are enough to keep the system risk-averse. Finally,
we validate our design with both simulation and empirical data, thus showing
the feasibility of our solution.

Specifically, we make the following main contributions in this paper:

– We propose a privacy framework, which is specific to the cloud scenario and
incorporates the nuances of data sharing within cloud, such as the Privacy
vs Services Dilemma and Lack of Privacy Awareness and Effort on part of
most users.

– We create a realistic vocabulary for a personal cloud, and use it to create
‘Human Intelligence Tasks’ on the Amazon Mechanical Turk. We measure
people’s responses, in terms of their privacy attitudes, against the Item Re-
sponse Theory (IRT) and find a good fit. We thereby demonstrate that Item
Response Theory, a well-used psychometric model for diverse purposes, can
be applied fruitfully in the cloud scenario.

– Our solution depends on crowdsourcing the contexts and policies associated
with shared items. The sensitivity associated with different items is deter-
mined by grouping together same (or similar) contexts and analyzing differ-
ent policies set by people with different privacy attitudes. However, we also
have to ensure the privacy of this aggregated context information. Towards
that aim, we provide a lightweight mechanism based on K-Anonymity [5] for
privately calculating similarity between items in a centralized way, without
depending on infeasible cryptographic methods.

– We perform a set of experiments using synthetic data, with various graphs for
user activities, item distribution, and types of users (honest vs. malicious).

– Finally, we use the Enron email dataset for evaluating our framework. This
dataset gives us a good model of users sharing activities and the diversity
of data items (and their contexts). Under both datasets, we show that our
scheme bootstraps quickly and provides accurate privacy scores in varying
conditions.

2 System Model

2.1 Interacting Entities

We consider a system involving interactions between two types of entities: end-
users and cloud service providers (CSPs). The end-user can play one of two
roles: data sharer or data observer while the cloud provider can only be a data
observer. A data sharer is an end-user who shares data items she possesses. A
data observer is any entity that is given access to observe the shared items by
the data sharer.

We assume that the user sends her data to a single CSP, called the interme-
diary that acts as the repository for this user’s data. The user can select to give
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other CSPs access to her data through that CSP (e.g. when the latter has an
API that the other CSPs can use). The interaction between these two types of
entities is in the form of data sharing operations. Each such operation is initiated
by an end-user s0 who shares a data item d (e.g. document, picture, etc.) with a
CSP or another user s1. Additionally, the data sharer intends from the sharing
operation to obtain a certain service of interest from the CSP, such as music
streaming, document viewing, file syncing, etc. The network is dynamic, in the
sense that these entities can enter and leave the network, and the user items can
be shared over time, not necessarily concurrently.

2.2 Threat Model

We assume that the user is interested in hiding her sensitive data from the
CSPs. Existing privacy threat models consider an adversary who attempts at
discovering quantifiable sensitive information, such as location, browsing history,
credit card information, etc. In our model, we do not set an a priori definition
of sensitive information due to the heterogeneity of the shared data items we
consider. Instead, we develop a protocol that quantifies the sensitivity of a certain
sharing operation (determined by its context), based on the privacy policies that
people use. Furthermore, we assume that the CSP is honest but curious, in the
sense it follows the protocol, but it can arbitrarily analyze the protocol transcript
offline to infer extra information.

2.3 Our Conceptual Framework

We now discuss the key concepts and components that underlie our conceptual
framework for privacy provision in the cloud.

Context Vocabulary In Section 3, we use the notion of Context vocabulary
to define the contexts of items shared in a given domain. A context accounts
for the content features of the items, the metadata associated with it, and the
environment of the sharing operation (e.g. data observers, device used, etc.).

Sharing Policy People can share different data items with different policies,
where a policy is in the range [0,1] and 0 signifies full transparency while 1
signifies full obscurity. We discuss this in more detail in Section 3.2.

Crowd-Sourcing In our framework, after each sharing operation, the con-
text of the item and the policy applied are eventually aggregated at the cloud
via a privacy preserving mechanism. This aggregation is required so that the
Lack of Privacy Awareness may be overcome, and individual decisions could be
guided by the Wisdom of the Crowd.

Risk Evaluation Based on the processing and analysis of the crowdsourced
information, the system can guide others about the privacy risk that is posed
by sharing different items in different contexts. Towards that aim, we use Item
Response Theory (IRT) which is a well-known psychometric function that has
been widely used in psychology, education, public health, and computer adaptive
testing.

Policy Recommendation The final component in our framework is a suite
of risk mitigation applications. By this, we mean system recommended policies
that can guide the general user in minimizing risk while still availing services.
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Fig. 1: Sequence diagram of the system

In this work, we do not focus on Policy Recommendation and leave it for future
work.

