Cloud-as-a-Gift: Effectively Exploiting Personal
Cloud Free Accounts via REST APIs

Raul Gracia-Tinedo, Marc Sanchez Artigas and Pedro Garcia Lépez
Universitat Rovira i Virgili, Tarragona (Spain)
{raul.gracia|marc.sanchez|pedro.garcia} @urv.cat

Abstract—Personal Clouds, such as DropBox and Box, provide
open REST APIs for developers to create clever applications
that make their service even more attractive. These APIs are
a powerful abstraction that makes it possible for applications
to transparently manage data from user accounts, blurring the
lines between a Personal Cloud service and storage IaaS. Jointly,
Personal Clouds also offer free accounts to lure new users, that
normally include reduced storage space and unlimited transfers.

However, the unintended consequence of combining open APIs
and free accounts is that these companies are exposing automated
access to a free storage infrastructure, which may lead to abuse
by malicious parties. By exploiting the freemium API service,
users may fraudulently consume resources or they can use free
accounts as a Cloud storage layer to support abusive applications.
We call this vulnerability the storage leeching problem.

In this paper, we show how easy it is to implement a file-
sharing application able to distribute digital content by abusing
Personal Clouds. Making use of open APIs, this application
transparently aggregates the limited-space free accounts from
multiple providers into a single larger storage layer, while
achieving better transfer speed than that received from one
provider alone. This demonstrates that free accounts can be
easily exploited to obtain a practical Cloud storage service, and
therefore, the potential impact of storage leeching.

Index Terms—Cloud Storage; Personal Clouds; Security

I. INTRODUCTION

The enormous hype around the Personal Cloud model [1]
has promoted the appearance of a myriad of very competitive
offerings (DropBox, Box) that nowadays populates the market.
This makes, in turn, Personal Clouds to aggressively react and
improve their service to retain their market share. Essentially,
Personal Clouds make their offering more interesting for new
customers in two ways: adding innovative functionalities to
their service and massively delivering freemium accounts.

Regarding the first point, Personal Clouds are incorporating
a large corpus of value-added functionalities to their service
(e.g. collaborative editors, media viewers). In this sense,
major companies provide open REST APIs for developers to
create clever applications that make their service even more
attractive. From a functional viewpoint, these APIs enable an
application to upload/download files to/from user accounts,
blurring the lines between a Personal Cloud service and a
pure IaaS provider as Amazon S3. Such a powerful abstraction
hides the complexity of block-level data management and
constitutes a rich substrate to cultivate a developer ecosystem.

Secondly, Personal Clouds offer free accounts to lure
new customers and gain market share. These free accounts
normally include reduced off-site storage space, as well as
virtually unlimited transfers. Moreover, as paid accounts, free
accounts provide standard functionalities, such as access from
syncing software clients and Web front-ends. The impact of

this freemium business model is remarkable: from the 50
million of DropBox users only the 4% pay for storage [2].

However, the unintended consequence of combining REST
APIs and free accounts is that these companies are exposing
automated access to a free storage infrastructure, which may
lead to abuse by malicious parties. Nothing prevents a mali-
cious user from acquiring an arbitrary number of free accounts
from a single vendor and access to them via REST APIs, given
the quick registration process that it requires. Furthermore,
that user may aggregate accounts from various providers to
build a larger and even better storage facility by exploiting
storage diversity. Although aggregating free accounts might
not be interpreted as an attack by itself, thanks to open APIs
these accounts can be used to materialize illicit actions against
Personal Clouds. For instance, users may perpetrate DDoS
attacks, fraudulent resource consumption, or they could use
free accounts as a storage layer to support abusive applications.
We call this vulnerability the storage leeching problem.

The present paper describes the roots of the storage leeching
problem and shows how easy is to benefit from it. To this
end, we implemented Boxleech: a proof-of-concept file-
sharing application able to distribute digital content by abus-
ing Personal Clouds. This application transparently aggregates
the limited-space free accounts from multiple providers into
a single larger storage space while achieving better transfer
performance than that received from a single provider. The
feasibility of Boxleech yields that malicious users may
transform a set of Personal Cloud accounts into a powerful
file-sharing system to distribute digital content, being difficult
to detect. Actually, users not registered in any Personal Cloud
would only need to install the Boxleech client and acquire
the meta-data file of the desired content to download it. This
gives a notion about the potential extent of this kind of abuse.

Finally, we provide some discussion about possible counter-
measures to deliver a more secure API service to developers.

The rest of the paper is organized as follows. We discuss the
related work in Section II. We provide some background about
Personal Cloud APIs in Section III. We describe the storage
leeching problem in Section IV. The design of Boxleech
appears in Section V. In Section VI we show the evaluation
of Box1leech compared with Personal Cloud software clients.
We discuss about possible countermeasures in Section VII and
we conclude in Section VIIL

II. RELATED WORK

In this work, we argue that Personal Clouds may be abused
though their free account REST API service. For this reason,
we found specially interesting recent efforts regarding security

in Web Services [3]. In this sense, the authors of [4] observe
that the current lack of integrity controls at the data level in
API REST Web Services could result in profound problems re-
garding data integrity. Other works such as [5] exploit specific
vulnerabilities on the authentication mechanisms employed in
Amazon EC2 and Eucalyptus Cloud control interfaces.

