
Separating Data and Control: Asynchronous BFT
Storage with 2t + 1 Data Replicas

Christian Cachin1, Dan Dobre2, Marko Vukolić3

1 IBM Research - Zurich, Switzerland, cca@zurich.ibm.com
2 Work done at NEC Labs Europe, Germany, dan@dobre.net

3 Eurécom, France, vukolic@eurecom.fr

Abstract. The overhead of Byzantine fault tolerant (BFT) storage is a primary
concern that prevents its adoption in practice. The cost stems from the need to
maintain at least 3t+1 copies of the data at different storage replicas in the asyn-
chronous model, so that t Byzantine replica faults can be tolerated. This paper
presents MDStore, the first fully asynchronous BFT storage protocol that reduces
the number of replicas that store the payload data to as few as 2t + 1 and main-
tains metadata at 3t + 1 replicas on (possibly) different servers. At the heart
of MDStore lies a metadata service built upon a new abstraction called “times-
tamped storage.” Timestamped storage allows for conditional writes (facilitating
the implementation of the metadata service) and has consensus number one (mak-
ing it implementable with wait-free semantics in an asynchronous system despite
faults). In addition to its low replication overhead, MDStore offers strong guar-
antees by emulating a multi-writer multi-reader atomic register, providing wait-
free termination, and tolerating any number of Byzantine readers and crash-faulty
writers.

1 Introduction

Byzantine fault-tolerant (BFT) protocols are notoriously costly to deploy. Their over-
head stems from the extra resources that must be installed compared to systems that
tolerate less severe faults, such as crashes. For example, in the asynchronous communi-
cation model, BFT storage protocols that emulate a simple register abstraction need at
leastN > 3t server replicas so that t faults can be tolerated [32]. This stands in contrast
to the required number of replicas when only server crashes are tolerated, where 2t+1
replicas suffice. Such crash-tolerant systems based on quorums [34] are in production
use today, in cloud-storage systems and other contexts. But the additional cost of han-
dling Byzantine faults compared to crashes represents one of the main concerns for the
adoption of BFT systems in practice.

In this paper, we show that the gap between crash-tolerance and Byzantine-tolerance
in distributed storage can be reduced significantly. By separating the functions that han-
dle metadata from those that store the payload data, the number of expensive servers
with large storage capacity can be reduced to N > 2t while tolerating Byzantine faults.
We introduce protocol MDStore, which emulates a storage register abstraction in an
asynchronous message-passing model; it requires only N > 2t storage replicas that
store payload data (of which t may be Byzantine) and M > 3f metadata replicas

that maintain short control information (of which f may be Byzantine). Storage and
metadata replicas may be separated physically or co-hosted on the same servers.

Despite achieving lower replication cost, MDStore does not sacrifice other desir-
able features: MDStore implements a multi-writer multi-reader (MWMR) atomic reg-
ister [21, 24] with wait-free semantics [20], tolerates any number of Byzantine read-
ers and crash-faulty writers, and works without any synchrony assumption. Compared
to other BFT storage protocols that reduce the number of storage replicas to 3t or
less [11,12,22,33], MDStore is the first one that achieves this without trusted hardware
components. Moreover, because MDStore is fully asynchronous and does not employ
a consensus primitive, it fundamentally differs from other related systems that separate
the control plane from the data plane for providing, e.g., consensus [19], state-machine
replication [26, 37], and distributed storage [2] — these are all subject to the FLP im-
possibility result [17] and require partial synchrony [15].

Protocol MDStore has a modular architecture. The clients exchange metadata about
the stored data through a metadata service (MDS). The metadata related to a stored
value v consists of a cryptographic hash of v, a logical timestamp, and pointers to
t + 1 among the N storage replicas that store v. Our MDS implementation contains
an array of simple read/write registers with safe semantics for the hash values and a
novel timestamped storage function for the other metadata. Timestamped storage offers
conditional operations to multiple readers and writers, is linearizable, and has wait-free
semantics. The storage replicas, on the other hand, simply store data values associated
to timestamps.

The timestamped storage function is very similar to a classical atomic register [24],
except that it also exposes a timestamp associated with the stored value. This permits
the clients to execute conditional writes, i.e., write operations that take effect depending
on the timestamp value. Interestingly, despite its support of conditional writes, times-
tamped storage has consensus number equal to one [20], and this paves the way for a
wait-free BFT distributed implementation of the MDS in the asynchronous model. We
show how to realize the MDS for MDStore from asynchronous BFT safe [1,18,31] and
atomic [3, 9, 13, 30] single-writer storage protocols using M > 3f metadata replicas.

In a preliminary version of this work [6], we also show why the number N of
storage replicas cannot be reduced to 2t or less, even when only crashes are tolerated.
Furthermore, we argue that cryptographic techniques, in particular, collision-free hash
functions, appear to be necessary for any BFT storage emulation that uses 3t or fewer
replicas.

The rest of the paper is organized as follows. The next section further discusses the
relation of MDStore to other work; Section 3 introduces the system model and defini-
tions. In Section 4, protocol MDStore is presented with an overview, pseudocode, an
example execution, and a formal correctness argument.

2 Related work

The formal study of registers as abstractions for concurrently accessed read/write stor-
age starts with Lamport’s classical paper [24]; this work also introduced safe, regular,
and atomic consistency properties. Martin et al. [32] establish a tight lower bound of

2

3t + 1 replicas for any register implementation that tolerates t Byzantine replicas in
an asynchronous system. Their bound applies even to a single-writer single-reader safe
register, where the reader and the writer may only fail by crashing. In this paper, we
refine our understanding of this bound by logically separating the replicas into stor-
age replicas and metadata replicas. Protocol MDStore shows that the lower bound of
3t + 1 replicas [32] applies only to metadata replicas that exercise a control function.
The number of storage replicas, which take care of storing the data, can be lowered to
2t+ 1 in the presence of t Byzantine faults, assuming cryptographic techniques.