In Figure 1, we show a sequence diagram summarizing the steps taken in one
run of the system. The client contacts the server with a private query about the
sensitivity of the current context (t=1), in a way that the server remains oblivious
about the actual context. Upon receiving the response with the sensitivity (t=2),
the client locally computes the privacy risk of sharing the data (t=3) and decides
on the relevant privacy policy (t=4). Next, the client sends the data at t=5. At a
later round (t=i), the client sends the context along with the used policy after it
makes sure that the server cannot associate the context with the actual sharing
operation. The server determines the similarity of this item with other items
that users have crowdsourced to it. Using psychometric functions, the server
computes the sensitivity associated with the item being shared, which is used to
respond to future sensitivity queries.

3 Context Vocabulary and Sharing Policies

We begin by describing the fundamental building blocks of our framework, which
refer to the context in which an item is shared and the policy with which the
item is shared.

3.1 Context Vocabulary
We introduce the technical notion of ‘Context’, which includes the metadata
associated with a particular data item, user supplied information about the
data item (such as tags), and the environment features in which the data is
being shared (such as the device information or the relationship with the ob-
server). Furthermore, ‘Context’ also includes information extracted through con-
tent analysis of the data item, such as topic modeling statistics in case of a text
document and face recognition in the case of images.

For an illustration of ‘Context’, consider a case where Bob shares a word
document about financial risk authored by sharer (i.e. Bob himself) on Bob’s
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Fig. 2: An example vocabulary for data sharing in the personal cloud

laptop and shared with a colleague. The words in italics capture the context
of the data item. For a specific domain, ‘Context Vocabulary’ is the set of all
fields that can be used to represent any shared item in that domain. Put another
way, the context vocabulary is the vocabulary that can be used to represent all
possible contexts in a given domain. We give an example of such a vocabulary
in Figure 2.

The general template for a context of an item would be a tuple of the general
form (field1=value1, field2=value2,. . . ), containing f fields. Thus, the context
of the data item in the above example would be (data type=word document,
topic=financial risk, device=laptop, author=sender, observer=colleague).

It should be noted that there are usually two kinds of fields associated with
a data item. The first are those which are by default associated with the data
item, e.g., data type, and other metadata information, e.g., author, which are
available (or can be extracted by anyone) if the data item is shared completely
transparently as in plaintext. We term these explicit fields. The second are de-
fined by the sharer while sharing the data item, e.g., observer, topic, device, or
other tags that might be associated with the data item. We term these implicit
fields.

We note here that it is not necessary (or even usual) for all data items to
have all context fields available. An item’s context is defined by whatever fields
are available. For example if we have a pdf file which does not have its author
present, then obviously the file’s context would not include the author. Put
another way, the value of the author field would be considered empty.

3.2 Sharing Policies

When a user decides to share a data item, it does so with a policy. This pol-
icy ranges from 0 to 1, where 0 signifies full transparency while 1 signifies full
obscurity. For example, if the user decides to encrypt a file, then this would be
symbolized by a policy value of 1. On the other hand, sharing an unencrypted
file while hiding some meta-data fields (such as e.g., author, modified by etc)
would result in a policy value between 0 and 1.

4 Crowd-Sourcing and Risk Evaluation

As shown in Figure 1, a client can privately query the server about the sensitivity
of a specific sharing operation and get a response based on that. In this section,
we describe these parts of our framework in more detail. Informally speaking,
the privacy guarantee that we achieve throughout is that, at any time, the server
has multiple contexts that can be associated with each sharing operation. Ac-
cordingly, the context of each operation is never deterministically disclosed to
the server.
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Fig. 3: QuerySet formation and anonymity subset definition

4.1 Privacy Aware Querying

Directly sending the context to the server allows it to associate the sharing
operation with that context, which we aim to avoid. Instead, we describe a
scheme, where the client queries the server about multiple dummy contexts, in
a way that hides the actually requested one.

QuerySet Formation We denote by targetContext the context for which the
client is querying. This context is sent as part of a QuerySet, containing other
contexts, which we term as homonyms. As shown in Figure 3, suppose that the
targetContext is c1 : (f1 = x1, f2 = v1, f3 = w1). The client forms a list of
alternative values for each field, e.g. L = [{x1, x2, x5}, {v1, v3, v6}, {w1, w2, w3}]
so that, in total, each field has k possible values. Then the homonyms are formed
by producing the cartesian product of all the sets in L. This results in contexts
having different combinations of field values.

The choice of the alternative values is not totally at random. In order to allow
targetContexts to appear faster in multiple QuerySets, thus approaching the
privacy condition formalized in this section, the client keeps a Pending List (PL),
containing previously queried targetContexts. It selects at random a fraction of
t × k values1 from PL when available and fills the rest of the values from the
domain of each field.