The abuse of Cloud services is currently a relevant research
concern. As described in [6], one of the major risks of Cloud
computing is its “abuse and nefarious use” by malicious
parties (e.g. botnets, software exploits). In this line, few works
analyzed the impact of external attacks on Cloud services and
applications. For instance, authors in [7], [8] investigate the
potential vulnerabilities of the Cloud computing model, which
could be exploited from fraudulent resource consumption of
any Internet connected host. Directly related with Personal
Clouds, authors in [9] subvert the DropBox client to hide files
in the Cloud with unlimited storage capacity.

We prove our findings by designing and evaluating an
application capable to abuse Personal Clouds via REST APIs.
Regarding abusive applications, few previous works presented
systems which benefit from the available Internet services.
Close to our work, EMFS [10] is a personal storage system
which aggregates Cloud storage by establishing a RAID-like
system on top of e-mail accounts. Other works propose backup
tools or file systems benefiting from a variety of remote
services, such as caches of Internet search engines, e-mail
accounts and free web space [11], [12].

In contrast with previous research, the present work is the
first to study the potential of Personal Cloud REST APIs as
a building block for many abusive applications. Furthermore,
we developed and evaluated a file-sharing application to show
how easy it is to exploit these services.

III. BACKGROUND

Personal Clouds provide open REST APIs, as well as their
client implementations, to make it possible for developers
the creation of novel applications which use the information
stored in user accounts. In this section, we will describe the
functioning of these APIs and the procedure needed to register
an application to enable its access to user storage. Due to
space constraints, we will describe the complete process for
DropBox at the time of this writing.

Registering our application with DropBox. A Personal
Cloud application is an authorized namespace within the
Personal Cloud domains which enables REST API calls over
user accounts. In DropBox, these applications are either in
production or development states. The former means that
the application has been revised and approved by DropBox,
whereas the latter has limited features (development purposes).
The DropBox API incorporates OAuth [13] authorization
mechanism to manage the credentials/tokens of applications
and users granting access to these applications. Note that with
a DropBox application in development state, a user is able to
access up to b free storage accounts through the REST API.

DropBox provides 3 subdomains to support its API service:
i) dropbox.com corresponds to the webpage, the place
where users and developers perform manual interactions (as
explained later on), ii) api . dropbox . com is the subdomain

against which applications perform authentication and meta-
data requests, and iii) api—-content .dropbox.comn is the
subdomain where DropBox handles API data management
operations (put, get). In the latter case, these operations are
executed against Amazon S3, the storage backend of DropBox.

Now, we describe in general terms how to make an applica-
tion operational in DropBox. We denote the application to be
registered as A, DropBox as DB, and a user U that permits
the access to his storage space. The procedure is as follows.

First, a developer registers A via DB’s webpage
(dropbox . com subdomain), where D B creates an applica-
tion token pair that it will use to authenticate A. Second, A
asks for a request token to DB. Note that A performs this
step using DB’s API, and therefore, addressing a request
via a HTTP POST message to the api.dropbox.com
subdomain. As a result, DB replies to A with a request token
pair. Thirdly, U authorizes A via DB’s webpage. Normally,
U is redirected to DB’s webpage by a link containing A’s
request token as argument. With this information, DB knows
that user U is giving access to A. In fourth place, once U
authorizes A, DB automatically notifies A about this event.
DB generates the access token for A, which grants access to
U’s storage space. Next, A performs an API call to DB asking
for the access tokens. Finally, A performs storage operations
against U’s account. The only requirement in each API call
(get, put) is to include the access foken in the request.

Once provided the necessary background to understand
the functioning of these APIs and the procedure to register
an application, we proceed to describe the storage leeching
problem: the exploitation of REST API access to free accounts
as mean to abuse Personal Clouds.

IV. THE STORAGE LEECHING PROBLEM

Despite the trumpeted business and advantages of the Per-
sonal Cloud storage, many potential Cloud users have yet to
join the Cloud. To make their offering even more attractive,
major companies such as DropBox, Box and SugarSync, to
name a few, provide open REST APIs for developers to create
clever applications over their service. From a functional view-
point, these APIs enable an application to upload/download
files to/from user accounts, blurring the lines between a
Personal Cloud service and a pure laaS storage provider as
Amazon S3. However, the unintended consequence is that it
is very easy for a user to aggregate multiple free accounts
from the same or from different Personal Clouds to obtain a
free storage space comparable to paid accounts.

The roots of the problem lie deeply in the lack of account-
able identities. Personal Clouds do not provide mechanisms to
enforce the rule that one real person gets one virtual identity
in their online services, what is known as the Sybil attack [14].
As an illustrative example, Box requires only the first name,
last name, email and password for a user to set up an account
of 5 GB of free storage. This quick registration process makes
it possible for one real person to get multiple accounts and
here is when the open nature of these REST APIs facilitate
the abuse of the storage service. Box REST API allows a
developer to enable up to four other users per application yet in
development status, so nothing prevents a malicious developer
from aggregating his 25 GB of free storage as a single unit. In

the case of Box, this new form of abuse may have economic
consequences. At the time of this writing, a Box account of
25 GB costs $9.99 per month.

The extent of the abuse can be even worse if the abuser
aggregates accounts from multiple providers. In such a case,
the abuser can take benefit of storage diversity to obtain
even a better service than what can be delivered from a
single provider. By an intelligent allocation of file chunks to
different providers, a malicious user can improve download
times, upload times or both, and obtain a unified account with
better QoS than a paid account totally free of charge.