Some elements of MDStore are similar to mechanisms in Farsite [2], a virtual file
service that tolerates some Byzantine nodes, and Hybris [14], a recent hybrid cloud
storage system. In particular, Farsite and Hybris separate metadata from data, they store
cryptographic hashes and maintain directory information in a metadata service, and they
both use only 2t+1 storage replicas that are subject to Byzantine faults. However, unlike
MDStore, the metadata services of Farsite and Hybris are based on a generic service
implemented by a replicated state machine. Hence, Farsite and Hybris are subject to
the FLP impossibility result [17] and require at least partial synchrony [15], whereas
MDStore is asynchronous. The replication mechanism in Farsite assumes there is a
single writer and uses read/write locks for concurrency control. On the other hand,
Hybris is not wait-free as it only provides reads that are live in the presence of finitely
many concurrent writes (so-called FW-termination [1]). Protocol MDStore, in contrast,
supports multiple concurrent writers, offers atomic semantics, and provides wait-free
termination without resorting to locks.

Many practical storage systems separate data and control for reasons related to per-
formance and modularity [36]. In an asynchronous model where nodes are subject to
crashes, several replicated storage systems have divided the control path for metadata
from the data path for bulk data [10, 16, 35]. Interestingly, on a conceptual level, this
separation does not pay off with crash-faulty replicas, as it does not allow to lower the
number of storage replicas to below 2t+1. These related systems all require 2t+1 stor-
age replicas. It can be shown that this is inherent: 2t+ 1 storage replicas are necessary,
even with a fault-free metadata service [6].

In the context of state-machine replication and the consensus problem, separating
data from control functions is a well-known technique. Lamport’s Paxos consensus al-
gorithm [25, 26] introduces three roles for the participant processes and distinguishes
between proposers, acceptors, and learners. The lower bound of 3t+1 replicas for par-
tially synchronous BFT consensus only applies to the acceptors but not to proposers
or learners [27]. For example, there is a partially synchronous BFT consensus pro-
tocol in which any number of proposers and learners may be Byzantine [19]. Yin et
al. [37] separate the agreement function from an execution component in a BFT system
for generic state-machine replication, with 3t + 1 replicas needed for agreement and
2t+1 replicas for storing state and executing commands. However, just like Farsite [2]
and Hybris [14], these designs are fundamentally different from the principle under-
lying MDStore. As these are based on consensus, they are subject to the impossibility
of consensus in asynchronous systems [17]; therefore, they rely on stronger timing as-
sumptions [15].

3

3 System model and definitions

System model. We consider an asynchronous distributed system of process abstrac-
tions that communicate with each other. There are at least four kinds of processes: (1) a
setM = {m1, . . . ,mM} of M metadata replicas that act as servers for (small) meta-
data, (2) a set S = {s1, . . . , sN} ofN storage replicas that store (large) values, (3) a set
W of writers and (4) a setR of readers. The readers and writers together form the set C
of clients, which run operations on the storage service. The setR =M∪S denotes all
replicas, which provide the storage service. Clients are disjoint from replicas. Processes
may be correct, benign, or Byzantine, as defined later.

The processes interact asynchronously by exchanging events. A protocol specifies
a collection of algorithms with instructions for all processes; equivalently, a distributed
algorithm can be seen as a collection of deterministic automata, where each process
is assigned an automaton. An execution of an algorithm is an infinite sequence of the
steps taken by the correct and benign processes according to their algorithms, together
with the actions of the Byzantine processes. More formal descriptions appear in the
literature [7, 29].

A process may fail by crashing or by exhibiting Byzantine faults. A benign process
executes its algorithm until it crashes and takes no further steps. A Byzantine process
may perform arbitrary actions, such as sending arbitrary messages or changing its state
in an arbitrary manner (NR-arbitrary faults). We assume an adversary that coordinates
the Byzantine processes and controls the scheduling of events.

All writers are benign (they are correct or may crash), readers may be Byzantine,
up to f metadata replicas are Byzantine, where M > 3f , and up to t storage replicas
are Byzantine, where N > 2t. Processes that do not fail are called correct.

Channels. We assume that every process can communicate with every other process
over point-to-point perfect asynchronous communication channels with FIFO order [7].
Perfect channels guarantee reliable communication among correct processes, i.e., that
every message sent from a correct process is eventually delivered to a correct receiver
exactly once. In an actual implementation, the channels between clients and repli-
cas are authenticated in the sense that the adversary cannot modify or insert mes-
sages on the channels. Using point-to-point channels and a message-authentication code
(MAC) [23], such authenticated channels can be implemented easily.

Notation. Protocols are presented in a modular way using an event-based notation [7].
A process exposes an interface to other processes, which defines the events that it ex-
poses. Processes are specified either through abstract properties or via an implemen-
tation. A process may react to a received event by doing computation and triggering
further events. Every process is named by an identifier. Events are qualified by the pro-
cess identifier to which the event belongs and may take parameters. An event Sample
of a process m with a parameter x is denoted by 〈 m-Sample | x 〉.

Objects and histories. An object is a special type of process for which every input
event (called an invocation in this context) triggers exactly one output event (called a

4

response). Every such pair of invocation and response define an operation of the object.
An operation completes when its response occurs.

A history σ of an execution of an object O consists of the sequence of invocations
and responses of O occurring in σ. An operation is called complete in a history if it
has a matching response. An operation o precedes another operation o′ in a sequence of
events σ, denoted o <σ o′, whenever o completes before o′ is invoked in σ. If o precedes
o′ then o′ follows o. A sequence of events π preserves the real-time order of a history σ
if for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are
concurrent if neither one of them precedes the other. A sequence of events is sequential
if it does not contain concurrent operations.