The client sends this QuerySet to the server. The server, on receiving a
QuerySet, responds with a subset of all those contexts for which it knows the
sensitivity2. If the sensitivity of the targetContext is also returned by the server,
the client decides to apply a policy on the data item based on this; otherwise the
client can choose to do the same uninformed. In both cases, the actual data item
is sent afterwards to the server. Once the server receives the actual data item, it
can easily infer the exposed part of the targetContext. This part includes those
explicit fields as defined in Section 3.1, which the client did not choose to hide.
It is evident to notice that, by the construction of the QuerySet, the server is
not able to deterministically infer any field of the unexposed part of the context
(containing all implicit fields and those explicit fields which have been hidden
by the client). In particular, the server has k possible values for each such field.
Moreover, assuming there are u fields in the unexposed part, we will have ku

1 k is a constant (0 < k < 1) (we take t = 2/3 in our experiments).
2 We shall discuss how the server calculates this sensitivity in Section 4.2.
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contexts that match the exposed part of the targetContext. We call this set of
contexts the Anonymity Subset (Ai) of the targetContext ci, and we illustrate
its contents with an example in Figure 3. With respect to the server, one of the
elements of this subset is the targetContext, but no element can be ruled out
without further information.

We now add the following definition:

Definition 1. We say that a context c can be validly associated with the
sharing operation of item di if c has appeared in Ai and if the server cannot
assert with certainty that c exclusively belongs to one or more anonymity subsets
other than Ai.

Hence, at this stage, we have the following guarantee:

Guarantee 1. At the querying phase, the server receives ku contexts that can
be validly associated with the current sharing operation.

Crowdsourcing Up till now, we have shown how the client privately queries
the server about the sensitivity. In order to compute this sensitivity, the server
relies on crowdsourcing, through privately collecting targetContexts along with
the corresponding policies (together called the Crowdsourcing Information (CI))
from different clients. We alternatively say that a context c is crowdsourced
when CI(c) is sent to the server. The client should not send dummy information
as in the querying phase in order to not affect the accuracy of the sensitivity
computation. Thus, we now present the scheme in which client sends the CI in
a way that continues to maintain Guarantee 1 for all the sharing operations. As
a result, the server will be able to know, for example, that a client Bob shared
a financial document with a colleague in an plaintext form, but it will not be
able to link the document topic or his relationship with the observer to a specific
sharing operation.

One way this guarantee might be weakened is if the client sends the CI
in a way that allows the server to discover the anonymity subset in which the
context was the targetContext. For example, sending CI(c) after c has appeared
in a single anonymity subset A1 will reveal to the server that c corresponds to
data d1. Hence, the first intuitive measure for preventing this association is to
wait until a context appears in multiple anonymity subsets before sending the
CI.

However, this measure is not sufficient. Consider the case of two contexts
cx and cy, both only appearing in anonymity subsets A4 and A6. Suppose that
we require that a context appears in at least two anonymity subsets before it
is sent. Then, both CI(cx) and CI(cy) will be sent directly after item d6 (with
anonymity subsetA6) is sent. At this point, the server is sure that one of cx and cy
is the targetContext for A4 and the other for A6. All of the other ku−2 contexts
that have appeared in A4 and A6 are no more possible candidates for being
the actual targetContext from the viewpoint of the server. Hence, Guarantee 1
for these two sharing operations is weakened as the ku − 2 contexts are now
deterministically associated with other anonymity subsets. The guarantee will
be weakened further if there was a third item d8 that has been subsequently
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Fig. 4: Checking privacy conditions before crowdsourcing context c2

sent, with its context c8 appearing in A4 and A8. From the server’s viewpoint,
A4 is no more a valid possibility for c8 due to the mapping deduced when cx and
cy were sent. Therefore, the server can deterministically associate A8 to c8, and
the whole context for d8 is revealed. The main weakness in this naive method
is that it does not account for the fact the server can link multiple sending
instances and reduce the possibility of mapping to a single case. Our strategy
to counteract that and keep Guarantee 1 is to verify that crowdsourcing the
next context preserves the property that each sent context item is still validly
associated with all the anonymity subsets it has appeared in.

At this point we add another definition:

Definition 2. We say that there is a valid mapping from a list of contexts to
a list of anonymity subsets if each context in the former can be validly associated
with a distinct anonymity subset from the latter.

Suppose the client has just completed the sharing operation i, and is at-
tempting to crowdsource the contexts that have not been sent yet, which are
kept in its Pending List (PLi). We also denote by SLi the Sent List, containing
all contexts that have been crowdsourced previously, and by Ģi the group of all
client’s anonymity subsets up to (and including) Ai. Towards achieving Guar-
antee 1, a context c ∈ PLi can be crowdsourced only when the following two
conditions are true:
1. c appears in at least r anonymity subsets
2. For each A ∈ Ģi, there exists a valid mapping from the list SL′i = SL

⋃
{c}

of contexts to the list Ģi \A of anonymity subsets.
Going back to the previous example, after each of cx and cy has appeared in two
anonymity subsets, condition 1 is satisfied. However, condition 2 is not satisfied
since excluding A4 will lead to G \ A4 = {A6}, and then we cannot map each
context to a distinct anonymity set.

