Continuation Complexity: A Callback Hell for
Distributed Systems

Edgar Zamora-Gémez, Pedro Garcia-Loépez, and Rubén Mondéjar

Department of Computer Engineering and Mathematics,
Universitat Rovira i Virgili, Spain
{edgar.zamora, pedro.garcia, ruben.mondejar}@urv.cat

Abstract. Designing and validating large-scale distributed systems is
still a complex issue. The asynchronous event-based nature of distributed
communications makes these systems complex to implement, debug and
test. In this article, we introduce the continuation complexity problem,
that arises when synchronous invocations must be converted to asyn-
chronous event code. This problem appears in most Actor libraries where
communication is mainly asynchronous, and where a synchronous call to
other Actor would block the current Actor, precluding the processing of
incoming messages.

We propose here a novel parallel invocation abstraction that consider-
ably simplifies the continuation complexity problem for distributed ac-
tor systems requiring non-blocking synchronous invocations. Our parallel
abstraction extends the message passing concurrency model to support
concurrent interleavings of method executions within a single Actor. We
present here two candidate solutions for implementing such parallel calls:
one based on threads and locking, and other based on green threads and
continuations.

We evaluated the simplicity of our solution implementing a well known
distributed algorithm like Chord (ring-based structured overlay). We
compare our Actor implementation of Chord with three different sim-
ulators (PeerSim, PlanetSim, Macedon). This validation demonstrates
that our approach is superior in simplicity (less LoC) and complexity
(less McAbe complexity), envisaging its great potential for distributed
systems scenarios.

Keywords:Actor Model, Object Actors, Continuation Complexity

1 Introduction

Nowadays, modeling, programming, and validating distributed systems is a com-
plex issue requiring advanced skills. On the one hand, multithread programming,
locks and concurrency-control can considerably complicate the development of
any middleware library. In general, programming event-based systems using call-
backs is a challenging task. Callback coordination is complex because different
code fragments must manipulate the same data and the order of execution is
unpredictable.

In literature, the problem of callback management is known as Callback Hell
[4]. A recent analysis of Adobe desktop applications revealed that event handling
logic caused nearly a half of the bugs reported.

Even if this problem is normally associated to user interface code, the Call-
back Hell is also very relevant in the development of distributed systems.[6] [8] In
particular, many distributed systems like Actor libraries, event-based simulators
[5] [7], and event-based server libraries like node.js impose an asynchronous style
of programming.

But the asynchronous event-based nature of distributed protocols implies
tangled code using message handlers and callbacks that is difficult to follow
and maintain. These problems get even worse when the distributed algorithms
rely on Remote Procedure Call (RPC) semantics that require complex state
maintenance between messages.

In these cases, a brief and succinct algorithm written with sequential code
and RPCs will have to be broken in a number of separated callbacks. Callbacks
then become the old goto statement revamped for distributed systems.

In this article we first identify and formalize the so called Continuation Com-
plexity problem, which arises when synchronous RPC code must be converted to
asynchronous messages and handlers. We also propose a solution to the Contin-
uation Complexity problem for Actor libraries. To this end, we present a novel
parallel invocation abstraction that permits blocking synchronous calls to other
actors that do not stall the current Actor thread of control. Finally, to vali-
date our approach, we evaluate the simplicity of our solution implementing a
well-known distributed algorithm: a ring-based structured overlay (i.e., Chord).

2 Continuation Complexity Problem

The Continuation Complexity Problem arises in distributed systems when syn-
chronous RPC code must be converted to asynchronous messages and handlers.
We call this problem Continuation Complexity because it is directly related to
the concept of Continuation [9] in programming languages. In distributed set-
tings, the developer is implicitly implementing its own continuation when he
must split a synchronous call in different code fragments using messages and
handlers (callbacks). Normally, the programming language uses a call stack for
storing the variables its functions use. But in this case, the developer must ex-
plicitly maintain this information between different messages.

The complexity of programming event-based systems with callbacks is also
very relevant in interactive user interface systems. For example, a recent solution
to the so-called Callback Hell is the reactive programming paradigm [3].