An execution is well-formed if the events at every object are alternating invocations
and matching responses, starting with an invocation. An execution is fair, informally, if
it does not halt prematurely when there are still steps to be taken or triggered events to
be consumed (see the standard literature for a formal definition [28]).

Registers. A read/write register r is an object that stores a value from a domain V and
supports exactly two operations, for writing and reading the value. More precisely:

– A Write operation to r is triggered by an invocation 〈 r-Write | v 〉 that takes a value
v ∈ V as parameter and terminates by generating a response 〈 r-WriteAck 〉 with
no parameter.

– A Read operation from r is triggered by an invocation 〈 r-Read 〉with no parameter;
the register signals that the read operation completes by triggering a response 〈 r-
ReadVal | v 〉, which contains a parameter v ∈ V .
The behavior of a register is given through its sequential specification, which re-

quires that every r-Read operation returns the value written by the last preceding r-
Write operation in the execution, or the special symbol ⊥ 6∈ V if no such operation
exists. For simplicity, we will assume that every distinct value is written only once.

In this work, there are multiple readers and writers for the emulated storage, but only
readers may invoke Read operations and only writers may invoke Write operations on
the emulated register. Such a register is also called a multi-writer multi-reader (MWMR)
register (we will also use a single-writer variant, abbreviated SWMR). Furthermore, we
assume that all clients invoke a well-formed sequence of operations.

Consistency and availability. Recall that clients interact with an object O through its
operations, defined in terms of an invocation and a response event of O. We say that
a client c executes an operation between the corresponding invocation and response
events. When accessed concurrently by multiple processes, executions of objects con-
sidered in this work are linearizable, that is, the object appears to execute all operations
atomically.

More formally, a sequence of events π is called a view of a history σ at a client c
w.r.t. an object O whenever:
1. π is a sequential permutation of some subsequence of complete operations in σ;
2. all complete operations executed by c appear in π; and
3. π satisfies the sequential specification of O.

Definition 1 (Linearizability [21]). A history σ is linearizable w.r.t. an object O if
there exists a sequence of events π such that:

5

1. π is a view of σ at all clients w.r.t. O; and
2. π preserves the real-time order of σ.

The goal of this work is to describe a protocol that emulates a linearizable register
abstraction among the clients; such a register is also called atomic. Some of the clients
may crash and some replicas may be Byzantine, but every client operation should ter-
minate in all cases, irrespective of how other clients and replica behave.

Definition 2 (Wait-freedom [20]). A protocol is called wait-free if every operation
invoked by a correct client eventually completes.

Cryptography. We make use of cryptographic hash functions. One can imagine that
these are implemented by a distributed oracle accessible to all processes [7]. A hash
function H maps an input value x of arbitrary length (e.g., represented as a bit string)
to a short, unique representation in a small domain (e.g., a bit string of fixed length).
We use a collision-free hash function; this property means that no process, not even a
Byzantine process, can find two distinct values x and x′ such that H(x) = H(x′).

4 Protocol MDStore

MDStore emulates a MWMR atomic wait-free register. Our implementation of MDStore
is modular. We begin this section by specifying an abstract metadata service (MDS).
Then we given an overview of MDStore, which uses the MDS abstraction and N > 2t
storage replicas, describe its implementation, and illustrate it through a sample execu-
tion. Subsequently we discuss possible implementations of the MDS in a distributed
system from M > 3f metadata replicas. Finally, we argue why MDStore provides a
wait-free atomic register.

4.1 Timestamped storage and the metadata service

The metadata service used by MDStore is assumed to be a wait-free abstraction pro-
vided by a correct process. The MDS comprises two independent functions: the first is
a storage abstraction called timestamped storage, which resembles a register object with
a versioned interface and a particular sequential specification; the second one models
an array of registers for storing hash values associated to timestamps.

The specification of the MDS appears in Alg. 1. The timestamped storage function
is accessed through the MDS-WriteTs and MDS-ReadMax operations and maintains a
timestamp ts and a value data. In order to write a timestamped value, a client supplies
a write-timestamp wts and a data value v. The MDS stores (wts, v) in its state (ts, data)
if and only if wts ≥ ts. In a read operation for the timestamped value, the MDS returns
the stored ts and data.

In the specification of timestamped storage it is critical that the guard for a MDS-
WriteTs operation to “take effect” requires wts to be greater than or equal to the
stored ts. With this condition, timestamped storage has consensus number one [20]
and can be implemented from simple atomic registers, as discussed later in Section 4.4.

6

In contrast, Cachin et al. [8] define a “replica” object that is the same as the times-
tamped storage function, except that the guard for the conditional write requires the
write-timestamp to be strictly greater than the stored timestamp; this object, however,
is much more powerful and more difficult to implement, as it has an infinite consensus
number [8].

The second function of the MDS stores an array of independent hash values associ-
ated with timestamps. The operations MDS-WriteHash and MDS-ReadHash implement
these in the canonical way.

Algorithm 1. Timestamped-storage metadata service MDS.
1: Types
2: TS = N0 ×

(
C ∪ {⊥}

)
, with fields num and c // ts = (ts.num, ts.c) for ts ∈ TS

3: State
4: ts ∈ TS, initially (0,⊥) // Timestamp of stored value
5: data ∈ Σ∗, initially ⊥ // Stored metadata associated with ts
6: hashes[ts] ∈ Σ∗, initially ⊥, for ts ∈ TS // Hash values associated to timestamps

7: upon 〈 MDS-WriteTs | wts, v 〉 do
8: if wts ≥ ts then
9: (ts, data)← (wts, v)
10: invoke 〈 MDS-WriteTsAck 〉

11: upon 〈 MDS-ReadMax 〉 do
12: invoke 〈 MDS-ReadMaxVal | ts, data 〉

13: upon 〈 MDS-WriteHash | ts, h 〉 do
14: hashes[ts]← h
15: invoke 〈 MDS-WriteHashAck | ts 〉