Figure 4 illustrates with another example how the two conditions can be
verified. For each targetContext, the client maintains a list of the anonymity
subsets it has appeared in. In addition, it maintains two lists: U1, containing
the targetContexts that have not satisfied the first condition yet3, and S1U2,
containing the list of items that have satisfied the first condition but not the
second. The figure shows a valid mapping that exists for each anonymity subset
in Ģ when c2 is considered for crowdsourcing. It is worth noting that PL =
U1

⋃
S1U2. Also, as discussed in Section 4.1, when the contexts of PL appear

in more anonymity subsets, the above privacy conditions will be satisfied faster;
hence, they were used in the construction of the QuerySet.

3 regardless of whether the second condition is satisfied
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Lemma 1. Checking conditions 1 and 2 allows to preserve Guarantee 1.

Proof. Consider any context that is about to be crowdsourced. Condition 2 im-
plies that for each A ∈ Ģ, there is a possibility that the targetContext of A has
not been sent yet. Hence, each context in c ∈ SL′, can still be validly associated
with all the r subsets it appeared in. Let Zi be the list of all contexts that ap-
peared in the elements of Ģi. It is evident that there is no new information being
sent about the contexts in Z \ SL′. Therefore, all the contexts in Zi can still
be validly associated with the anonymity subsets they appeared in. Accordingly,
Guarantee 1 is preserved. ut

Discussion: We note that an alternative scheme for crowdsourcing that
includes encrypting the context before sharing it would not work. In our frame-
work, the server is required to use a similarity function to match the context
with other ones sent by people in order to compute the context sensitivity. Even
if we encrypt the context before we send it, the server will be able to know it by
computing its similarity with all the possible contexts in the vocabulary (as the
latter are not large enough to prevent being iterated over easily). Another place
where encryption might be applied is at the querying phase, where Private In-
formation Retrieval (PIR) techniques with constant communication complexity
might replace the QuerySet technique. However, as the complexity gain is ab-
sent, and the privacy guarantee obtained by the querying phase is limited by the
crowdsourcing phase, we do not resort to the encryption-based method, which
is more complex to implement.

4.2 Sensitivity and Risk Evaluation

When the server receives the crowdsourcing information, it seeks to determine
the sensitivity associated with this item based on same or similar items shared
with different policies in the past by different users. The client, upon receiving
this sensitivity, locally computes the privacy risk of sharing. In this paper, for
computing the sensitivity, we use Item Response Theory (IRT), a well-known
psychometric function, which we describe next.

Sensitivity Computation by the Server Item Response Theory (IRT) is
a modern test theory typically used for analyzing questionnaires to relate the
examinees’ probability of answering a question correctly (or in general a correct
response probability Pij) to two elements: (1) the difficulty of the question (or
in general a latent threshold parameter βi of item i) and (2) the examinees’
abilities to answer questions (or in general a latent parameter θj for each person
j). In contrast to Classical Test Theory (CTT), which measures a person’s ability
based on averages and summations over the items, IRT has two distinguishing
features: (1) the group invariance of calculated item parameters (i.e. a single
item’s parameters do not only apply to the current user sample, assuming the
social norms won’t vary significantly) and (2) the item invariance of a person’s
latent trait (i.e. the trait is invariant with respect to the items used to determine
it) [6].

In this work, we apply IRT by mapping the item’s difficulty to the sensitivity,
the user’s trait to the privacy attitude (or willingness to expose the items), and
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the response probability to the policy level of the item (similar to previous
works [7, 8]).

We focus on the unidimensional IRT models, which make three main assump-
tions about the data: (1) unidimensionality (i.e. there is a single underlying trait
θ that determines the person’s response), (2) local independence (i.e. for each
underlying trait θ, there is no association between responses to different items),
and (3) model fit (i.e. the estimated item and person parameters can be used to
reproduce the observed responses) [9]. An IRT model is termed as dichotomous
if the responses to the questions are binary ones (correct/incorrect) and poly-
tomous if there are multiple levels of the response (e.g. a five-level Likert scale
with responses: strongly disagree/disagree/neutral/agree/strongly agree).