We use the term “storage leeching” to refer to this generic
form of abuse because the abusers or leechers seek to benefit
from free storage while trying to leave unnoticed. This form
of abuse is hard to prevent because it is under the umbrella
of the freemium business model adopted by Personal Cloud
companies. That is, storage providers offer free and paid
premium accounts that are very similar in all aspects except
for the amount of storage space offered. This, in conjunction
with the business strategy to cultivate a developer ecosystem
through the release of open APIs, makes it really hard for
these companies to prevent storage leeching.

To illustrate the potential consequences of storage leeching,
let us describe a real example. During the development of this
piece of research, we executed several experiments against
the REST API service of three major vendors: Box, DropBox
and SugarSync. We consumed around 45.26TB of download
traffic, 25.75TB of upload traffic and 450GB of storage.
Excluding the number of transactions, in terms of Amazon
S3 pricing!, our experiments represent a cost of $5,431.2 in
download traffic, plus a monthly storage cost of $42.75. This
evidences that it is very easy to exploit these services.

We believe that the storage leeching problem is a substrate
over which many abusive applications might exploit Personal
Clouds. For instance, a single user may aggregate free accounts
as a storage backend to support an illegal webpage which
exhibits prohibited contents or even, as a part of a peer-assisted
storage system [15]. Even worse, a malicious user may share
with others the access tokens of a certain account, which
enables any other user to access the stored data. The potential
damage of this form of exploitation may be important, since
it leverages the creation of applications such as file-sharing,
where users not registered in any Personal Cloud can freely
consume resources and illicitly benefit from these services.

In what follows, we argue about the potential threat that
storage leeching represents for Personal Cloud vendors by
estimating the hypothetical cost of this form of abuse.

A. Problem Motivation: Economic Impact of Storage Leeching

To motivate the relevance of the storage leeching problem,
in this section we provide a simple cost model to give a sense
about the economic impact of users abusing Personal Clouds.

The economic impact of users abusing a service is mainly
given by two factors: the number of users and their usage
behavior. We model these aspects as follows.

Simple cost model. We assume that new users arrive to
the system and start using a certain abusive application that

Uhttp://aws.amazon.com/en/s3/pricing/

benefits from storage leeching. First, we consider discrete time
intervals, denoted by n € N, of duration A. T represents time
where the system is serving users. We denote by A the average
rate of new user arrivals per time interval. Analogously,
we denote by p the rate of users that permanently leave
the system every time interval. Therefore, the total number
of alive users abusing the system at time n is given by
N(n) = N(0) +nX —nu, where A > pu, and N(0) represents
the initial number of users which are already in the system.

Regarding storage, we consider that users are responsible
for creating new storage accounts, as well as for gathering
the necessary tokens to enable an application exploiting the
service. Note that users have strong incentives for doing so,
since that storage space will be exploited by themselves, or
by the application they want to benefit from.

The fraction of users that creates storage accounts of size
a when they arrive to the system is defined by fs € [0,1].
Therefore, we do not consider that a user creates accounts over
time. We also consider that once a user creates an account, he
does not cancel it after he leaves the system. In this sense, as
Personal Cloud accounts do not expire, the available storage to
exploit will be always increasing. Thus, the maximum amount
of available storage (5,) at time n is:

Sa(n):n'A'fs'a’ (1)

To represent the actual consumption of storage resources
(S¢), we employ an average of storage consumption per user,
every time interval n, namely s. Note that the amount of
consumed storage must be always S.(n) < S,(n). Hence,
the storage consumption in our model at time n is:

Se(n) = é}N(z‘) 5, ®)

The majority of abusive applications will consume down-
load traffic, which at its turn, is an expensive utility of a Cloud
storage service. The amount of download traffic consumed by
users at time n is expressed as follows:

D(n) = ; NG)-d, 3)

where d denotes the average amount of consumed download
traffic per time-slot n by every user. Note that, contrary
to storage, Personal Cloud free accounts provide unlimited
transfers, which has been confirmed in our experiments.

We have described how to estimate the amount of consumed
resources at time n, in terms of storage and download traffic.
To convert this into a monetary metric, we apply the appro-
priate pricing by unit of data as follows:

C(TL) = Sc(n) cCs + D(n) " Cd “4)

where c, represents the monetary cost per storage unit and
time interval, and c4 the price of downloading a unit of data.

We intentionally left upload traffic consumption out of our
cost estimation model. The reason is that our objective is to
estimate the monetary costs of storage leeching and none of the
major Cloud providers (Amazon S3, Google Storage) charges
any cost for the upload traffic.