16: upon 〈 MDS-ReadHash | ts 〉 do
17: invoke 〈 MDS-ReadHashVal | ts, hashes[ts] 〉

4.2 Description

Protocol MDStore operates similar to related algorithms and associates an increasing
timestamp, chosen by the writer, to every written value. It employs the MDS for storing
metadata of two kinds according to the previous section. First, the timestamped storage
function of the MDS maintains the authoritative timestamp ts, i.e., the one of the most
recently written value; it also acts as a directory by pointing to a set of t + 1 storage
replicas that store the value associated with ts. This resembles the role of metadata in
Farsite [2] and LDR [16]. The second function of the MDS permits to store hash values
associated with timestamps, and writers in MDStore store the hash of a written value

7

there, indexed by the timestamp. The hash ensures the integrity of the value towards
readers, as a majority of the storage replicas may be Byzantine. Every client may write
to and read from the MDS, but the hash values for a particular timestamp is written only
once by a single client.

A timestamp ts in MDStore (see also Alg. 1) is a classical multi-writer timestamp [5,
7], consisting of a pair (num, c), where num is an integer and c is a client identifier (of
the writer). The latter serves to break ties. Comparison of timestamps uses lexicographic
ordering such that ts1 > ts2 if and only if ts1.num > ts2.num or ts1.num = ts2.num and
ts1.c > ts2.c.

The pseudocode for clients is given in Alg. 2 and the pseudocode for storage replicas
appears in Alg. 3. At a high level, a r-Write operation that writes value v to register r
proceeds as follows (Alg. 2): (1) the writer cw invokes MDS-ReadMax and obtains the
latest timestamp ts from the MDS (line 22); (2) it produces a write-timestamp wts by
incrementing ts and writes the hash of v to the MDS under wts (lines 23–25); (3) cw now
invokes si-Write on all storage replicas si for i ∈ [1, N] with wts and v, and waits for a
set Q of t+1 replicas to acknowledge the write (lines 26–30); (4) cw writes (wts, Q) to
MDS with the timestamped storage function (line 31); (5) cw now invokes si-Commit
on all storage replicas with parameter wts, such that they may garbage collect the stored
values associated to timestamps smaller than ts (lines 32–33); and, finally, (6) the writer
resets its internal state (lines 34–35). In response to a si-Write operation, a storage
replica saves the written value indexed by the write-timestamp, as long as the write-
timestamp exceeds the most recently committed timestamp at si. This means that a
storage replica may store multiple values at one time.

On the other hand, when a reader cr invokes r-Read, it first obtains the authoritative
metadata (ts, replicas) from the MDS, where replicas denotes the t+1 storage replicas
which have stored the value and acknowledged it to the writer (Alg. 2, line 38). The
reader then invokes si-Read with parameter rts = ts on si for i ∈ replicas (lines 42–44).
The storage replica si responds with the value indexed by the timestamp rts supplied
by cr; however, if si has already committed a higher timestamp than rts and thus deleted
the corresponding value, then it advances the timestamp to the committed timestamp
and responds with that value (lines 61–64, Alg. 3). Hence, the reader cr obtains a value
associated to timestamp rts or to a higher one.

Since clients cannot trust replicas, the reader validates the value received through
si-ReadVal from the replica. To this end, cr consults the MDS and verifies that the
hash of the value v with timestamp ts received from the replica matches the hash stored
at the MDS as follows (lines 45–51): (1) cr retrieves the hash value h′ corresponding
to ts from the MDS; (2) cr will check that H(v) = h′ (line 51); (3) if ts (which was
obtained from si) is higher than rts (which the reader requested) due to a concurrent
write operation, then cr validates ts by retrieving the authoritative metadata with the
currently highest timestamp ts from the MDS and by checking that ts lies between rts
and ts (lines 47–51).

As a side remark to Alg. 2, the values data and data′ obtained in lines 22 and 48,
respectively, are ignored.

Intuitively, the register emulation preserves safety because the MDS stores an au-
thoritative hash of the value stored by the (Byzantine) storage replicas. Furthermore,

8

Algorithm 2. Protocol MDStore, atomic register instance r for client c.
18: State
19: wts, rts ∈ TS, initially (0,⊥) // Timestamp of written and read value, resp.
20: Q ∈ 2N, initially ∅ // Storage replicas that have acknowledged write

21: upon 〈 r-Write | v 〉 do
22: invoke 〈 MDS-ReadMax 〉; wait for 〈 MDS-ReadMaxVal | ts, data 〉
23: wts← (ts.num + 1, c)
24: invoke 〈 MDS-WriteHash | wts, H(v) 〉
25: wait for 〈 MDS-WriteHashAck | ts′ 〉 such that ts′ = wts
26: forall i ∈ [1, N] do
27: invoke 〈 si-Write | wts, v 〉

28: upon 〈 si-WriteAck | ts 〉 such that ts = wts do
29: Q← Q ∪ {i}
30: if |Q| > t then
31: invoke 〈 MDS-WriteTs | wts, Q 〉; wait for 〈 MDS-WriteTsAck 〉
32: forall i ∈ [1, N] do
33: invoke 〈 si-Commit | wts 〉
34: wts← (0,⊥)
35: Q← ∅
36: invoke 〈 r-WriteAck 〉

37: upon 〈 r-Read 〉 do
38: invoke 〈 MDS-ReadMax 〉; wait for 〈 MDS-ReadMaxVal | ts, replicas 〉
39: if ts = (0,⊥) then
40: invoke 〈 r-ReadVal | ⊥ 〉
41: rts← ts
42: forall i ∈ replicas do
43: invoke 〈 si-Read | rts 〉