The Rasch model, one of the most common IRT models, assumes that the
probability of correct response is a function of θ and β only and that the items
are equally discriminative for testing the underlying trait. It is particularly ad-
vantageous with smaller sample sizes, due to its simplicity and few parameters,
and, as we show in Section 5.1, it also fits well in the scenario of cloud data
sharing. The parameters of the dichotomous Rasch model for an item i and a
person with parameter θ are related by the following function, called the Item
Response Function (IRF):

Pi =
1

1 + e−(θ−βi)
(1)

With polytomous models, we will make the assumption that the policies chosen
by the users are on the same scale for all the items. It is similar to the case of
Likert scale, where the same set of categories are applied for each item in the
test. Accordingly, the most suitable model for us, and whose fit to the cloud
scenario will be demonstrated in Section 5.1, is the Rasch Rating Scale Model.
For estimating the parameters of the different models, we used Marginal Max-
imum Likelihood estimation, which is an expectation-maximization algorithm.
The estimation technique relies on having enough responses for multiple items
by different people. For more details about item response theory models, the
reader is referred to the following works [6, 9, 10].

Risk Computation by the Client The sensitivity is an indication of the
magnitude of privacy loss incurred when data is lost. The client can combine
this measure with another measure of the likelihood that this event happens,
using information that is kept locally, such as the level of trust for the current
observer, the level of protection (i.e. the policy), etc. The privacy risk is then a
combination of the sensitivity and the likelihood.

5 Evaluation and Experiments

5.1 Experiments for Validating IRT

Since we shall be using Item Response Theory (IRT) to calculate the sensitivity
of shared items, the first question that needs to be answered is this: Can IRT
be meaningfully applied in the cloud scenario in which people share data items
in a variety of contexts? In order to investigate this and to empirically ground
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Fig. 5: Bond-and-Fox Pathway Map on the mTurk data (a dot represents a con-
text item)

our design and subsequent experiments, we validated IRT for the cloud scenario
using real people’s feedback on Amazon Mechanical Turk. Next, we explain our
methodology for this validation.

Methodology We created a realistic vocabulary for the personal cloud, and,
based on it, we developed a list of questions that we submitted as Human Intel-
ligence Tasks (HITS) on Amazon mTurk4. We created two separate HITs for the
dichotomous and polytomous cases of IRT. For the dichotomous case, we asked
96 questions to which we received answers from 81 people. For the polytomous
case (with 3 categories), we asked 16 questions to which we received answers
from 50 people5. Here each question represents a context item while the users
responses represent their policies for sharing in the given context.

We analyzed the results using the eRm Package in R [12]. For testing the
model fit, we used the standardized (STD) and the mean square (MSQ) infit
statistics. An infit statistic is a weighted fit statistic derived from the squared
standardized residual between the observed data and the one predicted by the
model [13]. The STD infit indicates whether the data fits the model perfectly and
is also an approximate t-statistic. In Figure 5, we show the STD infit statistic in
the two cases of dichotomous and polytomous items, along with the sensitivity
value of items (threshold values in the polytomous case) in each graph, also
called the Bond-and-Fox Pathway Map. We notice that all the values in the
polytomous case and all but one in the dichotomous case lie between -2 and 2,
which are the typically acceptable bounds [13]. We also derived the MSQ infit
which serves as an indication of whether the data fits the model usefully, i.e.
if it is productive for measurement. We found that the MSQ infit was in the

4 The vocabulary and the survey are available online: http://goo.gl/xjuvvj
5 The numbers of respondents is generally considered a good number for testing

IRT[11]
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range [0.7, 1.312] for dichotomous items and [0.683,1.287] for polytomous items,
which are both within the typically accepted [0.5, 1.5] range [13].

Having shown the applicability of IRT to the cloud sharing scenario, we
proceed to the evaluation of our framework.

5.2 Synthetic Datasets

In this section we detail our methodology for evaluating our framework with
synthetic data, followed by the experimental results and discussion.

Methodology The context items in this dataset were generated by selecting
a generic vocabulary with 5 fields per context. Each field of a context had 5
possible values for a total of 3125 possible contexts. From these contexts, we
selected 200 ones at random. There are 500 sharers (or people) who share these
items. In total, for each experiment we allocated 30000 sharing instances, each
of which represents a data item (corresponding to the context item) shared by
a certain person with another person at a specific time. The item to share at
each instance is drawn according to a predetermined item distribution (zipf with
exponent 2, or uniform, depending on the experiment). In our implementation,
the distance (and hence similarity) between each pair of contexts is based on
considering the hamming distance over their fields6. The people connections for
sending data were modeled using two types of graphs: (i) small world (using the
Watts-Strogatz model with a base degree of 2 and β = 0.5) and (ii) random
(with average degree of 4). Our simulation is a discrete event based simulation,
punctuated by sharing events. The person who instantiates a sharing event is
selected randomly from the graph, weighted by her degree, so that people who
have more neighbors share more items than those with less. The data receiver
is selected randomly from the list of neighbors of the sender. Each person sends
data at a time rate modeled by a Poisson process so that the time between her
two sharing instances is exponentially distributed with an average of 3,6, or 12
hours, depending on the experiment.