Another interesting solution in the .NET platform are the powerful async and
await abstractions [1]. They simplify asynchronous programming and improve
the clarity of code, and thus reducing the Callback Hell problem. Nevertheless
these abstractions are not transparent to the developer and they are not aimed
for single-threaded Actor libraries.

In distributed systems, we want to outline two major programming models
that can help to cope with asynchronous event programming : distributed state
machines and Actor libraries.

Distributed state machines are the classical formal model for the implementa-
tion of distributed systems. Macedon [10] is a concise Domain Specific Language
(DSL) that aims to cover the entire cycle of distributed systems including design,
implementation, experimentation, and evaluation. In any case, we compare our
implementation of Chord with Macedon one in Section 5.

The Actor model [2] has inspired many middleware solutions since it pro-
vides an elegant model of concurrent communication, which treats Actors as the
universal primitives of concurrent computation.

A recent proposal for distributed Actors is Akka. Akka has an advanced
programming model where Futures are integrated with Actor-based receive op-
erations. They provide TypedActors enabling synchronous method invocation
over Actors, but they clearly recommend to use asynchronous communications
and Futures to avoid blocking the current Actor execution.

This is not an exclusive problem of Actor models, but of the development of
event-based system. In this line, event-based simulators [5] [7] require that the
algorithms must be converted to asynchronous messages and message handlers.

The Continuation Complexity is a recurrent problem in distributed systems
based on RPC semantics like Peer-to-Peer (P2P) algorithms and overlays (e.g.,
Chord or Kademlia), consensus algorithms (e.g., Paxos or 2PC) and distributed
applications (e.g., key-value stores or replication algorithms).

The Continuation Complexity of a function depends directly on the number
of RPCs inside this function plus the number of iterators containing RPCs in
that function. Every RPC will produce three new code fragments: two for the
continuation and one for the timeout code. With the continuation we refer to the
code before the RPC that sends the request message, and the response handler
containing the code that continues from that point onward. Furthermore, every
RPC must contain a timeout handler that will also continue after the RPC if no
response was received in the timeout time.

On the other hand, iterators containing RPCs must also be considered in
the cost since the complexity increases as the response handler must control the
state of the iteration in every response. This means that the handler must jump
back and also repeat the sending of requests if the iteration has not finished.

The continuation complexity is directly related to the Cyclomatic complexity
of the method including RPCs. When the control flow of the method is very
complex (high Cyclomatic Complexity) the continuation complexity is also very
high. In this case, the original control flow must be rebuilt using messages and
message handlers.

2.1 A simple example: Chord

Many distributed systems make extensive use of RPCs. Describing their algo-
rithms using object oriented notation is straightforward, since an invocation of
a method in a node implies a RPC to that node. In this line, the Chord [11]
distributed routing algorithm is a suitable example of this approach.

Chord organizes nodes in a structured ring overlay where every node contains
a local routing table with references to other nodes. Chord is also defined as a
Distributed Hash Table (DHT) or Key Based Routing (KBR) layer, since the
space of identifiers is uniformly distributed among nodes thanks to consistent

hashing. In Chord, the routing algorithm is clockwise and every node is respon-
sible of the identifiers between itself and its predecessor in the ring overlay.

Algorithm 1 Chord Routing Mechanism

function FIND_PREDECESSOR(id)
nl < this_node
while id is not between (nl,nl.successor] do
nl < nl.closest_preceding_finger(id)

return nl
function CLOSEST_PRECEDING_FINGER(id)
for i < N down to 1 do
if finger[i].node is between (n,id) then
return finger[i].node
return this_node

As we can see in the Algorithm 1, looking for a key (id) implies accessing the
routing tables of nodes to find the closest node to that key. So if we invoke the
find_predecessor(id) operation in a specific node, it will look for a node n where
the identifier is in the range (n, n.successor). For example, in a Chord overlay
with nodes N1,N7,N18, and N30, find_predecessor(9) will return the node N7.