44: upon 〈 si-ReadVal | ts, v 〉 do
45: invoke 〈 MDS-ReadHash | ts 〉
46: wait for 〈 MDS-ReadHashVal | ts′, h′ 〉 such that ts′ = ts
47: if ts > rts then
48: invoke 〈 MDS-ReadMax 〉; wait for 〈 MDS-ReadMaxVal | ts, data′ 〉
49: else
50: ts← rts
51: if rts ≤ ts ≤ ts ∧H(v) = h′ then
52: rts← (0,⊥)
53: invoke 〈 r-ReadVal | v 〉

9

Algorithm 3. Protocol MDStore, implementation of storage replica si.
54: State
55: ts ∈ TS, initially (0,⊥) // Committed timestamp
56: values[ts] ∈ V , initially ⊥, for ts ∈ TS // Map of stored values

57: upon 〈 si-Write | wts, v 〉 do
58: if wts > ts then
59: values[wts]← v
60: invoke 〈 si-WriteAck | wts 〉

61: upon 〈 si-Read | rts 〉 do
62: if rts < ts then
63: rts← ts
64: invoke 〈 si-ReadVal | rts, values[rts] 〉

65: upon 〈 si-Commit | cts 〉 do
66: if cts > ts ∧ values[cts] 6= ⊥ then
67: ts← cts
68: forall freets ∈ TS such that freets < ts do
69: values[freets]← ⊥
70: invoke 〈 si-CommitAck | cts 〉

client operations are linearizable because of the atomic operations on the MDS primi-
tive. For showing liveness and that the emulation is wait-free, note that the writer never
blocks, assuming a wait-free MDS abstraction. Moreover, the timestamp ts obtained by
the reader together with v is higher and therefore “more recent” than the timestamp rts,
which the reader initially requested, due to the protocol logic at the storage replicas. The
range check rts ≤ ts ≤ ts by the reader ensures that ts is also permitted with respect to
the authoritative timestamp ts. The formal analysis appears in Section 4.5.

4.3 Illustration

We illustrate MDStore using an execution σ, depicted in Figure 1. In σ, we assume
t = 1 and N = 3 storage replicas. Replica s1 does not receive any message due to
asynchrony in a timely manner, whereas replica s3 is Byzantine.

The execution starts with a complete operation ow,1 = r-Write(v1) that writes
(ts1, v1) to the storage replicas s2 and s3; the timestamp ts1 is a pair (1, w1) that the
writer w1 generated in line 23 during ow,1. The operation ow,1 is not contained in the
figure, only the state of the MDS upon completion of ow,1 is shown.

The initial write ow,1 is followed by two concurrent operations shown in Figure 1:
first, ow,2 = r-Write(v2) by a writerw2, and, second, or = r-Read by a reader r1. Upon
invoking ow,2, writer w2 in Step 1© (referring to the numbers in Fig. 1) first invokes
MDS-ReadMax on the MDS (line 22). When the MDS responds, the writer w2 obtains
the highest timestamp ts1 = (1, w1). Then, w2 computes the timestamp of its operation

10

Metadata service (MDS)

 Array of hash valuesH(v1) ...H(v2)

Storage replicas

ts1

s1 s2 s3

Timestamped storage

Writer (w2)
Reader (r1)

2
WriteHash(ts2,H(v2))

(ts1,{2,3})

3 Write(ts
2 ,v

2)

ts*

...

(ts1,v1)
(ts2,v2)

(ts1,v1)
(ts2,v2)

4 ReadMax→(ts1,{2,3})

5
Read(ts1

)

6 ReadVal(ts2,v2)

7 ReadMax→(ts1,...)

8 ReadVal(ts1,v1)

ts2

1 ReadMax→(ts1, ...)

9
ReadHash(ts1)→H(v1)

WriteTs(ts2, {2,3})10

Fig. 1. An execution of MDStore with a concurrent r-Write and r-Read operation.

as ts2 = (2, w2) (line 23) and invokes MDS-WriteHash with ts2 and H(v2) in Step 2©
(line 24). Notice that the hash is written to the MDS before the write ow,2 is exposed to
other clients via the timestamp through the MDS; this will prevent a Byzantine storage
replica from forging values with a given timestamp. Eventually, the MDS responds and
w2 then invokes si-Write(ts2, v2) on the storage replicas for i = 1, . . . , 3 in Step 3©
(lines 26–27). The messages carrying these operations are received only by the storage
replicas s2 and s3 (but recall that s3 is Byzantine). Since s2 is correct, it stores v2 in
values[ts2] (line 59). At this point in the execution, the writer w2 stalls, waiting for two
si-WriteAck replies from the storage replicas.

Concurrently with ow,2, a reader r1 invokes or = r-Read . The reader first queries
the MDS through a MDS-ReadMax operation in Step 4© to determine the latest time-
stamp rts and the set replicas, which store the corresponding value (line 38). The MDS
responds such that rts = ts1 and replicas = {2, 3}. Next, in Step 5©, r1 invokes si-
Read(ts1) on the storage replicas s2 and s3 (lines 42–44). According to the algorithm,
a storage replica responds to this with the value that it stores under ts1 or under its
committed timestamp cts, and not necessarily with the value from data with the highest
timestamp at the replica; for instance, at this time in σ, for replica s2, it holds cts = ts1
since no s2-Commit(ts2) has been invoked yet. However, the Byzantine replica s3 could
mount a sophisticated attack and include (ts2, v2) in its s3-ReadVal response, see Step
6©. Although value v2 is in fact being written concurrently, it would be wrong for r1
to return v2, since readers do not write back data in MDStore and the write of v2 is not
yet complete — this may violate atomicity. For preventing this attack, the reader subse-
quently invokes MDS-ReadMax again to determine whether ts2 (or a higher timestamp)
has become authoritative meanwhile, in Step 7© (lines 47–48). Since this is not the case
here, client r1 discards the response from s3 (after the test in line 51) and waits for an
additional reply (this will arrive from s2).