3000

A=100, p=N/2, s=0.1GB/day, d=0.1GB/day, =0.05 x10* A=10.000, p=A/100, s=0.01GB/day, d=0.01GB/day, £=0.75

< 10° A=10,000, u=A/100, s=0.1GB/day, d=0.1GB/day, {=0.75

Storage Cost (c,)

4,500 users in 90 days

Storage Cost (c)

2500 e Down. Traffic Cost (CH]

2000 == Total Cost (C)

8 {{ s DoWn. Traffic Cost (c)
m===Total Cost (C)

z 15001

Cost ($)
Cost ($)

10001

500F

7 2
/ 547
4 2F

891,000 users in 90 days 891,000 users in 90 days

s Storage Cost ()

e Down. Traffic Cost (CLl)
6 = Total Cost (C)

0 10 20 30 40 70 80 90 0 1020 30 40

50 60
Simulation Time (T) in days

(a) (b)

Fig. 1.
Param. Description Parametrization
A User arrivals per interval ¢ 100, 10, 000
“w User departures per interval ¢ /2, A/100
N(0) Initial number of users 0
a Account size 5GB
s Storage consumption 0.01GB/day, 0.1GB/day
d Down. traffic consumption 0.01GB/day, 0.1GB/day
fs Fraction of storage consumers 0.05, 0.75
Cs Storage cost (Amazon S3) 0.095%/GB month
cd Down. traffic cost (Amazon S3) 0.12$/GB
A Interval duration 1 day
T Simulation time 90 days

TABLE I
COST MODEL PARAMETRIZATION USED IN OUR SIMULATIONS

Simulation results. Next, we analyze the hypothetical eco-
nomic impact of storage leeching in various scenarios. To this
end, we executed several simulations that implement our cost
model, introducing specific values to the model’s parameters
as depicted in Table I. Simulation results appear in Fig. 1.

As expected, we clearly observe that the number of user
arrivals, namely), is one of the most important factors re-
garding the monetary costs of storage leeching. If we compare
Fig. 1a with Fig. 1b and lc, we discern that the value of A is
significantly different among them. Therefore, the popularity
of an application that exploits storage leeching plays a critical
role on the economic costs that it will cause to providers.

Clearly, the resulting costs of storage leeching are highly
dependent on the type of application that is exploiting the
system, which would consume distinct amounts of resources.
However, as the population grows, the consumption of down-
load traffic seems to induce the major fraction of a provider’s
expense, since it is proportionally more expensive than storage.

Regarding storage, we observe that a the value of f, which
represents the fraction of users that contribute by creating
storage accounts, considerably limits storage costs in case
of being very low (Fig. la) or in case of a high storage
consumption (Fig. 1c). In any case, note that users’ data may
be stored in the system for a long time, which represents a
long term and ever increasing monthly cost for the provider.

We observe that, even in case of modest acceptance of an
abusive application, the economic costs may be important.
For instance, in Fig. la we observe that a small number of
active users (4, 500) illicitly consume an amount of resources
equivalent to $2,670 after 90 days. In case of a large-scale
abuse (Fig. 1b and Ic), these costs may reach dramatic
numbers at short or medium term (e.g. $0.81M).

We conclude that applications exploiting storage leeching
are a potential threat to Personal Clouds, in terms of resource
consumption and economic impact, even in case of modest
user populations. Next, we prove our findings by implementing

Simulation Time (T) in days

50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Simulation Time (T) in days

©

Cost estimation of storage leeching under various scenarios.

a file-sharing application that exploits storage accounts from
multiple providers.

V. BoxLEECH: AN ABUSIVE FILE-SHARING APPLICATION

Boxleech is a proof-of-concept file-sharing application
able to disseminate illegal or copyrighted content by abusing
Personal Clouds. Essentially, it aggregates free accounts from
multiple Personal Clouds into a single storage unit that can be
freely accessed by users interested in a certain content. In par-
ticular, Boxleech aggregates free accounts from Dropbox,
Box and SugarSync, three major storage vendors, which shows
the potential impact of storage leeching and the simplicity to
exploit public APIs to abuse Personal Clouds.

In Fig. 2, we provide a general overview of the functioning
of Boxleech. We observe two Personal Clouds where a
malicious user has registered a developer application and
few free accounts. Besides, he enables the REST API access
to these accounts obtaining the required tokens. Using the
Boxleech client, he uploads chunks corresponding to an
illicit content he wants to share. Finally, he generates and
distributes the metadata file which contains the information
to enable any other Box1leech user to download the content.

The design of Boxleech can be divided into three main
blocks: data management, metadata and, chunk assignment.

Data management. First, similar to Dropbox and the likes,
which internally do not use the concept of files, Boxleech
splits every file into chunks of up to 100MB in size. There
were three good reasons for this: i) To surpass the file size
limitations commonly imposed in the REST API access to
free accounts, ii) To exploit storage diversity by allocating
chunks of the same file to different Personal Clouds and,
iii) To make it impossible for a single provider to store
an entire copy of an illicit content. Currently, Boxleech
applies a simple fragmentation algorithm to create equally-
sized file chunks. However, more elaborated mechanisms such
as Erasure Codes [15] may be introduced to increase data
availability via data redundancy.

Locally, Boxleech maintains an index which relates every
chunk with the file it belongs to, as well as the information
about the cloud account where it has been stored. To manage
data chunks from these Personal Clouds, the implementation
of Boxleech includes the client API of all of them. Clearly,
supporting a new provider will require introducing the corre-
sponding API implementation in the application.