This is a very interesting example, since closest_preceding_finger is a RPC
invocation to other nodes. Indeed, it is a clear mechanism of iterative routing
where the node performing the search must ask sequentially nodes that are closer
to the destination.

Note that closest_preceding_finger is returning a reference to another Node.
In a remote setting, this would imply sending a reference to the remote object.

Nevertheless, the problem arises when this code must be converted to purely
asynchronous messages. This is happening in most networks and distributed
simulators, but also in most Actor libraries. In this case, the developer must re-
nounce to RPCs completely, and convert each RPC to two messages and message
handlers: Message Request and Message Response.

The problem gets even worse when RPCs are invoked inside control blocks
like iterators or conditionals. In these cases, the developer must also maintain
the state of variables (context) between different messages. As we can see, this
is happening in the find_predecessor method that is calling a RPC inside a while
iterator. Even worse, in the control structure the condition can also contain
RPCs (n.successor).

The Fig. 1 shows the control flow graph of the previous algorithm 1 when
divided in different code fragments. In this case, Actor 1 is the control flow of
find_predecessor and Actor n is the control flow of closest_preceding_finger. The
RPC call inside Actor 1 must be converted in messages to Actor n, and the
return results will then resume the state of the control flow in Actor 1.

As we increase the number of RPCs, the complexity of breaking the code is
even higher. Imagine now that we want to implement parallel queries to different
nodes to increase the robustness of the iterative routing. If we must invoke now

TART Actor 1
1

HILE
2

CALL END
3 7

RPC

return this node
Actor n

FOR

False

return finger{i].node

True

Fig. 1: Control flow Graph

closest_preceding_finger in three nodes, the code must then handle the different
messages and resume the state when necessary.

As we can see, a simple code written with RPCs must be scattered in different
code fragments making more difficult its legibility and maintenance. This is a
clear example of the Callback Hell in distributed systems.

3 Overcoming the continuation complexity problem in
Actor models

The Continuation Complexity problem leads us to a paradox in Actor models:
synchronous blocking calls are needed to correctly implement RPCs in order to
avoid breaking the code into asynchronous messages and handlers. But Actor
models are purely asynchronous, and using synchronous calls would block the
calling Actor unique thread of control until the response arrives.

The aforementioned paradox also represents a burden for Object Oriented
Actor libraries. If only asynchronous calls are allowed, the resulting code breaks
with the traditional object oriented paradigm and complicates the resulting code.

To solve this problem, we present a novel method invocation abstraction
called parallel, enabling synchronous invocations to other Actors, without
stalling the current Actor’s thread of control. Our parallel calls enable concurrent
interleavings of method executions within a single Actor.

3.1 Concurrency Control

The major challenge is to enable concurrent interleavings of method executions
within a single Actor. We mainly want to allow the main Actor thread to continue
processing incoming method requests while the parallel thread is blocked waiting
for a response in a remote Actor due to a synchronous invocation.

We present two solutions: one based on threads and locks and another based
on green threads and continuations,

Solution 1: Threads: The Actor implementation will spawn normal threads
in the Scheduler and Parallel Methods threads. To achieve consistency between
Scheduler and Parallel threads, we use traditional Thread Lock mechanisms that
prevent multiple threads to access the same object at the same time. Similar to
the Monitor Object pattern, we use a Lock in the Actor object that is only
activated when parallel threads are spawned. We aim to provide here a simple

method1) 4 Sync_parallel
-, <<create>>
] T method1()
1. acquire()
02.methodX_sync()
2.release()
3. send(methodX_sync())
O1.methodX_sync(\
; I — Object2
ObjectX return response During this period ’
I [~ our main thread:is free,
So it can serve queries.
0O1.methodX_async():
ObjectX " 4.receive(response)
5. acquire :
— q 0 It tries to acquire the lock,
} itwon't continue until the lock
is released by the main thread
return response
return response 2

6.

return response 2
return response 2

Fig. 2: Concurrency Flow Diagram

solution to demonstrate that parallel threads can coexist with the Actor main
thread without conflicting with the servant object shared state. Our lock mech-
anism is completely transparent to the developer, so that the simplicity of the
message passing concurrency model is not affected.