An alternative attack by the Byzantine replica s3 could be to make up a value v∗

with a large timestamp, say ts∗ = (100, w2). In this case, r1 would also check with
the MDS whether ts∗ or a higher timestamp has been written (just like in Step 7©).
Moreover, r1 would check the integrity of the value reported by s3 by retrieving the
hash at ts∗ from the MDS and by checking if it matches the hash of v∗ (lines 45–51).
As the hash function is collision-free and the MDS is correct, this check will fail.

11

Returning to σ, in Step 8©, s2 eventually responds to r1 with the pair (ts1, v1)
(lines 61–64). According to the protocol, r1 successfully verifies the integrity of v1
after obtaining the hash value at ts1 from the MDS in Step 9© (lines 45–51), and the
r-Read of r1 returns v1.

Eventually, the writer w2 in ow,2 receives two si-WriteAck responses from repli-
cas s2 and s3. Then, it invokes MDS-WriteTs with ts2 and the set {2, 3} in Step 10©
(line 31). Note that the write of v2 only “takes effect” at this point in time; in other
words, the linearization point of ow,2 coincides with the linearization point of the MDS-
WriteTs operation with ts2, and it is safe subsequently for readers to read v2 from r.

Finally, the writer invokes si-Commit on all storage replicas, so as to allow them to
garbage collect stale data (lines 32–33). Storage replicas update their local variable ts,
which determines the value that they will send to a reader, only upon processing this
si-Commit operation (lines 65–70).

Let us point out that MDStore uses timestamped storage at the MDS as a way to
avoid storing an entire history of values at the storage replicas. One could not achieve
this saving if the MDS would only expose a standard read/write register interface, since
this would allow that a stored value is overwritten by a value with a lower timestamp.
Given the implementation of storage replicas (notably lines 57–60) and our goal of
avoiding to store entire histories, such an overwrite might cause inconsistent states be-
tween the MDS and the storage replicas.

4.4 Implementation of the metadata service

We show how to implement the MDS abstraction with existing asynchronous BFT stor-
age protocols that rely on M > 3f metadata replicas. In order to qualify for the imple-
mentation, such a BFT protocol should also tolerate an arbitrary number of Byzantine
readers, permit multiple benign writers (which may crash), and, ideally, make no cryp-
tographic assumptions. Recall that the MDS has two completely independent functions,
providing the timestamped storage and the array of hash values. Hence, we will imple-
ment them through different components.

First, the wait-free atomic timestamped storage function can be implemented as a
straightforward extension of the classical SWMR to MWMR transformation on atomic
storage objects (e.g., [7, page 163]). In this transformation, there is one SWMR storage
object per writer and every writer maintains a timestamp/value pair in “its” storage
object, after first reading and incrementing the highest timestamp found in any other
storage object. In our extension, the reader determines the timestamp/value pair with
the highest timestamp among the SWMR storage objects as usual, and simply returns
also the timestamp together with the value. This implementation may be realized from
existing SWMR atomic wait-free storage (using M > 3f replicas); some permit a
computationally unbounded adversary [3,13], whereas others assume cryptography, that
is, they tolerate only a computationally bounded adversary [9, 30].

Second, the function related to the hash values consists simply of an array of SWMR
safe storage objects. These may be directly implemented from the protocols with atomic
semantics mentioned above. Furthermore, as one may relax the consistency guarantee
for them to safe semantics, one might also employ protocols with weaker semantics,

12

such as (1) SWMR safe wait-free storage [1] or (2) its regular variant, both without
cryptographic assumptions [18], or (3) regular storage with digital signatures [31].

Finally, note that more efficient, direct, implementations of the MDStore metadata
service can be obtained easily, but these are beyond the scope of this paper.

4.5 Analysis

In this section we prove that protocol MDStore in Alg. 2–3 emulates an atomic MWMR
register and is wait-free.

We define the timestamp of an operation o on the register as follows: If o is r-Write,
then its timestamp is the value of variable wts after the assignment in line 23; otherwise,
if o is r-Read, its timestamp is the value of variable ts obtained through si-ReadVal
(line 44) at the time when o returns by invoking r-ReadVal.

Lemma 1 (Monotonicity of timestamped storage). Consider the timestamped stor-
age function of the MDS and suppose an operation or = MDS-ReadMax returns
(ts′, v′). If or follows an operation ow = MDS-WriteTs(ts, v) or an operation o′r =
MDS-ReadMax that returns (ts, v) then ts′ ≥ ts.

Proof. This follows directly from the sequential specification of timestamped storage
in Alg. 1. ut

Lemma 2 (Sandwich). Let or be a complete r-Read operation with timestamp ts, let rts
denote the timestamp returned by the MDS in line 38 and let rts′ denote the timestamp
returned by the MDS in line 48. Then rts ≤ ts ≤ rts′.

Proof. According to the definition of the operation timestamp, the timestamp of or is
the value of the variable ts at line 53. Consider the test that rts ≤ ts ≤ ts in line 51.
According to the algorithm, if ts > rts, then the variable ts contains rts′. ut

Lemma 3 (Partial Order). Let o and o′ be two operations with timestamps ts and ts′,
respectively, such that o precedes o′. Then ts ≤ ts′ and if o′ is a r-Write operation, then
ts < ts′.

Proof. Suppose o is a r-Read operation. Then its timestamp is either equal to rts, which
is returned by MDS-ReadMax in line 38, or ts is not larger than ts, which is returned by
MDS-ReadMax in line 48. On the other hand, if o is a r-Write operation, its timestamp
is written to the MDS through MDS-WriteTs. Hence, at the time when o completes,
the monotonicity of the timestamped storage (Lemma 1) implies that any subsequent
MDS-ReadMax operation returns a timestamp that is at least as large as ts.

In the following we consider operation o′ that follows o and distinguish two cases:
1. Suppose o′ is a r-Read operation. Then its timestamp ts′ is at least as large as

the timestamp rts, which is returned by MDS-ReadMax in line 38, and the lemma
follows.