Metadata. The objective of Boxleech metadata files
(.boxleech) is to map a set of chunks corresponding to

Users get the
metadata file
and start
downloading
the file with the
Boxleech client

Personal Cloud 1

Account 1

A user sets up Account 2
developer
apps and free
accounts to
share a file

Application 1

.boxleech |

Metadata

Personal Cloud 2

Account 1

Account 2

Application 2

@ Boxleech Client === Data Traffic ==« Metadata Traffic

Fig. 2. Users abusing Personal Clouds by sharing illicit contents with
Boxleech. Once users get the metadata file that contains the account access
credentials for each chunk, they are able to download the shared content.

the same content to their location in diverse Personal Cloud
accounts. A metadata file is formed by a set of rows, each
one containing the following information for a data chunk:
[chunk_id], [order], [provider], [access_credentials]. The first
two fields describe the identifier of a chunk (e.g. hash value)
and the chunk position, which is needed to reconstruct the file
after downloading it. The access_credentials field includes the
necessary access information to download that chunk from the
appropriate provider. In the case of DropBox and Box, there is
only need to include the access token for the account where the
chunk is stored. However, SugarSync requires to include the
secret/application keys as well as the account login/password
information to renew the token after its expiration.

Boxleech is capable of generating a . boxleech file for
a content that a user has uploaded, as well as to interpret these
files to download contents shared by other users. Similarly to
a .torrent file [16], there are several ways of indexing and
distributing these metadata files, such as a Web server (tracker)
or a Distributed Hash Table (DHT). Going further, we advocate
for building a metadata index also exploiting Personal Cloud
accounts. To illustrate this, let us assume that each metadata
file is named with the hash of the original content name
(e.g. film title). Making use of consistent hashing [17], we
can partition the hash identifier space among a set of storage
accounts, which adopt the role of traditional hash buckets.
Hence, Boxleech clients are able to deterministically search
for a hash value in the appropriate account. This leverages
an integral file-sharing service entirely supported by exploited
resources from Personal Clouds?.

Chunk Assignment. The allocation of chunks when exploiting
various Personal Clouds plays a critical role on the speed of
transfers. To better explore this issue, we empirically measured
the REST API service of DropBox, Box and SugarSync by
actively uploading and downloading files from free accounts?.

2In [9], Mulazzani et. al. point out that DropBox is being used to store and
share .torrent files, as well as to distribute copyrighted material.

3Due to lack of space, the complete experimental methodology as well as
the datasets can be found at http://ast-deim.urv.cat/trac/pc_measurement

Mean Download Transfer Speed Distribution
1 1

Mean Upload Transfer Speed Distribution

w— Box

0.8 0.8} == DropBox
m== SugarSync
0.6 . 0.6
5 8
“ o4 04
m— BoX
02
02 === DropBox
m— SugarSync 0
0 1 2 3
v 200 400 600 800 1000 10 10 10 10 10
KBytes/sec. KBytes/sec.
(a) Download file MTS distributions. (b) Upload file MTS distributions.

Fig. 3. File mean transfer speed of Box, DropBox and SugarSync APIs.

In Fig. 3 we illustrate the empirical distributions of the
obtained file mean transfer speed (MTS) values. This metric
is defined as the ratio of the size of a file, S, to the time, T,
that was spent to transfer it: MTS = S/T (KBytes/sec).

Fig. 3 evidences an interesting fact: Personal Clouds pro-
vide very disparate transfer speeds. For instance, in Fig. 3b
we observe that Box and DropBox provide a upload MTS
several times faster than SugarSync —the same observation
holds for downloads. Moreover, the heterogeneity of these
services also depends on the traffic type (in/out). This can
be appreciated comparing Fig. 3a and 3b: DropBox exhibits
the best download MTS values whereas Box clearly provides
the fastest uploads. Hence, we conclude that Personal Clouds
are heterogeneous in terms of transfer performance.

Boxleech exploits this feature to show that leechers can
obtain even faster transfers by intelligently allocating the file
chunks to various providers*. This allocation depends on the
chunk assignment policy. In Section VI, we propose and
evaluate Boxleech using several chunk assignments.

Initialization. To share content with Boxleech, all we
needed to do was to sign up for some free accounts and
then register as a developer in each storage service. Once
registered, we instantiated a fake application with the intention
to receive an application and secret key pair. Using these
keys, we validated our credentials and obtained the authorizing
tokens that must be passed in every API call (see Section III).
All this process was done with little human interaction since
the core idea of the freemium model is to recruit as much
users as possible through a simple sign-up process.

VI. EXPERIMENTAL EVALUATION

Next, we evaluate Boxleech and we compare its perfor-
mance with software clients delivered by DropBox and Sug-
arSync to illustrate the potential benefits of storage leeching.

A. Setup & Methodology

Scenario. We executed our experiments in our university
laboratories. We used 12 machines in order to run the different
software configurations employed in our tests. We employed
Intel Core 15 machines equipped with 4GB of DDR3 memory.
The operating system was Windows 7 (DropBox, SugarSync
clients) and Linux Debian (Boxleech). Machines were con-
nected to the same switch via a Fast Ethernet link.

Software. Personal Cloud Software Clients. DropBox and
SugarSync provide free and closed software clients to maintain

4We confirmed through experimentation that multiple parallel download
transfers from a single data object do not decrease transfer performance. This
provides an appropriate substrate to build an efficient file-sharing system.

4

in sync files from multiple devices and the Cloud>. In our
experiments, both clients were explicitly configured to provide
the maximum transfer capacity. Moreover, in the case of
DropBox, we deactivated the LAN Sync option which permits
the synchronization of multiple devices in the same network.