In Figure 2 we can see how our solution handles the concurrency problem.
In this flow diagram we can observe where it uses the Lock acquire and Lock
release primitives in a call flow. In addition, it is necessary to know that a single
Lock is shared between Actor and Parallel Threads wrappers for each Actor.
The life cycle is the following:

1. Acquire: When a call is incoming, if it exists some parallel call in the object,
we need to acquire the lock to be sure that only one thread at this time is using
the object. In Figure 2, we show an example with a parallel synchronous call.
At this moment, a parallel thread takes the control of the object, and any other
thread can not access to the object.

2. Release: The parallel thread sends the synchronous invocation to a remote
actor. In this moment, the parallel actor releases the lock so that the main
thread or other parallel threads can continue working. This is the key point
where the Actor is not blocked until the response arrives, and it can process
incoming messages.

3. Acquire: While the parallel thread is waiting the response, our main thread
and other parallel threads can serve other petitions. When the response arrives
to the Proxy, the Parallel thread will be able to continue executing the method.
Nonetheless, it must try to acquire the Lock, because it is possible that the Lock
is now in possession of another Thread.

4. Release: Finally, when the multicalls return object method ends, the parallel
synchronous wrapper will release the Lock, and it will end its process.

As we can see, our solution ensures that only one thread access the shared
state, but also that waiting for a response in a parallel thread will not preclude
the main thread to process incoming messages. Obviously, we control whether
the response will not return using a timeout. Using this system we guarantee
that the main thread will not be blocked even if the response does not arrive.

Our solution permits to increase the Actor service time because it avoids
blocking the Actor during synchronous invocations. We guarantee the correct
interleavings of Actor parallel and main threads. Furthermore, we maintain the
simplicity of message passing concurrency since the developer is still unaware of
this concurrency control mechanisms. He must only tag the appropriate methods
as parallel when necessary.

Solution 2: Micro threads and continuations: In this case, we can use
Fig. 2 but removing the acquire and release invocations. In that case, we don’t
need to use a lock system. This is because in a single-threaded environment,
two microthreads cannot modify the same state at the same time because their
execution is sequential.

We assume here that the send and receive primitives in microthreads will
execute a context-switch to other green thread processing the communication to
other Actor. Following, we will try to explain better this process, step by step:

1. send: When a proxy sends a synchronous message to another Actor, it auto-
matically releases its control to other microthread.

2. receive: Parallel microthread will be inactive until it will receive a message.
At moment that it will receive a message it will wake up and wait for its turn to
continue the method execution. The implicit continuation implies that the code
continues from that point.

Since send and receive policies are executed inside the Proxy, the developer
is completely unaware of context-switches and continuations. Furthermore, in
this case there is no need to use locks to prevent concurrent access.

4 PyActive Abstractions

We present an Object Oriented implementation of the Actor model that is de-
signed to support synchronous, asynchronous and parallel calls. We have im-
plemented a prototype of this Actor library in Python that supports different

remote transport protocols, and threading models: Python system threads and
Stackless cooperative threads.

Our programming model for Object Actors provides explicit mechanisms for
Actor creation and location, method invocation abstractions in actors, and pass
by reference of Actor entities. Let us review these mechanisms in our Actor
programming model.

We provide several call abstractions in Actors: asynchronous calls, timed
synchronous calls, parallel calls and pass by reference.

An important difference in our model is that we introduce different types of
method requests. The developer must explicitly establish the types of methods
using annotations or meta-information that can be processed by the Actor li-
brary. As we can see in Figure 3, we include this meta-information as properties
of the class. These properties explicitly tell the Actor which methods are exposed
and their different types.

Asynchronous calls are one-way invocations that do not require a response
from the Actor. These are the usual calls implemented in Actor libraries since
they naturally adapt to the asynchronous message passing concurrency model.