2. Otherwise, o′ is a r-Write operation. Then its timestamp ts′ = wts is computed
in line 23 from the timestamp returned by MDS-ReadMax by incrementing its first
component. Hence wts and the timestamp of o′ are strictly larger than the timestamp
returned by MDS-ReadMax and, hence, also strictly larger than ts.

13

Lemma 4 (Unique writes). If o and o′ are two r-Write operations with timestamps ts
and ts′, respectively, then ts 6= ts′.

Proof. If o and o′ are executed by different clients, then the two timestamps differ in
their second component. If o and o′ are executed by the same client, then the client
executed them sequentially. By Lemma 3, it follows ts 6= ts′.

Lemma 5 (Integrity). Let or be a r-Read with timestamp tsr that returns a value
v 6= ⊥. Then there exists a unique r-Write operation ow that writes v such that its
timestamp tsw is equal to tsr. Furthermore ow does not follow after or.

Proof. Since or returns v and has timestamp tsr, the reader receives a si-ReadVal re-
sponse containing tsr and v from one of the storage replicas. Suppose for the purpose
of contradiction that v was never written. Then, then by the collision resistance of H ,
the check in line 51 fails and or does not return v. Therefore, we conclude that some
r-Write operation ow has invoked si-Write(tsr, v) on a storage replica in line 27. Since
this timestamp tsr is equal to variable wts and the timestamp tsw of ow, it follows
that tsw = tsr. Finally, by Lemma 4, no other r-Write operation has the same time-
stamp, which completes the proof.

Theorem 1 (Linearizability). Every execution of protocol MDStore is linearizable.

Proof. Let σ be the history of any execution of MDStore. By Lemma 5 the timestamp
of a r-Read operation has either been written by some r-Write operation or the r-Read
operation returns ⊥.

We first construct σ′ from σ by completing all operations of the form r-Write(v)
such that v has been returned by some complete r-Read. Then we construct a sequential
permutation π of σ′ by ordering all operations in σ′, excluding the r-Read operations
that returned⊥, according to their timestamps and by placing all r-Read operations that
did not return⊥ immediately after the r-Write operation with the same timestamp. The
r-Read operations that returned ⊥ are placed at the beginning of π. Note that (concur-
rent) r-Read operations with the same timestamp may appear in any order, whereas all
other r-Read operations appear in the same order as in σ′.

To prove that π preserves the sequential specification of a MWMR register we must
show that every r-Read returns the value written by the latest r-Write that precedes it
in π, or the initial value ⊥ if there is no preceding r-Write in π. Let or be a r-Read
operation returning a value v. If v = ⊥, then by construction or is ordered before any
r-Write in π.

Otherwise, v 6= ⊥, and by Lemma 5, there exists a r-Write(v) operation with the
same timestamp tsr. In this case, this write is placed in π before or by construction. Ac-
cording to Lemma 4, every other r-Write in π has a different timestamp and, therefore,
appears in π either before r-Write(v) or after or.

It remains to show that π preserves real-time order of σ. Consider two complete
operations o and o′ in σ′ such that o precedes o′ with timestamps ts and ts′, respectively.
Lemma 3 implies that ts′ ≥ ts. If ts′ ≥ ts, then o′ follows o in π by construction.
Otherwise ts′ = ts and Lemma 3 implies that o′ is a r-Read operation. If o is a r-Write
operation, then o′ appears after o since we placed every r-Read after the r-Write with

14

the same timestamp. Otherwise, if o is a r-Read, then it appears in π before o′, as it does
in σ′.

Theorem 2 (Wait-freedom). Every execution of protocol MDStore is wait-free.

Proof. Since the MDS abstraction used by Alg. 2 is wait-free, every operation invoked
on the MDS eventually completes. It remains to show that no r-Write always fails the
test in line 30 and that no r-Read operation permanently fails the check of line 51 and
never returns a value.

For a r-Write operation ow, the condition in line 30 is eventually satisfied because
there is a time after which all correct storage replicas have responded with si-WriteAck
and because there are more than t correct replicas, from the assumption N > 2t.

On the other hand, let or be a r-Read operation and suppose for the sake of con-
tradiction that the condition in line 51 is never satisfied — therefore, or never returns.
Let si be a correct storage replica with i ∈ replicas. Since the reader has previously
invoked si-Read on si during or, it eventually receives a si-ReadVal(ts, v) in response.

If ts satisfies the clause rts ≤ ts ≤ ts in line 51, then the second clause of the
condition, H(v) = h′, is also true because si is correct, and or would return. There-
fore, we continue the argument assuming that ts < rts or that ts > ts. Recall that
the reader requested timestamp rts in si-Read. If ts < rts, then si has replied with
a smaller timestamp than rts, which is not possible according to the algorithm for a
replica (lines 62–64). Otherwise, if ts > ts, then by Lemma 2, it holds ts > rts, and
therefore si has replied from its committed timestamp variable; to avoid confusion, we
call this value ts∗ and note that ts∗ = ts. According to the replica code, line 67 is the only
place where its committed timestamp variable may change. Furthermore, if the replica
sets this variable to ts∗, then there exists a r-Write operation o∗w that committed with
timestamp ts∗. According to the r-Write code, o∗w commits only after invoking MDS-
WriteTs containing timestamp ts∗. Hence, if ts > ts, then or invokes MDS-ReadMax
in line 48 and does so after the corresponding r-Write wrote ts∗ to the MDS. According
to Lemma 1, the reader obtains from the MDS in line 48 a timestamp ts that is a least
as large as ts∗. This implies that ts ≥ ts∗ = ts, which contradicts the assumption that
ts > ts, and the result follows.