At each sharing instance, the context item’s QuerySet is sent according to our
scheme. The server maintains clusters of contexts it receives, grouped according
to a similarity parameter (whose value of 1 implies that each cluster’s contexts
differ by one field from their cluster center, etc.). When the server receives a
new context, it either maps it to an existing cluster or assigns it as the center
of a new one. All the contexts of a certain cluster are assumed to have the same
sensitivity. The server replies with all the sensitivities it knows for the clusters
to which the contexts in the QuerySet were mapped. If the reply contains the
requested item, this is considered as a Hit.

In the crowdsourcing phase, upon receiving new Crowdsourcing Information
(CI) from a client, the server matches it to a cluster S and tries to compute the
sensitivity for S if it is not yet computed. To achieve an acceptable sample for
IRT, we require that (1) S has a minimum of 15 contexts with their policies,

6 System designers can use any similarity measure best suited for their needs, e.g.,
those dealing specifically with semantic similarity. However, that is beyond the scope
of this work.
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Fig. 6: Synthetic dataset graphs

(2) that there are 4 other clusters satisfying requirement 1, and (3) that each of
these 4 clusters has at least 8 CIs by people who have also sent CIs appearing
in S. The sensitivities are computed using the marginal maximum likelihood
estimation technique. In all the experiments, unless otherwise stated, the default
setting is a small world social network with zipf item distribution, six hours
average sharing interval, and a similarity parameter of 1. In addition, the value
for parameter r is equal to k, which is 3 by default. Hence, k is the anonymity
parameter we use henceforth.

Results and Discussion Figure 6a shows the Hit Rate of users queries over
time, where Hit Rate is defined as:

HitRate =
# of queried items with available sensitivity

total # of queried items
(2)

The Hit Rate is calculated per day unless otherwise specified. In Figure 6a we
can see that the Hit Rate for anonymity parameter 3 is better than the Hit Rate
for 4. As discussed earlier, anonymity parameter k implies that a targetContext
for sensitivity must have appeared in k different anonymity subsets and that
k different values for each field in the targetContext must be present in the
QuerySet. The above conditions suggest that lower the anonymity parameter
value, more targetContexts would be sent to the server for crowdsourcing, and
thus more quickly would IRT be able to respond with sensitivity values.
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The anonymity parameter 1 implies no anonymity at all. We plot this curve
to see the ‘overhead’ of our K-anonymity scheme on top of the time required
by IRT. Simply put, the curve for the anonymity parameter 1 represents the
time it takes IRT to provide Hit Rates when there is no anonymity scheme in
place. Thus the difference between the curves for anonymity parameters 1 and 3
represents the overhead of our anonymity scheme in terms of reduced Hit Rate.
However, we see that the curve for 3 converges to the same Hit Rate as 1 in
ten days time. This suggests that our anonymity scheme bootstraps quickly and
does not pose significant overhead7

Figure 6b shows the Hit Rate with different sharing intervals in hours. An
interval of 3 means that all users query for the sensitivity of an item every 3 hours
on average. It can be seen from the Figure that initially, longer the interval, the
slower the increase in the Hit Rate. This is most noticeable around the 5th day,
when the Hit Rate with an interval 12 is still around 0.5 and lags significantly
behind. Eventually, as the server collects more and more items, the Hit Rates of
all sharing intervals converge to similar values.

Figure 6c shows the Hit Rate with different similarity parameters. Similarity
parameter has been defined in Section 5.2 A similarity parameter of 0 signifies
that there is no (zero) difference between two context items while calculating
sensitivity8. Precisely, what this means is that to calculate the sensitivity of an
item, IRT would require other items, which are exactly the same as this item, to
have been shared with different policies. A similarity parameter 1 implies that
two items that differ by a distance of 1 would be considered the same while 2
implies that items differ by a distance of 2 would be considered the same. This
in turn implies that IRT would be able to more quickly calculate the sensitivity
of an item (as opposed to case 0) since there would be more items which are
considered the same. Thus we can see in Figure 6c that Hit Rate with similarity
parameter 0 is the worst since IRT does not have enough items for calculation.

In Figure 6d, we investigate the effects of the ‘item distribution’ on the Hit
Rate. By ‘item distribution’ we mean the distribution of the context items, i.e.,
the different contexts in which users share data. This is an important feature be-
cause different organizations and different systems would naturally have different
item distribution. For our experiments, we use two different item distributions.
One is the zipf distribution, which has been shown to be most common in social
networks [14]. The other is the random distribution in which all context items
are randomly distributed. A look at the Figure 6d reveals that a zipf distribu-
tion ‘bootstraps’ faster than a random distribution. The Hit Rate with random
distribution lags behind zipf by a day, i.e., it reaches the same Hit Rate a day
later, till the fifth day. We argue this is because, given a zipf distribution, users
share more similar items, and thus the crowdsourcing is more effective, and IRT
is able to calculate the sensitivity of items quickly. Given a random distribution,
it takes more time for IRT to accumulate enough similar items for the calculation

7 This overhead can be further reduced through bootstrapping the system with initial
data collected from surveys, thus increasing the Hit Rate at the beginning.