Timed Synchronous calls are two-way blocking invocations where the
client waits for the response from the server during a certain time (timeout).
If the timeout is reached an exception is triggered. This kind of calls are not
usually recommended nor even implemented in Actor libraries since the entire
calling Actor is blocked until the response arrives. This can be appropriate in
state-machine protocols but it can also prevent the Actor for continuing its
normal operation. But we claim that they are completely necessary to avoid the
aforementioned continuation complexity.

Parallel calls imply the processing of the method invocation in a parallel
thread in the Actor. As explained before they must be used to avoid stalling the
current Actor when a method performs a synchronous blocking request to other
Actor.

Pass by reference calls are invocations where either the parameters or the
result contain a reference to another Actor. References to Actors (Proxies) must
be explicitly tagged by the developer for performance but also for correctness.
It is important not to confuse Objects and Actors references: where the former
are restricted to a single address space, the latter can span different locations.

The best way to understand the simplicity of our approach is to implement
well-known distributed algorithms.

4.1 A complete example : Chord

As stated before, Chord [11] is an excellent example of a distributed algorithm
that makes extensive use of RPCs. We implemented a Python object oriented

version of Chord (following the original pseudo-code) in 217 lines of code.
We can see in Figure 3 a fragment of the Chord implementation in our

library. The original Chord implementation using plain Python objects only
required some modifications that we detail now.

To begin with, the class must contain meta-information in four variables
(_sync, _async, _ref, _parallel) to specify the type of methods that will be exposed
remotely by the Actor.

class Node(object):

sync = { closest_preceding_finger’: 72’ def closest_preceding_finger(self, id):

try:
for i in range(k — 1, —1, —1):

_async = [’set_successor’,’fix_finger’ if betwoen (int (self . finger[i]
_ref = [’closest_preceding_finger’, ...] rfegtau;;dgzz)l% }?ﬁ(zf%f]ld) » id)
_parallel = [’fix_finger’, ’stabilize’] g

return self.proxy
except(TimeoutError):

def find_predecessor(self, id): raise succ.err()

try:
if id = int(self.id):
return self.predecessor
nl = self.proxy
while not betweenE(id,
int(nl.get_id()),
int(nl.successor().get_id())):

def fix_finger(self):
if(self.currentFinger <= 0 or
self.currentFinger >= k):
self.currentFinger = 1
try:
self.finger[self.currentFinger] =

nll_ nlt. dinefi 'd self.find_successor(
closest_preceding-finger (id) self.start [self.currentFinger])
return nl t:
except(succ_err): m(Cell\)l .
raise succ_err() finallo;‘-3

except(TimeoutError) :

raise TimeoutElTor() self.currentFinger 4+= 1

Fig. 3: Chord Implementation

Moreover, it is important that developers clearly distinguish when they are
using object references, and when they are using Actor references. A special case
is the reference to the current object (self in Python). If one Actor uses a Proxy
to itself to invoke a method, it could create a deadlock. To avoid this, our Actor
library sets the self.proxy variable to a special Proxy that avoid conflicts, and
that can be passed by reference to other Actors. We can see in find_predecessor
and closest_preceding_finger how they use self.proxy to refer to the current object
and avoid conflicts. Note that in Chord, the routing table (finger table) may
contain references (Proxies) to the current Actor.

Apart from these important changes, the developer just must be aware of
catching the exceptions that may be produced by invoking other Actor (Time-
outs). The resulting code is very simple and it can now be executed in multiple
machines in a transparent way.

5 Evaluating the expressiveness and simplicity of our
approach

In this experiment we are comparing the complexity of the Chord algorithm
implementation in four platforms: Macedon, PlanetSim, PeerSim, and PyActive.

PlanetSim and PeerSim are P2P event simulators implemented in the Java
language. They are very popular and widely used in the P2P community and they
provide a simple framework for developing decentralized scalable algorithms.

Macedon is a Domain Specific Language (DSL) that generates code for the
Ns-2 simulator and C+4 code with sockets for experimentation. The DSL is
based on event-driven finite state machines and it claims a reduction in lines of
code and simplicity of the implemented distributed algorithms.