Boxleech. Our file-sharing application employed the stan-
dard API implementations to access storage accounts. Specif-
ically, we used two configurations of free accounts in our
tests: i) 3 free accounts, one for each Personal Cloud analyzed
in this article and ii) 5 Box accounts, to test large storage
operations to the same provider. Boxleech made use of
parallel transfers when transferring chunks in and out from
each account. In case of a failed storage operation on a chunk,
it performed retries until making the operation succeed. This
could increase transfer times in case of multiple failures.

Workload. For both software clients and Boxleech we
executed an alternate upload and download workload. Basi-
cally, it consisted on generating a new file, uploading it to the
account and downloading it before its deletion.

Specifically, in the case of software clients, the workload is
executed by pairs of computers —each one dedicated either
to upload or download files. First, the upload script created
a synthetic file which is stored in the software client watch
directory of the computer responsible for uploads. This script
was continuously checking in the server-side whether the client
finished the upload or not. In parallel, the download script
was waiting in the second computer until the upload had
finished. Then, it started measuring the download time until the
remote file was available in that computer. When the download
concluded, the download script deleted the file, which served
as a notification to the upload script to repeat the process again.

Storage operations were performed over synthetic random
and compressed files. This was necessary to prevent software
clients from applying caching, deduplication and compression
mechanisms over these files. Our results are based in approx.
100 storage operations for each software and configuration.

Chunk Assignments. To explore the impact of chunk
assignments in depth, we performed a battery of Monte Carlo
simulations over the empirical data collected in our experi-
ment (see Fig. 3). Fig. 4 plots the impact of different chunks
allocations. The abscissa axis shows the upload/download
transfer time measured in seconds for transferring a file of
F = 600 MB. For each possible allocation of n chunks among
Box, DropBox and SugarSync, there is one corresponding bar
in Fig. 4. Note that depending on the chunk size /3, the number
of chunks n will vary (n = F/§). The colored segments in
the bars represent the time incurred to sequentially transfer the
chunks assigned to a given Personal Cloud.

As expected, assigning more chunks to DropBox reduces
the download time, since this vendor exhibited the fastest
download capacity in our experiment. This always holds,
irrespective of the chunk size. In any case, allocating the
majority of chunks among Box and DropBox ensures to
the abusive application good download performance while
improving load balancing among both providers.

SSugarsync client version: 1.9.71.94365.20120712. Dropbox client ver-
sion 1.4.11. Box is excluded from this evaluation since it currently does not
provide a free software client.

Download times by chunk assignment (3=50MB)

3000
- [DropBox
8 2500 [l SugarSync
=, Il Box
5 2000
5 1500
&
2 1000
g
& 500

Chunk Assignments
Upload times by chunk assignment (B=50MB)

[DropBox
Il SugarSync
Il Box

Chunk Assignments

Fig. 4. TImpact of chunk assignment on transfer times (chunks are assumed
to be sequentially transferred). Clearly, different assignments report disparate
transfer performance, which is essential to effectively exploit the service.

On the other hand, due to its poor performance, allocating
more chunks to SugarSync yields higher upload times. The
impact on transfer times of SugarSync uploads is much higher
than in the case of downloads. In this sense, we observe an
important improvement as more chunks are assigned to Box,
which exhibits the fastest upload service in our experiment.

As aresult of these observations, we implemented and tested
three simple allocation policies to assess the potential benefits
of exploiting storage diversity. These policies are:

e Round Robin (RR): This strategy is extremely simple to
implement and has been adopted in many real systems.
This placement allocates the same amount of chunks
to each user account in order to ensure fairness and
reliability. This policy serves as a performance baseline
and it does not make use of any source of information.

o Upload/Download Proportional (UP, DP): Based in our
analysis, we propose two new placements to reduce
upload and download transfer times. Both placements
assign a number of chunks in proportion to the transfer
capacity of each Personal Cloud. The transfer capacities
has been extracted from our measurement study, and
therefore, UP and DP are informed assignment policies.

Next, we evaluate the differences in performance between
both types of placement policies (informed and non-informed).

B. Experimental Results

Single provider. One simple form of storage leeching is to
aggregate free accounts from the same provider. In the next
experiment, we want to verify if the aggregation of accounts
from the same provider entails some performance degradation.
For this reason, we aggregated 5 Box accounts and uploaded
large amounts of data. The results are shown in Fig. 5.

Fig. 5 shows the storage and retrieval performance of
Boxleech aggregating 5 Box accounts for different amounts
of data. Although the linear behavior of transfer times was
expected, it is surprising to see the upload speed Boxleech
with this configuration. Actually, the average transfer speed of

Storage operations using 5 aggregated Box accounts
14000 . . ; i i ;
- Il Box Downloads

120000 Box Uploads |
10000

8000
6000
4000
2000

Time to Transfer (secs

1GB 5GB 10GB 15GB 20GB 25GB

Fig. 5. Transfer performance of Boxleech aggregating 5 Box accounts. We
observe that the upload capacity of Box is really high and can be effectively
exploited to store and share large amounts of data.