8 This was the case for example in the experiments for validating IRT in Section 5.1
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Fig. 7: Hit rate and sensitivity difference under various conditions

of sensitivity. However, as the times goes by and more items are accumulated,
both random and zipf converge to around the same values.

In Figure 7a we observe the effect of changing the underlying social network.
We use two graphs for the social network structure: small world and random.
These affect the sharing patterns of the users. We see that the effect of the
underlying graphs on the Hit Rate is not significant and both lead to similar
values, with the small world doing slightly better than the random network.

Finally, Figures 7b and 7c show the effect of malicious users and changing
similarity parameters on the sensitivity values. For this particular set of exper-
iments, we begin by assigning different sensitivity values to the items and also
different attitudes to the users. As the experiment runs, the policy of the users
on sharing the items is dictated by their attitude and the item sensitivity given
at the beginning. The sensitivity of the items is then calculated by our scheme.
We then measure the absolute difference between the actual sensitivity of the
items and the calculated sensitivity. Ideally, there should be no significant dif-
ference between the actual sensitivity and the calculated sensitivity. However,
differences could arise under certain conditions. The first condition is the pres-
ence of malicious users. A malicious user sends random policies for items, i.e.,
she does not have a fixed attitude but rather a random and unpredictable one.

Figure 7b shows the effect of such malicious users on our scheme. The figure
shows the box plots for each item’s normalized sensitivity difference in terms of
percentage. We observe that when there are no malicious users, the difference
is pretty low (in the range [2%, 6%]), with most items calculated sensitivity
very near the actual sensitivity (the individual dots represent the outliers). This
keeps getting progressively worse as the proportion of malicious users increases.
Finally, with a fraction of 0.75 malicious users, most of the items’ calculated
sensitivity differs by as much as 30% from the actual sensitivity.

In Figure 7c, we see that the effect of different similarity parameters on the
calculated sensitivity. We can see that, with similarity parameters 0 and 1, the
difference between actual and calculated sensitivity is very low. The reader will
recall that similarity parameter 0 means that two items would only be grouped
together if they are identical. Therefore, when IRT calculates sensitivity value of
an item, it does so on the basis of other identical items for which it has received
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Fig. 8: Enron dataset graphs

policies from different users. Thus the calculated sensitivity value would be in
high agreement with actual sensitivity. With increasing similarity parameter
values, the system would group together items which are not identical, therefore
sacrificing accuracy in sensitivity calculation. We observe that the difference of
actual and calculated sensitivity with similarity parameter 2 is greater than 0
and 1. However, as we discussed while explaining the results of Figure 6c, a
higher value for the similarity parameter signifies a better Hit Ratio. Therefore,
we discover that there is a tradeoff between accuracy of calculated sensitivity
and Hit Rate, as far as similarity parameter is concerned.

5.3 Enron Experiments

We want to evaluate our scheme in a realistic setting. However, as there is no
dataset of users sharing activities in the cloud that is publicly available, we use
the Enron email dataset. Sharing data of various types with certain entities in
the cloud is analogous to sharing attachments via emails. Specifically, what we
get from this dataset, is a variety of items (hence variety of contexts in which
real people share these items with others) and also the level of trust that they
have in each other. We explain these points as well as our data extraction and
analysis methodology below.
Methodology The dataset was obtained from (http://info.nuix.com/Enron.html)
in the form of 130 personal storage folders (pst). It was processed using the
PST File Format SDK9 and the MIME++ toolkit10. We only considered emails
with attachments, whose metadata was extracted using the GNU Libextractor
library11. Precisely, the main metadata we extracted from files is: (revision his-
tory, last saved by, resource type, file type, author name, and creator). We then
collected all the email addresses mentioned in the dataset and grouped the ones
corresponding to the same person, based on the patterns of occurrence of email
aliases. Next, the emails of each person were used to obtain the list of com-
panies she is affiliated with according to the email domain, filtering out public

9 http://pstsdk.codeplex.com/
10 http://www.hunnysoft.com/mimepp/
11 http://www.gnu.org/software/libextractor/
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email services (e.g. AOL, Yahoo). We matched all the processed metadata with
a specific vocabulary we created for the Enron Dataset. In total the obtained
dataset contained 2510 people sharing 184 distinct contexts over 19415 sharing
instances. Moreover, for each file sender, we calculated a measure of the trust
associated with each receiver based on the frequency of emails exchanged with
her. The trust value T (i, j) = F (i, j)/Max(i), where F (i, j) is the number of
emails sent from user i to user j, and Max(i) is the maximum number of emails
sent by user i to any receiver. In our experiments, the policies we associate with
each sending event are dictated by this degree of trust by the sender in the re-
ceiver. We use a similar timing scale as the synthetic experiments, where each
person shares all his items in the sequence the emails were originally sent but
with a rate modeled as a Poisson process.