5 Conclusion

This paper has explored how to separate the maintenance of metadata from the storage
of bulk-data in distributed storage. It introduces MDStore, the first fully asynchronous
wait-free BFT storage protocol that reduces the number of replicas that store bulk data
to as few as 2t+ 1, with t Byzantine faults. Recent work shows that the same approach
also improves erasure-coded protocols for distributed storage that tolerate Byzantine
faults [4], reducing the storage overhead even further.

Acknowledgment

We thank Elli Androulaki, Alessandro Sorniotti, and Nikola Knežević for inspiring dis-
cussions about this work. This work is supported in part by the EU CLOUDSPACES
(FP7-317555) and SECCRIT (FP7-312758) projects.

15

References

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine disk Paxos: Optimal re-
silience with Byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

[2] A. Adya, W. J. Bolosky, M. Castro, et al. FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In Proc. 5th Symp. Operating Systems
Design and Implementation (OSDI), 2002.

[3] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Bounded wait-free implementation of optimally
resilient Byzantine storage without (unproven) cryptographic assumptions. In A. Pelc, ed-
itor, Proc. 21th International Conference on Distributed Computing (DISC), volume 4731
of Lecture Notes in Computer Science, pages 7–19. Springer, 2007.

[4] E. Androulaki, C. Cachin, D. Dobre, and M. Vukolić. Erasure-coded Byzantine storage
with separate metadata. Report arXiv:1402.4958, CoRR, 2014.

[5] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. McGraw-Hill, London, 1998.

[6] C. Cachin, D. Dobre, and M. Vukolić. BFT storage with 2t + 1 data replicas. Report
arXiv:1305.4868, CoRR, 2013.

[7] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming (Second Edition). Springer, 2011.

[8] C. Cachin, B. Junker, and A. Sorniotti. On limitations of using cloud storage for data
replication. Proc. 6th Workshop on Recent Advances in Intrusion Tolerance and reSilience
(WRAITS 2012), 2012.

[9] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed
storage. In Proc. International Conference on Dependable Systems and Networks (DSN-
DCCS), pages 115–124, 2006.

[10] B. Cho and M. K. Aguilera. Surviving congestion in geo-distributed storage systems. In
Proc. USENIX Annual Technical Conference, pages 439–451, 2012.

[11] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only memory:
Making adversaries stick to their word. In Proc. 21st ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 189–204, 2007.

[12] M. Correia, N. F. Neves, and P. Verı́ssimo. How to tolerate half less one Byzantine nodes
in practical distributed systems. In Proc. 23rd Symposium on Reliable Distributed Systems
(SRDS), pages 174–183, 2004.

[13] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolić. PoWerStore: Proofs
of writing for efficient and robust storage. In Proc. ACM Conference on Computer and
Communications Security (CCS), 2013.

[14] D. Dobre, P. Viotti, and M. Vukolić. Hybris: Consistency hardening in robust hybrid cloud
storage. Research Report RR-13-291, Eurécom, 2013.

[15] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–323, 1988.

[16] R. Fan and N. A. Lynch. Efficient replication of large data objects. In F. E. Fich, editor,
Proc. 17th International Conference on Distributed Computing (DISC), volume 2848 of
Lecture Notes in Computer Science, pages 75–91. Springer, 2003.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[18] R. Guerraoui and M. Vukolić. How fast can a very robust read be? In Proc. 25th ACM
Symposium on Principles of Distributed Computing (PODC), pages 248–257, 2006.

[19] R. Guerraoui and M. Vukolić. Refined quorum systems. Distributed Computing, 23(1):1–
42, 2010.

16

[20] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 11(1):124–149, Jan. 1991.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492, July
1990.

[22] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W. Schröder-
Preikschat, and K. Stengel. CheapBFT: Resource-efficient Byzantine fault tolerance. In
Proc. 7th European Conference on Computer Systems (EuroSys), pages 295–308, Apr.
2012.

[23] J. Katz and Y. Lindell. Introduction to Modern Cryptography: Principles and Protocols.
Chapman & Hall/CRC, 2007.

[24] L. Lamport. On interprocess communication. Distributed Computing, 1(2):77–85, 86–101,
1986.

[25] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[26] L. Lamport. Paxos made simple. SIGACT News, 32(4):51–58, 2001.
[27] L. Lamport. Lower bounds for asynchronous consensus. In A. Schiper, A. A. Shvartsman,

H. Weatherspoon, and B. Y. Zhao, editors, Future Directions in Distributed Computing,
volume 2584 of Lecture Notes in Computer Science. Springer, 2003.

[28] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.
[29] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quaterly,

2(3):219–246, Sept. 1989.
[30] D. Malkhi and M. Reiter. Secure and scalable replication in Phalanx. In Proc. 17th Sym-

posium on Reliable Distributed Systems (SRDS), 1998.
[31] D. Malkhi and M. K. Reiter. Byzantine quorum systems. Distributed Computing,

11(4):203–213, 1998.
[32] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In D. Malkhi, editor,

Proc. 16th International Conference on Distributed Computing (DISC), volume 2508 of
Lecture Notes in Computer Science, pages 311–325. Springer, 2002.

[33] G. S. Veronese, M. Correia, A. Bessani, L. C. Lung, and P. Verı́ssimo. Efficient Byzantine
fault tolerance. IEEE Transactions on Computers, 62(1):16–30, Jan. 2011.

[34] M. Vukolić. Quorum Systems: With Applications to Storage and Consensus. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2012.

[35] Y. Wang, L. Alvisi, and M. Dahlin. Gnothi: Separating data and metadata for efficient
and available storage replication. In Proc. USENIX Annual Technical Conference, pages
413–424, 2012.

[36] J. Wilkes, C. Hoover, B. Keer, P. Mehra, and A. Veitch. Storage, Data, and Information
Systems. HP Laboratories, 2008.

[37] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement
from execution for Byzantine fault-tolerant services. In Proc. 19th ACM Symposium on
Operating Systems Principles (SOSP), pages 253–268, 2003.

17