Mean Download Times
2500 T T

IS
S
S
S

1500

1000

Transfer Time (secs.)

w

=3

S
T

=)

DB SS

DP/50MB DP/25MB RR/50MB RR/25MB UP/50MB UP/25MB

Mean Upload Times
3000 T T

2500
2000
1500
1000

Transfer Time (secs.)

o
S
S

=)

DB SS

DP/50MB DP/25MB RR/50MB RR/25MB UP/50MB UP/25MB

Fig. 6. Mean transfer times and standard deviation (error bar) of Boxleech
under distinct configurations and DropBox (DB) and SugarSync (SS) clients.

chunks was ~ 11.5MBps®, which is a high-quality free ser-
vice. One of the most important conclusions of this experiment
is that aggregating an arbitrary number of free accounts is
extremely easy. Furthermore, aggregating several accounts of
the same Personal Cloud does not seem to degrade the service
performance, meaning than exploiting a single provider is a
feasible leeching strategy.

As an important remark, note that a single user is able to
consume around 25GB of storage and upload traffic, as well
as bGB of download traffic in one hour. Thus, one can easily
imagine the economic expense in terms of consumed resources
that a large user population may cause to a provider.

Multiple providers. Next, we focus on the transfer speed of
Boxleech compared with DropBox and SugarSync software
clients. For this experiment we used 600MB synthetic files,
which emulates a scenario of users sharing music albums.

In Fig. 6 we infer that Boxleech obtains better transfer
speed than DropBox and SugarSync clients in many con-
figurations. For downloads, Boxleech using the Download
Proportional policy (DP) provides a transfer speed nearly 2
times higher than the obtained by the SugarSync client, which
is the client exhibiting fastest downloads. To wit, the DP policy
assigns more chunks to Box and DropBox services, which
present the highest download speeds in our measurement. This
makes Boxleech downloads considerably faster. Note that

SNote that such a speed cannot be continuously maintained since we start
a new TCP connection for each chunk to be transmitted.

Chunk Download Times (3=50MB) Chunk Upload Times (B=50MB)

1 1
—Box
0.8 DB 0.8
= 0.6/ =SS = 0.6
[a) [a)
©o04 © 0.4
0 0
10' 10° 10° 10’ 10' 10° 10°

Time to Transfer (secs.) Time to Transfer (secs.)

Chunk Download Times (3=25MB) Chunk Upload Times (B=25MB)

1 1
0.8 0.8
0.6)
5 500
C o4 O 04
02 02
0 0
10' 10° 10° 10° 10' 10° 10°

Time to Transfer (secs.) Time to Transfer (secs.)

Fig. 7. Boxleech chunk transfer times distributions for both uploads
and downloads, as well as for different chunk sizes (3. Probably, due to the
management of parallel transfers of Boxleech, a small fraction of chunks
present really large transfer times.

even using the simple Round Robin (RR) policy, Boxleech
reports a download speed similar to the SugarSync client.

For uploads, we see that Boxleech is able to obtain
comparable or even better transfer speed than Personal Cloud
software clients. That is, Boxleech using the Upload Pro-
portional (UP) policy with chunks of 25MB presents upload
times over 55% shorter than its counterparts. In this sense, the
RR policy reports the worst performance due to the amount
of chunks uploaded to the SugarSync service, which is really
limited. However, this is the only policy that provides storage
balance among accounts. Thus, there is a trade-off between
storage balance and transfer speed when exploiting accounts
from multiple providers.

Appreciably, for both uploads and downloads, we see that
our informed chunk assignment policies provide a higher
transfer speed than the RR policy. Hence, the information of
our measurement helps to better exploit storage diversity.

Fig. 7 helps to understand the reported file transfer times in
Fig. 6. Fig. 7 shows the chunk transfer time distributions for
each Personal Cloud used by Boxleech. We found that a
small fraction of chunks exhibit really large transfer times.
This phenomenon is specially pronounced in Box uploads.
This impacts on file transfer times of our application since
all chunks should be transferred before finishing. This effect
might be induced by the management of parallel transfers
in Boxleech, that should be carefully addressed for those
applications which want to optimize transfers.

Moreover, Fig. 6 shows that the chunk size (3) does not
have important implications to the transfer performance, at
least in case of moderate file sizes.

Another interesting observation comes from the analysis of
DropBox and SugarSync clients (Fig. 6). In our experiments,
DropBox exhibits a much greater REST API transfer speed
than SugarSync. However, we see that the transfer perfor-
mance of both clients is quite similar in case of uploads.
Furthermore, we observe that SugarSync provides a download
speed much better than the DropBox client. This suggests that:
i) these clients may implement bandwidth control mechanisms
in order to restrict the resource consumption coming from

free accounts, and ii) the performance of REST APIs is not
necessarily related with the performance of the software client.

VII. DISCUSSION

In this work, we just scratched the surface of the set
of exploitation possibilities that the storage leeching prob-
lem permits. In addition to benefit abusive applications like
Boxleech, storage leeching is a vector to materialize many
other threats, such as denial-of-service attacks against Personal
Clouds [4] or fraudulent resource consumption [7], [8].

In this sense, we highlight the danger that a quick account
registration process (e.g. no captchas) represents to Personal
Clouds. As a lesson learned from working with Personal Cloud
APIs, we created over 140 free accounts and 35 developer
applications of various vendors in few hours. This represents
a virtual storage capacity of around 450GB. Moreover, it is
not hard to imagine expert hackers creating scripts to facilitate,
even more, the initial registration process for non-expert users.
In our view, leveraging storage leeching to the masses would
have important economic implications to Personal Clouds.