10

Even if we are comparing different programming languages (Java in PeerSim
and Planetsim, DSL in Macedon, Python in our Actor library) the comparison
is useful to understand different approaches of implementing the same Chord
algorithm. PlanetSim and PeerSim are good examples of the Callback Hell since
they require complex callback handlers and message programming. They had to
break the elegant Chord RPCs into different code fragments clearly showing our
Continuation Complexity Problem.

Macedon is a different approach that uses a DSL and state machines to
simplify message handling. But again, it resulted in a complex code that is far
from the simplicity of Chord sequential code using RPCs.

Before comparing the code, it is important to outline that the different ver-
sions are not implementing the Chord algorithm exactly as stated in the original
article. For example, Macedon only implements a successor list of size 2, and
their fiz_finger protocol is using the simpler update_others variant that is not
recommended for real settings.

Regarding PeerSim, it is important to outline that their implementation is
not completely event-based because they also use object invocation shortcuts
to simplify the code. In this line, Nodes access the getProtocol() method that
provides a clone of the desired node.

Finally, PlanetSim provides a fully event-oriented implementation of Chord,
but the implementation of the successor list does not consider all possible cases
and errors in the protocol.

1200, 56

1000, 9

0 PyActivePlanetSim PeerSim Macedon JPyActive 0 PyActive PlanetSim PeerSim Macedon JPyActive 0 PyActive PlanetSim PeerSim Macedon JPyActive
(a) Lines of Code (b) Ciclomatic Complexity (c) Most Complex Method
Average and Number of and Number of Methods
Classes

Fig.4: Chord Evaluation

As we can see in the Figure 4 our approach (PyActive, JPyActive) is provid-
ing the simplest solution. Note that we also implemented a Java version (JPyac-
tive) to be fair in the comparison with other Java-based solutions like PlanetSim
or Peersim.

Our implementation has less LoC. Furthermore, our implementation is sim-
pler and easier to understand that any of the presented alternatives. Our object
oriented model is straightforward and it does not need additional understanding
of messages, handlers and states. Macedon, PeerSim, and PlanetSim will require
an understanding of messages and transitions that is more intricate that the
simplicity of sequence diagrams in an object oriented design.

It is worth comparing the different approaches in code complexity (i.e., Cyclo-
matic Complexity). Again, our implementation is beating the other proposals in

11

the overall complexity and in the most complex method. One important reason is
that our model avoids large message handling conditionals because messages are
cleanly mapped to methods. Furthermore, synchronous calls that return results
are naturally mapped to method invocations, whereas event-based approaches
must split these invocations in requests and responses.

As we can see, even accepting that the Python language produces less lines
of code compared to Java (e.g., PeerSim or PlanetSim), we have demonstrated
that our additional reduction in terms of complexity and LoC is very meaning-
ful. There are two main reasons: continuation complexity and message handling
complexity. The continuation complexity is reduced in our model thanks to syn-
chronous calls masked by proxies. The message handling complexity is reduced
by the transparent mapping of messages to method calls in the Active Object
pattern.

In particular, four methods in the Chord original algorithm present Contin-
uation Complexity: find_predecessor, fiz_finger, stabilize, and join. All of them
should be changed in an asynchronous programming model, and thus requiring
different code fragments (request, response, and timeout) for RPCs. In our case,
we implemented Chord as a slight modification of Chord’s original OOP code.
Just by annotating the remote abstractions in the class, we can run Chord in an
Actor library that also permits remote Actors in a transparent way.

On the contrary, the rest of the implementations (Macedon, PlanetSim, Peer-
Sim) suffer from the continuation complexity problem in different degrees. Each
takes a different strategy but all of them need to break every RPC in two code
fragments (request and response). Regarding Timeouts, some declare a time-
out function for every method, or they can reuse the timeout handler for all
methods. So for example, Macedon is breaking find_predecessor in three code
fragments (request, reply, timeout), but they are duplicated for different states
of the protocol (joined, joining). Macedon does not add another function for the
iteration but the additional code is found inside the response handler. PlanetSim
and PeerSim also include handlers for requests, responses and timeouts inside
their code implementing implicit continuations.