Results and Discussion Figure 8a shows the Hit Rate of users queries over
time, where Hit Rate is the same as defined in Equation 2. The graph is over
a period of 10 days. We can see that with anonymity parameter 1, i.e. with
no anonymity scheme in place, the Hit Rate jumps very quickly. However,
anonymity parameter 3 and 4 eventually catch up and all the curves show a
Hit Rate of 1 by the third day. We argue that this improvement in Hit Rate over
the case of synthetic experiments (see Figure 6a) is because the sharing contexts
in the Enron dataset are not diverse and more similar items are collected faster,
thus leading to an increase in the Hit Rate.

In Figure 8b we can see that with the similarity parameter equal to 2, the
Hit Rate remains at 0 consistently. Our investigation into this reveals to us the
reason behind this strange result. We discover that the context items shared
in the Enron dataset are not very diverse. Hence, having a similarity value of
2 means that most items are clustered together since most items in the Enron
dataset differ from each other by at most 2 fields. As most items are clustered
in very few clusters, this means that IRT is not able to work since it does not
find enough different items to sensitivity calculation. The number of different
items that IRT requires for working differs on the implementation being used.
Our implementation requires that there must be at least 5 different items for
IRT to work. In case of similarity 2, these clusters are not available.

However, with similarity 1, enough clusters are found and this in turn implies
that IRT would be able to more quickly calculate the sensitivity of an item (as
opposed to case 0) since there would be more items which are considered the
same. Therefore, similarity 1 shows better Hit Rate than similarity 0.

These results suggest that using IRT in a scenario where most people share
similar items, the similarity parameter should be low. However, we note that
the Enron dataset, being an email dataset, does not have the same diversity as
would be available in a cloud setting. Thus, we have shown the feasibility of our
scheme using synthetic and empirical data.

6 Related Work
One of the relevant attempts at privacy risk estimation was in the field of social
networks. Liu and Terzi [7] used IRT in quantifying the privacy risk of exposing
user profile items on Facebook (e.g. birthday, political affiliation, etc.). Kosinki
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et al. [8] also modeled the process of information disclosure in Facebook using
IRT and found correlations between disclosure scores and personality traits. Our
work is distinct from these in that IRT is shown to apply in the case of privacy
aware sharing in the cloud and in that it utilizes context extraction to work with
any data file, without being limited to a predefined set of profile items.

The concerns about the privacy of user data in the cloud were confirmed by
Ion et al. [15] through surveys highlighting the users’ beliefs about the intrinsic
insecurity of the cloud. A client-centric system was also developed by Ion et
al. [16], enabling users to share text and image files on web-based platforms while
keeping the data encrypted and hiding the fact that confidential data has been
exchanged from a casual observer. From one angle, our work is complementary
to theirs as we design the framework to help users decide on what data to keep
confidential. From another perspective, our work is distinct as we allow multiple
levels of privacy policies that can be controlled by the user.

The work by Garg et al. [17] highlights the peer produced privacy paradigm,
which treats privacy as a community good and considers individuals who share
the risk of information sharing. The authors argue that such an approach can
result in more socially optimal privacy decisions. Our work shares similar mo-
tivations, among which are the suboptimal privacy decisions taken by average
users and the inability of users to keep track of the changing contextual fac-
tors affecting privacy. We envision that extensions of our work can exploit this
paradigm for producing socially optimal privacy policy recommendations.

The concept of contextual privacy has also received significant attention re-
cently. Nissenbaum’s work (e.g. [18]) was one of the notable contributions that
called for articulating context-based rules and expectations and to embed some
of them in law. Several works have developed context-aware systems for pri-
vacy preservation in scenarios like sensor data sharing [19] and mobile social
networks [20].

7 Future Work
In this paper, we have provided a novel framework for preserving the privacy
of data shared to the cloud. One of the future directions we are planning to
investigate is further improving the privacy guarantee of our scheme to resist
probabilistic attacks by a server trying to link a context with a sharing operation.
Moreover, we are currently investigating alternative techniques to IRT, such as
Bayesian Networks, that can also serve to model people’s privacy aware sharing.
Also, developing techniques for recommending privacy policies to users is one of
the main pillars of the final system. As of writing, we are working on developing
the first prototype for our system, which will be released in the near future.
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