Although introducing countermeasures to provide a secure
API service is strategic decision from a vendor’s viewpoint,
we propose the following ones based on our experience:

o Enforce accountable user identities: The main require-
ment to access free storage and register an application as
developer is an email account. Thus, if email accounts are
easy to create, any user can rapidly gather an arbitrary
amount of free storage. We suggest to introduce filters
in the creation of Personal Cloud free accounts and/or
registering applications to enforce that one user obtains
one account (phone number, human intervention). Cur-
rently, systems like Facebook introduce very restrictive
procedures to their developer environments.

o Expiration time for developer applications: To discourage
malicious users to exploit open APIs as a durable storage
substrate, we believe that introducing expiration mecha-
nisms to both developer applications and the related free
accounts could be an effective countermeasure. By doing
this, Personal Clouds would force abusers storing their
data in the system to periodically migrate it.

o Identify anomalous workloads: Personal Clouds could
benefit from research efforts focused on identifying fraud-
ulent resource consumption to detect abuse in storage
accounts related to developer applications. This sugges-
tion comes from our empirical experience: we actively
performed tests against free accounts for 2 months. In
that time, we have not detected any change in the service
provided by Personal Clouds, even though the executed
workload could be easily detected as an anomaly.

Finally, it is surprising that many vendors do not implement
this kind of security measures in their API service, even though
it is technically possible. Perhaps, Personal Clouds assume
the risk of a possible abuse of their service motivated by
luring as many users and developers as possible. However,
observing the behavior of SugarSync, where the REST API
transfer performance is substantially worse than that exhibited
by the software client, it seems probable that other providers
will restrict the freemium API service in the future.

VIII. CONCLUSIONS

To lure customers and developers, Personal Clouds provide
open REST APIs to create new applications that make their
service even more attractive. However, the unintended conse-
quence of this strategy is that it is very easy for a user to abuse
the service by aggregating free accounts, from one or several
providers, to obtain a high-quality storage service, what we
term as the storage leeching problem.

We implemented a proof-of-concept file-sharing application
to demonstrate how easy is to benefit from storage leeching.
Our application is able to provide equal or better transfer
QoS than Personal Cloud software clients, showing that free
accounts can be easily exploited to obtain a practical Cloud
storage service for free. We conclude that Personal Clouds
should seriously consider the implicit risks of their free
services and open APIs to avoid nefarious use from malicious
parties.

ACKNOWLEDGMENT

This work has been partly funded by the Spanish Ministry
of Science and Innovation through projects DELFIN (TIN-
2010-20140-C03-03) and RealCloud (IPT-2011-1232-430000)
and by the European Union through project FP7 CloudSpaces
(FP7 — 317555).

REFERENCES

[11 F. Research, “The personal cloud: Transforming personal
computing, mobile, and web markets,” 2011. [Online]. Available:
http://www.forrester.com/rb/Research/personal_cloud_transforming_
personal_computing\ %2C_mobile\ %2C_and/q/id/57403/t/2

[2] [Online]. Available: http://en.wikipedia.org/wiki/Dropbox_(service)

[3] M. Jensen, N. Gruschka, and R. Herkenhoner, “A survey of attacks on
web services,” Computer Science - Research and Development, vol. 24,
pp- 185-197, 2009.

[4] “A survey on security issues in service delivery models of cloud
computing,” Journal of Network and Computer Applications, vol. 34,
no. 1, pp. 1-11, 2011.

[5] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. Lo Iacono, “All your clouds are belong to us: security analysis of
cloud management interfaces,” in ACM CCSW’11, 2011, pp. 3-14.

[6] L. Vaquero, L. Rodero-Merino, and D. Mordn, “Locking the sky: a
survey on iaas cloud security,” Computing, vol. 91, pp. 93—118, 2011.

[71 J. Idziorek and M. Tannian, “Exploiting cloud utility models for profit
and ruin,” in JEEE CLOUD’11, july 2011, pp. 33-40.

[8] J. Idziorek, M. Tannian, and D. Jacobson, “Attribution of fraudulent
resource consumption in the cloud,” in /[EEE CLOUD’12, 2012, pp.
99-106.

[9] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E.Weippl.,
“Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space,” in USENIX Security, 2011, pp. 5-8.

[10] J. Srinivasan, W. Wei, X. Ma, and T. Yu, “Emfs: Email-based personal
cloud storage,” in NAS’11, 2011, pp. 248-257.

A. Traeger, N. Joukov, J. Sipek, and E. Zadok, “Using free web storage
for data backup,” in StorageSS’06, 2006, pp. 73-78.

H.-C. Chao, T.-J. Liu, K.-H. Chen, and C.-R. Dow, “A seamless and
reliable distributed network file system utilizing webspace,” in WSE’08,
2008, pp. 65-68.

E. Hammer-Lahav, “The OAuth 1.0 Protocol,” http://tools.ietf.org/html/
rfc5849, 2010.

[14] J. R. Douceur, “The sybil attack,” in IPTPS’01, 2002, pp. 251-260.
[15] R. Gracia-Tinedo, M. Sanchez-Artigas, A. Moreno-Martinez, and
P. Garcia-Lépez, “FRIENDBOX: A Hybrid F2F Personal Storage Ap-
plication,” in JEEE CLOUD’12, 2012, pp. 131-138.

B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, 2003, pp. 68-72.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in ACM
STOC’97, 1997, pp. 654-663.

[11]
[12]

[13]

[16]

(17]