6 Conclusions

We identified the Continuation Complexity Problem that occurs when syn-
chronous invocations (RPCs) must be converted to asynchronous events, han-
dlers and futures. The produced code is difficult to read and maintain, and it
breaks with the object oriented paradigm.

To cope with the Continuation Complexity Problem, we introduced a novel
invocation abstraction for Object Actors (i.e., parallel). Our parallel abstraction
supports concurrent interleavings of method executions within a single Actor.
We mainly allow the main Actor thread to continue processing incoming method
requests while the parallel thread is blocked waiting for a response in a remote
Actor due to a synchronous invocation. This approach considerably simplifies the
continuation complexity problem for distributed systems requiring non-blocking
synchronous invocations.

Finally, we demonstrated with well-known algorithm (e.g, Chord) that our
resulting code has less lines of code, less Cyclomatic Complexity, and that it is

12

more expressive than other event-based alternatives (i.e., PlanetSim, PeerSim,
and Macedon). We believe that distributed systems can be considerably simpli-
fied using object oriented methodologies like the ones proposed in this article.

Our prototype implementation of PyActive can be downloaded from https:
//github.com/cloudspaces/pyactive, under a LGPL license. This implemen-
tation includes clarifying code examples and tutorials.

7 Acknowledgments

Special thanks to Douglas C. Schmidt for his helpful comments about the Active
Object pattern.

This work has been partially funded by the EU in the context of the project
CloudSpaces (FP7-317555) and by the Spanish Ministerio de Ciencia e Inno-
vacién in the project Cloud Services and Community Clouds (TIN2013-47245-
C2-2-R)

References

1. .NET platform Async and Await abstractions, http://msdn.microsoft.com/
en-us/library/hh191443.aspx

2. Agha, G.: Actors: A model of concurrent computation in distributed systems. In:
The MIT Press series in artificial intelligence. USA (1986)

3. Bainomugisha, E., Carreton, A.L., Cutsem, T.v., Mostinckx, S., Meuter, W.d.:
A survey on reactive programming. ACM Comput. Surv. 45(4), 52:1-52:34 (Aug
2013)7 http://doi.acm.org/10.1145/2501654.2501666

4. Edwards, J.: Coherent reaction. In: Proceedings of the 24th ACM SIGPLAN con-
ference companion on Object oriented programming systems languages and appli-
cations. pp. 925-932. ACM (2009)

5. Garcia-Lépez, P., Pairot, C., Mondéjar, R., Pujol, J., Tejedor, H., Rallo, R.: Plan-
etsim: A new overlay network simulation framework. In: Software engineering and
middleware, pp. 123-136. Springer (2005)

6. Lin, Y., Radoi, C., Dig, D.: Retrofitting concurrency for android applications
through refactoring. In: Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 341-352. FSE 2014, ACM,
New York, NY, USA (2014), http://doi.acm.org/10.1145/2635868.2635903

7. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proc. of the
9th Int. Conference on Peer-to-Peer (P2P’09). pp. 99-100. Seattle, WA (Sep 2009)

8. Okur, S., Hartveld, D.L., Dig, D., Deursen, A.v.: A study and toolkit for asyn-
chronous programming in c#. In: Proceedings of the 36th International Conference
on Software Engineering. pp. 1117-1127. ICSE 2014, ACM, New York, NY, USA
(2014), http://doi.acm.org/10.1145/2568225.2568309

9. Reynolds, J.: The discoveries of continuations. In: Lisp and Symbolic Computation
- Special issue on continuations- Volume 6 Issue 3-4, 6 (3/4): 233248. Hingham,
MA, USA (1993)

10. Rodriguez, A., Killian, C., Bhat, S., Kostic, D., Vahdat, A.: Macedon: Method-
ology for automatically creating, evaluating, and designing overlay networks. In:
Proceedings of the 1st conference on Symposium on Networked Systems Design
and Implementation. vol. 1, pp. 267-280 (2004)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM
Computer Communication Review. vol. 31, pp. 149-160. ACM (2001)

